Меню

Зависимость силы тока текущего через катушку от времени

Определить зависимость тока через катушку от времени

Как сдвинуты по фазе колебания переменного напряжения и тока, текущего через катушку индуктивности и конденсатор
Как сдвинуты по фазе колебания переменного напряжения и переменного тока, текущего через катушку.

Определить через сколько времени сила тока замыкания достигнет 0,82 предельного значения
Определить через сколько времени сила тока замыкания достигнет 0,82 предельного значения, если.

Определить, через сколько времени сила тока замыкания достигает 0,95 предельного значения
Определить, через сколько времени сила тока замыкания достигает 0,95 предельного значения, если.

Сообщение от Marfa_

Лучший ответСообщение было отмечено как решение

Решение

Сообщение от Marfa_

следует пренебречь. Поэтому, в момент включения, ЭДС генератора следует расматривать как ЭДС индукции катушки L, которая определяется по тривиальной формуле

Решая данное ДУ с разделяющимися переменными получаем
U*t + C = -L*i(t)
Воспользовавшись краевым условием i(0) = 0 получаем,
что константа интегрирования С = 0
Получаем в итоге вот так

Проверим единицы измерения L = [Гн] = [В*с/А]
Имеем согласно последней формуле [А = В*с/(В*с/А) = А] — тождественно, а значит верно

Сообщение от 220Volt

Marfa_!
-=ЮрА=- прав, я прошляпил, что сопротивлением катушки тоже надо пренебречь ! Увы!
Возьмите его решение. Только исправьте знак:
U — L\frac<><

> = 0
»/>

Направление тока должно определяться направлением электрического поля, а не быть ему противоположным.

Сообщение от 220Volt

Поле тока в катушке всегда «против» действия основного поля и наоборот — ток в катушке всегда против тока источника его вызвавшего — в формуле я всё верно указал. Ваше утверждение верно для активных цепей. Пожалуйста давайте не холиворить, со знаками я не напутал

Добавлено через 6 минут

Добавлено через 9 минут

Вот тут ещё http://radio-manyak.ru/t-77/
Давайте ещё раз аналитически
UL(t) = Um*sin(w*t)*t/L — тут не будет отставания
i(t) = dUL/dt = [Um*cos(w*t)*t + Um*sin(wt)]/L — здесь нет минуса а значит и сдвига фаз нету
А теперь если UL(t) = -Um*sin(w*t)*t/L
i(t) = dUL/dt = -[Um*cos(w*t)*t + Um*sin(wt)]/L — вот он есть

Сообщение от -=ЮрА=-

Marfa_, дабы донести до вас мои рассуждения о знаке — предлагаю рассмотреть контур на миниатюре. Не нужно быть семи пядей во лбу чтобы записать для него з. Кирхгоффа
E = Uab (дословно «сумма палений напряжений равна сумме ЭДС»)
E — ЭДС нашего генератора => E = U
Uab — это напряжение на катушке, стало быть Uab = UL.
Как я отмечал выше

Ну а далее вы знаете, мой ответ

Ну а чтобы довести задачу, предлагаю найти аналитическое выражение для напряжения на катушке индуктивности
Рассматрим 2 варианта
Вариант 1

Некоторые доп соображения
Рассматриваем включение катушки в цепь с U = const (т.е. рассмотрим процесс, начального заряда катушки). В конце концов напряжение на зажимах катушки станет нулём — оно то и понятно цепь же U = const

C = U»/>
Таки образом

C = U»/>
Таки образом

Заказываю контрольные, курсовые, дипломные работы и диссертации здесь.

Определить силу тока в контуре через 0,01 с после отключения от источника тока
Здравствуйте уважаемые форумчане. Нужна помощь в задании по физике. Контур состоит из.

Отношение тока,текущий через вольтметр,к тока, текущего через R2
В схеме на рис. ε1 = ε2, R2 = 2R1. Во сколько раз ток, текущий через вольтметр, больше тока.

Зависимость тока от частоты
C увеличением частоты f и неизменном действующем значении приложенного напряжения U действующее.

Определить силу тока протекающего через R
Схема вроде-бы понятна, а вроде нет. Условия задачи, а именно I2, как так? Разве в одной системе.

