Меню

Значение магнитной индукции катушки с током

Магнитное поле катушки с током

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

Рис. 1. Опыт Ампера с проводами с током. Стрелка компаса вблизи провода с током

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

Математическую модель (теорию), с помощью которой стало возможным рассчитывать величину магнитного поля и силу взаимодействия, разработал английский физик Джеймс Максвелл. Из уравнений Максвелла, объединивших электрические и магнитные явления, следовало, что:

  • Магнитное поле возникает только в результате движения электрических зарядов;
  • Постоянное магнитное поле существует у природных магнитных тел, но и в этом случае причиной возникновения поля является непрерывное движение молекулярных токов (вихрей) в массе вещества;
  • Магнитное поле можно создать еще с помощью переменного электрического поля, но это тема будет рассмотрена в следующих наших статьях.

Магнитное поле катушки с током

Металлический провод, намотанный кольцами на любой цилиндрический стержень (деревянный, пластмассовый и т.п.) — это и есть электромагнитная катушка. Провод должен быть изолированным, то есть покрыт каким-либо изолятором (лаком или пластиковой оплеткой) во избежание замыкания соседних витков. В результате протекания тока магнитные поля всех витков складываются и получается, что суммарное магнитное поле катушки с током идентично (полностью похоже) магнитному полю постоянного магнита.

Магнитное поле катушки и постоянного магнита

Рис. 2. Магнитное поле катушки и постоянного магнита.

Внутри катушки магнитное поле будет однородное, как в постоянном магните. Снаружи магнитные линии поля катушки с током можно обнаружить с помощью мелких металлических опилок. Линии магнитного поля замкнуты. По аналогии с магнитной стрелкой компаса, катушка с током имеет два полюса — южный и северный. Силовые линии выходят из северного полюса и заканчиваются в южном.

Для катушек с током существуют дополнительные, отдельные названия, которые используют в зависимости от области применения:

  • Катушка индуктивности, или просто — индуктивность. Термин используется в радиотехнике;
  • Дроссель (drossel — регулятор, ограничитель). Используется в электротехнике;
  • Соленоид. Это составное слово происходит от двух греческих слов: solen — канал, труба и eidos — подобный). Так называют специальные катушки с сердечниками из специальных магнитных сплавов (ферромагнетиков), которые используют в качестве электромеханических механизмов. Например, в автомобильных стартерах втягивающее реле — это соленоид.

Рис. 3. Катушки индуктивности, дроссель, соленоид

Энергия магнитного поля

В катушке с током запасается энергия от источника электропитания (батареи, аккумулятора), которая тем больше, чем больше ток I и величина L, которая называется индуктивностью. Энергия магнитного поля катушки с током W вычисляется с помощью формулы:

Эта формула напоминает формулу для кинетической энергии тела. Индуктивность аналогична массе тела, а сила тока аналогична скорости тела. Магнитная энергия пропорциональна квадрату силы тока, как кинетическая энергия пропорциональна квадрату скорости.

Для расчета величины индуктивности катушки существует следующая формула:

N — число витков катушки;

S — площадь поперечного сечения катушки;

lк — длина катушки;

μ — магнитная проницаемость материала сердечника — справочная величина. Сердечник представляет собой металлический стержень, помещенный внутрь катушки. Он позволяет значительно увеличивать величину магнитного поля.

Что мы узнали?

Итак, мы узнали, что магнитное поле возникает только в результате движения электрических зарядов. Магнитное поле катушки с током похоже на магнитное поле постоянного магнита. Энергию магнитного поля катушки можно рассчитать, зная силу тока I и индуктивность L.

Источник



Магнитное поле катушки с током

Если в пространстве вокруг неподвижных электрических зарядов существует электростатическое поле, то в пространстве вокруг движущихся зарядов (как и вокруг изменяющихся во времени электрических полей, что изначально предположил Максвелл) существует магнитное поле. Это легко наблюдать экспериментально.

Именно благодаря магнитному полю и взаимодействуют между собой электрические токи, а также постоянные магниты и токи с магнитами. По сравнению с электрическим взаимодействием, магнитное взаимодействие является значительно более сильным. Это взаимодействие в свое время изучал Андре-Мари Ампер.

В физике характеристикой магнитного поля служит магнитная индукция B, и чем она больше, тем сильнее магнитное поле. Магнитная индукция В — величина векторная, ее направление совпадает с направлением силы, действующей на северный полюс условной магнитной стрелки, помещенной в какую-нибудь точку магнитного поля, — магнитное поле сориентирует магнитную стрелку в направлении вектора В, то есть в направлении магнитного поля.