Источник

Физика

Электромагнитные колебания, возникающие в идеальном колебательном контуре (при отсутствии в нем активного сопротивления), описываются уравнениями, аналогичными уравнениям механических колебаний. В идеальном электромагнитном контуре заряд на обкладках конденсатора, разность потенциалов (напряжение) между его обкладками и сила тока в катушке индуктивности изменяются с течением времени по гармоническим законам.

Зависимость заряда на обкладках конденсатора от времени описывается уравнениями:

q ( t ) = q max sin ( ω t + φ 0 ) или q ( t ) = q max cos ( ω t + φ 0 ) ,

где q max — максимальное значение заряда ( амплитуда заряда ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если колебания начинаются при полностью заряженном конденсаторе (в начальный момент времени заряд конденсатора максимален), то для описания колебаний заряда выбирают формулу

q ( t ) = q max cos ω t ;

2) если колебания начинаются при полностью разряженном конденсаторе (в начальный момент времени заряд конденсатора равен нулю), то для описания колебаний заряда выбирают формулу

q ( t ) = q max sin ω t .

Зависимость напряжения между обкладками конденсатора от времени описывается уравнениями:

U ( t ) = U max sin ( ω t + φ 0 ) или U ( t ) = U max cos ( ω t + φ 0 ) ,

где U max — максимальное значение напряжения ( амплитуда напряжения ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если колебания начинаются при полностью заряженном конденсаторе (в начальный момент времени заряд конденсатора и разность потенциалов на его обкладках максимальны), то для описания колебаний напряжения выбирают формулу

U ( t ) = U max cos ω t ;

2) если колебания начинаются при полностью разряженном конденсаторе (в начальный момент времени заряд конденсатора и разность потенциалов на его обкладках равны нулю), то для описания колебаний напряжения выбирают формулу

U ( t ) = U max sin ω t .

Зависимость силы тока в катушке индуктивности от времени описывается уравнениями:

I ( t ) = I max sin ( ω t + φ 0 ) или I ( t ) = I max cos ( ω t + φ 0 ) ,

где I max — максимальное значение силы тока ( амплитуда силы тока ); φ — фаза колебаний, φ = ω t + φ 0 ; φ 0 — начальная фаза колебаний.

Для упрощения этих уравнений целесообразно пользоваться правилами:

1) если электромагнитные колебания начинаются при максимальной силе тока в катушке индуктивности, то для описания колебаний силы тока выбирают формулу

I ( t ) = I max cos ω t ;

2) если электромагнитные колебания начинаются при отсутствии силы тока в катушке индуктивности, то для описания колебаний силы тока выбирают формулу

I ( t ) = I max sin ω t .

При решении задач на электромагнитные гармонические колебания следует помнить, что одно полное колебание происходит за время, равное периоду колебаний; при этом любая из величин, изменяющихся по гармоническому закону (заряд, напряжение, сила тока), проходит ряд последовательных состояний, возвращаясь в исходное состояние с начальным значением соответствующей величины:

1. Если колебания начинаются при полностью заряженном конденсаторе (рис. 10.13), то через время, равное:

  • четверти периода ( t = T /4), конденсатор полностью разряжается, а в катушке индуктивности течет максимальный ток в определенном направлении;
  • половине периода ( t = T /2), ток в катушке индуктивности полностью исчезает, а на обкладках конденсатора вновь появляется максимальный заряд, однако обкладки конденсатора меняют знак (полярность);
  • трем четвертям периода ( t = 3 T /4), в катушке индуктивности сила тока вновь принимает максимальное значение, однако ток в этом случае течет в противоположном направлении;
  • периоду ( t = T ), колебательный контур возвращается в исходное состояние: конденсатор полностью заряжен, его обкладки имеют исходную полярность, ток в катушке индуктивности отсутствует.

2. Если колебания начинаются при максимальном токе в катушке индуктивности (рис. 10.14), то через время, равное:

  • четверти периода ( t = T /4), ток в катушке полностью исчезает, а на обкладках конденсатора появляется максимальный заряд;
  • половине периода ( t = T /2), ток в катушке вновь принимает максимальное значение, однако направление тока при этом противоположно первоначальному, конденсатор полностью разряжается;
  • трем четвертям периода ( t = 3 T /4), в катушке индуктивности ток вновь отсутствует, а обкладки конденсатора заряжаются полностью, однако полярность обкладок (знак заряда) противоположная;
  • периоду ( t = T ), колебательный контур возвращается в исходное состояние: в катушке течет максимальный ток в первоначальном направлении, а конденсатор полностью разряжен.

Мгновенные значения (значения в один и тот же произвольный момент времени) заряда на обкладках конденсатора, напряжения между ними и силы тока в катушке связаны между собой соотношениями:

  • величины заряда на обкладках конденсатора и напряжения между ними —
Читайте также:  Индукционный ток всегда направлен таким образом чтобы своим

где q ( t ) — мгновенное значение заряда на обкладках конденсатора; C — электроемкость конденсатора; U ( t ) — мгновенное значение напряжения на его обкладках;

  • величины заряда на обкладках конденсатора и модуля силы тока в катушке индуктивности —

где I ( t ) — мгновенное значение силы тока в катушке индуктивности; ω — циклическая частота колебаний; q * ( t ) — мгновенное значение заряда на обкладках конденсатора, q * ( t ) = q max cos(ω t + π/2).

Максимальные значения заряда на обкладках конденсатора, напряжения между ними и силы тока в катушке связаны между собой соотношениями:

  • величины максимального заряда на обкладках конденсатора и максимального значения напряжения —

где q max — максимальный заряд на обкладках конденсатора; C — электроемкость конденсатора; U max — максимальная разность потенциалов (напряжение) между обкладками конденсатора;

  • величины максимального заряда на обкладках конденсатора и максимального значения силы тока в катушке индуктивности —

где I max — максимальное значение силы тока в катушке индуктивности; ω — циклическая частота колебаний; q max — максимальный заряд на обкладках конденсатора.

Пример 10. В идеальном контуре возбуждены электромагнитные гармонические колебания, в результате которых напряжение между обкладками конденсатора изменяется по закону

U ( t ) = 0,50 cos π t / 2 ,

где U — напряжение в вольтах; t — время в секундах.

Найти величину заряда на обкладках конденсатора через 0,50 с после начала колебаний, если конденсатор имеет электроемкость 20 мкФ.

Решение . Напряжение на обкладках конденсатора изменяется по гармоническому закону и через указанное время t = 0,50 с составляет

U = 0,50 cos π / 4 = 0,25 2 В.

Величина заряда на обкладках конденсатора связана с разностью потенциалов (напряжением) между ними формулой

где q — искомый заряд в указанный момент времени; C — электроемкость конденсатора, C = 20 мкФ; U — рассчитанная разность потенциалов (напряжение) между обкладками конденсатора в тот же момент времени, U = 0,25 2 В.

Отсюда следует, что искомый заряд определяется произведением

q = 20 ⋅ 10 − 6 ⋅ 0,25 2 ≈ 7,1 ⋅ 10 − 6 Кл = 7,1 мкКл.

Через 0,50 с после начала колебаний заряд конденсатора равен 7,1 мкКл.

Источник

Катушка индуктивности. Устройство и принцип работы.

Катушка индуктивности

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку 🙂 То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Катушки индуктивности

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

Магнитное поле проводника с током

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

Магнитное поле катушки индуктивности

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • \mu_0 – магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: \mu_0 = 4 \pi \cdot 10^<-7>\medspace\frac <Гн>
  • \mu – магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами – магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S – площадь поперечного сечения катушки
  • N – количество витков
  • l – длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Катушка индуктивности в цепи постоянного тока

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

Напряжение и ток катушки индуктивности

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

Напряжение и ток в катушке

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Катушка индуктивности в цепи переменного тока

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Зависимость тока и ЭДС самоиндукции в катушке в цепи переменного тока

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: \varepsilon i > 0, участок 3-4: \varepsilon > 0, i w – круговая частота: w = 2 \pi f . [/latex]f[/latex] – это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Сдвиг фаз при включении катушки индуктивности

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Источник



Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/18.8

§18. Переменный электрический ток

18.8 Колебательный контур.

18.8.1 Свободные колебания в контуре.

Img Slob-10-18-262.jpg

Рассмотренные в предыдущих разделах цепи переменного тока наводят на мысль, что пара элементов – конденсатор и катушка индуктивности образуют своеобразную колебательную систему. Сейчас мы покажем, что это действительно так, в цепи состоящей только из этих элементов (рис. 262) возможны даже свободные колебания, то есть без внешнего источника ЭДС. Поэтому цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром.

Img Slob-10-18-263.jpg

Пусть конденсатор зарядили до заряда q и затем подключили к нему катушку индуктивности. Такую процедуру легко осуществить с помощью цепи, схема которой показана на рис. 263: сначала ключ К замыкают в положении 1, при этом конденсатор заряжается до напряжения, равного ЭДС источника, после чего ключ перебрасывают в положения 2, после чего начинается разрядка конденсатора через катушку.

Для определения зависимости заряда конденсатора от времени q(t) применим закон Ома, согласно которому напряжение на конденсаторе \(

U_C = \frac\) равно ЭДС самоиндукции, возникающей в катушке \(

\varepsilon_ = -L \frac<\Delta I> <\Delta t>= LI’\) (здесь, «штрих» означает производную по времени). Таким образом, оказывается справедливым уравнение

В этом уравнении содержится две неизвестных функции – зависимости от времени заряда q(t) и силы тока I(t), поэтому его решить нельзя. Однако сила тока является производной от заряда конденсатора q′(t) = I(t), поэтому производная от силы тока является второй производной от заряда

С учетом этого соотношения, перепишем уравнение (1) в виде

Поразительно, но это уравнение полностью совпадает с хорошо изученным нами уравнением гармонических колебаний (вторая производная от неизвестной функции пропорциональна самой этой функции с отрицательным коэффициентом пропорциональности \(x» = -\omega^2_0 x\))! Следовательно, решением этого уравнения будет гармоническая функция

q = A \cos (\omega_0 t + \varphi)\) (4)

с круговой частотой

Эта формула определяет собственную частоту колебательного контура. Соответственно период колебаний заряда конденсатора (и силы тока в контуре) равен

T = 2 \pi \sqrt\) . (6)

Полученное выражение для периода колебаний называется формулой Дж. Томпсона.

Как обычно, для определения произвольных параметров A, φ в общем решении (4) необходимо задать начальные условия – заряд и силу тока в начальный момент времени. В частности, для рассмотренного примера цепи рис. 263, начальные условия имеют вид: при t = 0 q = q, I = 0, поэтому зависимость заряда конденсатора от времени будет описываться функцией

q = q_0 \cos \omega_0 t\) , (7)

а сила тока изменяется со временем по закону

I = — \omega_0 q_0 \sin \omega_0 t\) . (8)

Img Slob-10-18-264.jpg

Следует отметить, что приведенное рассмотрение колебательного контура является приближенным – любой реальный контур обладает активным сопротивлением (соединительных проводов и обмотки катушки). Поэтому в уравнении (1) следует учесть падение напряжения на этом активном сопротивлении, поэтому это уравнение приобретет вид

который с учетом связи между зарядом и силой тока, преобразуется к форме

Это уравнение нам также знакомо – это уравнение затухающих колебаний \(x» = -\omega^2_0 x — \beta x’\), причем коэффициент затухания, как и следовало ожидать, пропорционален активному сопротивлению цепи \(

Процессы, происходящие в колебательном контуре, могут быть также описаны и с помощью закона сохранения энергии. Если пренебречь активным сопротивлением контура, то сумма энергий электрического поля конденсатора и магнитного поля катушки остается постоянной, что выражается уравнением

которое также является уравнением гармонических колебаний с частотой, определяемой формулой (5). По свое форме это уравнение также совпадает уравнениями, следующими из закона сохранения энергии при механических колебаниях. Так как, уравнения, описывающие колебания электрического заряда конденсатора, аналогичны уравнениям, описывающим механические колебания, то можно провести аналогию между процессами, протекающими в колебательном контуре, и процессами в любой механической системе.

Img Slob-10-18-265.jpg

На рис. 265 такая аналогия проведена для колебаний математического маятника. В этом случае аналогами являются «заряд конденсатора q(t) – угол отклонения маятника φ(t)» и «сила тока I(t) = q′(t) – скорость движения маятника V(t)».

Пользуясь этой аналогией, качественно опишем процесс колебаний заряда и электрического тока в контуре. В начальный момент времени конденсатор заряжен, сила электрического тока равна нулю, вся энергия заключена в энергии электрического поля конденсатора (что аналогично максимальному отклонения маятника от положения равновесия). Затем конденсатор начинает разряжаться, сила тока возрастает, при этом в катушке возникает ЭДС самоиндукции, которая препятствует возрастанию тока; энергия конденсатора уменьшается, переходя в энергию магнитного поля катушки (аналогия – маятник движется к нижней точки с возрастанием скорости движения). Когда заряд на конденсаторе становится равным нулю, сила тока достигает максимального значения, при этом вся энергия превращается в энергию магнитного поля (маятник достиг нижней точки, скорость его максимальна). Затем магнитное поле начинает убывать, при этом ЭДС самоиндукции поддерживает ток в прежнем направлении, при этом конденсатор начинает заряжаться, причем знаки зарядов на обкладках конденсатора противоположны начальному распределению (аналог – маятник движется к противоположному начальному максимальному отклонению). Затем ток в цепи прекращается, при этом заряд конденсатора становится опять максимальным, но противоположным по знаку (маятник достиг максимального отклонения), после чего процесс повторятся в противоположном направлении.

18.8.2 Вынужденные колебания в контуре.

Как уже было сказано, в реальном колебательном контуре колебания будут затухающими [1] из-за неизбежного выделения теплоты на активном сопротивлении (которым мы пренебрегли). Поэтому для поддержания незатухающих колебаний в контуре необходим внешний источник энергии, иными словами нам необходимо рассмотреть вынужденные колебания. Один из возможных вариантов осуществления таких колебаний мы уже рассмотрели при изучении темы «Резонанс напряжений», где мы фактически изучили колебания в контуре, внутрь которого включен источник переменной ЭДС, который может считаться аналогом внешней вынуждающей силы.

Чтобы явным образом показать, что явление резонанса напряжений можно рассматривать как вынужденные колебания, перепишем использованное уравнение закона Ома

\varepsilon(t) = U_R(t) + U_C(t) + U_L(t)\) .

Для чего подставим в него явные выражения для напряжений на элементах цепи \(

U_L = -\varepsilon_ = LI’ = Lq»\) и ЭДС источника \(\varepsilon = U_0 \cos \omega t\):

Lq» + \frac + Rq’ = U_0 \cos \omega t\)

и перепишем его в виде

q» = -\frac<1> q — \frac q’ + \frac \cos \omega t\) ,

который полностью совпадает с уравнением вынужденных колебаний \(x» = -\omega^2_0 x — \beta x’ + f_0 \cos \omega t\).

Img Slob-10-18-266.jpg

Рассмотрим теперь возможность возникновения вынужденных колебаний в контуре, когда источник переменной ЭДС находится вне контура [2] , как показано на рис. 266. Расчет данной цепи проведем, используя метод векторных диаграмм (которая также представлена на рис. 266). В данном случае нас, прежде всего, будет интересовать сила тока в колебательном контуре.

Так как конденсатор и катушка индуктивности соединены параллельно, то мгновенные напряжения (UC, UL) на этих элементах одинаковы. Обозначим это напряжение U1. Построение диаграммы следует начинать с построения вектора, изображающего колебания этого напряжения. Далее построим векторы, изображающие колебания сил токов через конденсатор IC и катушку индуктивности IL — эти векторы перпендикулярны вектору напряжения U1 и противоположны друг другу. Как обычно, колебания токов через конденсатор и через катушку индуктивности происходят в противофазе. Колебательный контур соединен последовательно с резистором, поэтому сумма токов IC и IL (конечно, их мгновенных значений) равна силе тока через резистор IR. Вектор изображающий напряжение на резисторе UR, сонаправлен с вектором суммарного тока. Наконец сумма векторов напряжения на резисторе UR и напряжения на контуре U1 равна ЭДС источника.

Построенная векторная диаграмма позволяет рассчитать амплитудные значения токов и напряжений на элементах данной цепи. Выразим традиционным образом амплитудные значения сил токов через конденсатор и катушку через амплитуду напряжения на контуре

Амплитуда силы тока через резистор (и через источник) определяется из векторной диаграммы и равна

I_ = (I_ — I_) = U_ <10>\left( \omega C — \frac<1> <\omega L>\right)\) . (2)

Теперь можно записать выражение для амплитуды напряжения на резисторе

U_ = I_R = U_ <10>\left( \omega C — \frac<1> <\omega L>\right) R\) . (3)

Далее, глядя на диаграмму напряжений, запишем теорему Пифагора для вектора ЭДС источника ⎟ ⎟

U^2_0 = U^2_ + U^2_ <10>= U^2_ <10>\left( 1 + \left( \omega C — \frac<1> <\omega L>\right)^2 R^2 \right) = U^2_ <10>R^2 \left( \frac<1> + \left( \omega C — \frac<1> <\omega L>\right)^2 \right)\) , (4)

здесь U — амплитуда ЭДС источника.

Из этого уравнения легко определить напряжение на резисторе

Наконец, с помощью формул (1), (2), (3), запишем выражения для сил токов в рассматриваемой цепи

Проанализируем зависимость этих величин от частоты источника ЭДС. Во всех формулах под корнем имеется два положительных слагаемых, причем только второе зависит от частоты. При частоте

равной собственной частоте колебательного контура второе слагаемое под корнем обращается в ноль, поэтому можно ожидать, что вблизи этой частоты силы токов через конденсатор и катушку достигают максимального значения. Понятно, что максимумы функций IL0(ω) и IC0(ω) несколько смещены от частоты ω, потому, что частота источника ω присутствует и вне корня. Однако, если первое слагаемое под корнем (\(\frac<1>\)), мало, то сдвиг максимума от значения ω = ω будет незначительным. Отметим, также, что при \(

\omega = \omega_0 = \frac<1><\sqrt>\) амплитуды токов через конденсатор и катушку оказываются равными. Действительно, в этом случае

Img Slob-10-18-267.jpg

Но самое неожиданное, что при ω = ω сила тока через резистор обращается в нуль! Соответственно, напряжение на колебательном контуре становится равным ЭДС источника, что также следует и из полученных формул для токов в контуре. Схематические графики зависимостей [3] амплитуд токов от частоты источника показаны на рис.267. Понятно, что при ω → 0 и ω → ∞ сопротивление контура стремится к нуля и в этом случае сила тока через резистор стремится к своему предельному значению \(

Таким образом, мы показали, что в рассмотренной цепи при частоте источника стремящейся к собственной частоте контура амплитуда силы тока в контуре резко возрастает, наблюдается явление резонанса, следовательно, колебательный контур можно использовать для выделения колебаний требуемой частоты. Интересно, отметить, что острота пика возрастает с ростом сопротивления резистора, находящегося вне контура.

В заключение данного раздела, обсудим, почему при ω = ω сила тока во внешней для контура цепи обращается в нуль. Колебания токов через конденсатор IC и через катушку индуктивности происходят в противофазе IL, а в случае ω = ω амплитуды этих токов сравниваются, в результате чего формально и получается нулевое значение для суммарного тока. Фактически в этом случае электрический ток циркулирует в колебательном контуре, не выходя из него. Подчеркнем, что наш анализ проведен для установившегося режима колебаний – в переходном режиме ток через резистор (и через источник идет) обеспечивая контур энергией. Когда колебания установятся, подкачка энергии становится излишней, так как мы пренебрегли потерями энергии в контуре. Обратите внимание, что при ω = ω сила тока в контуре не зависит сопротивления внешнего резистора, а полностью определяется параметрами контура.

Вспомните, что вынужденные колебания механических систем обладают тем же свойством – при точном резонансе и при отсутствии сил сопротивления работа внешней силы также обращается в нуль.

Если же рассмотреть реальный контур, обладающий активным сопротивлением, то между током в контуре и напряжением на нем разность фаз будет отлична от нуля, поэтому энергия источника будет поступать в контур, компенсируя потери. В этом случае также будет отличен от нуля и ток во внешней цепи.

Источник