Читайте также:  Найти ток протекающий через сопротивление r1 если сопротивление

Вектор В в каждой точке линии магнитной индукции направлен к ней по касательной. То есть индукция В характеризует силовое действие магнитного поля на ток. Похожую роль играет напряженность Е для электрического поля, характеризующая силовое действие электрического поля на заряд.

Простейший эксперимент с железными опилками позволяет наглядно продемонстрировать явление действия магнитного поля на намагниченный объект, поскольку в постоянном магнитном поле маленькие кусочки ферромагнетика (такими кусочками являются железные опилки) становится, намагничиваясь по полю, магнитными стрелками, словно маленькими стрелками компаса.

Эксперимент с металлическими опилками

Если взять вертикальный медный проводник, и продеть его через отверстие в горизонтально расположенном листе бумаги (или оргстекла, или фанеры), а затем насыпать металлические опилки на лист, и немного встряхнуть его, после чего пропустить по проводнику постоянный ток, то легко заметить, как опилки выстроятся в форме вихря по окружностям вокруг проводника, в плоскости перпендикулярной току в нем.

Эти окружности из опилок как раз и будут условным изображением линий магнитной индукции В магнитного поля проводника с током. Центр окружностей, в данном эксперименте, будет расположен ровно в центре, по оси проводника с током.

Правило правового винта

Направление векторов магнитной индукции В проводника с током легко определить по правилу буравчика или по правилу правого винта: при поступательном движении оси винта по направлению тока в проводнике, направление вращения винта или рукоятки буравчика (вкручиваем или выкручиваем винт) укажет направление магнитного поля вокруг тока.

Почему применяется правило буравчика? Поскольку операция ротор (обозначаемая в теории поля rot), используемая в двух уравнениях Максвелла, может быть записана формально как векторное произведение (с оператором набла), а главное потому, что ротор векторного поля может быть уподоблен (представляет собой аналогию) угловой скорости вращения идеальной жидкости (как представлял сам Максвелл), поле скоростей течения которой изображает собой данное векторное поле, можно воспользоваться для ротора теми формулировками правила, которые описаны для угловой скорости.

Таким образом, если крутить буравчик в направлении завихрения векторного поля, то он будет ввинчиваться в направлении вектора ротора этого поля.

Как видите, в отличие от линий напряженности электростатического поля, которые в пространстве разомкнуты, линии магнитной индукции, окружающие электрический ток, замкнуты. Если линии электрической напряженности Е начинаются на положительных зарядах и заканчиваются на отрицательных, то линии магнитной индукции В просто замкнуты вокруг порождающего их тока.

Проводник с током и металлические опилки

Теперь усложним эксперимент. Рассмотрим вместо прямого проводника с током виток с током. Допустим, нам удобно расположить такой контур перпендикулярно плоскости рисунка, причем слева ток направлен на нас, а справа — от нас. Если теперь внутри витка с током разместить компас с магнитной стрелкой, то магнитная стрелка укажет направление линий магнитной индукции — они окажутся направлены по оси витка.

Почему? Потому что противоположные стороны от плоскости витка окажутся аналогичны полюсам магнитной стрелки. Откуда линии В выходят — это северный магнитный полюс, куда входят — южный полюс. Это легко понять, если сначала рассмотреть проводник с током и с его магнитным полем, а затем просто свернуть проводник в кольцо.

Направление тока в витке

Для определения направления магнитной индукции витка с током также пользуются правилом буравчика или правилом правого винта. Поместим острие буравчика по центру витка, и станем его вращать по часовой стрелке. Поступательное движение буравчика совпадет по направлению с вектором магнитной индукции В в центре витка.

Очевидно, направление магнитного поля тока связано с направлением тока в проводнике, будь то прямой проводник или виток.

Принято считать, что та сторона катушки или витка с током, откуда линии магнитной индукции В выходят (направление вектора В наружу) — это и есть северный магнитный полюс, а куда линии входят (вектор В направлен внутрь) — это южный магнитный полюс.

Магнитное поле катушки с током

Если множество витков с током образуют длинную катушку — соленоид (длина катушки во много раз превышает ее диаметр), то магнитное поле внутри нее однородно, то есть линии магнитной индукции В параллельны друг другу, и имеют одинаковую плотность по всей длине катушки. Кстати, магнитное поле постоянного магнита похоже снаружи на магнитное поле катушки с током.

Для катушки с током I, длиной l, с количеством витков N, магнитная индукция в вакууме будет численно равна:

Магнитная индукция

Итак, магнитное поле внутри катушки с током является однородным, и направлено от южного к северному полюсу (внутри катушки!) Магнитная индукция внутри катушки пропорциональна по модулю числу ампер-витков на единицу длины катушки с током.

Источник

Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.
Читайте также:  Назовите первую помощь при поражении электрическим током

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.
Читайте также:  Как правильно оказывать помощь пострадавшему при поражении электрическим током

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник