Меню

Зависимость силы тока от времени выражается формулой

Конденсатор, катушка и резонанс в цепи переменного тока

теория по физике 🧲 колебания и волны

Опишем колебания, которые происходят в цепи переменного тока при включении в нее конденсатора и катушки индуктивности. А также рассмотрим условия, при выполнении которых в цепи переменного тока наступает резонанс. Получим формулы для вычисления амплитуд напряжений, введем понятия емкостного и индуктивного сопротивления и выясним, какую роль играют эти величины.

Конденсатор в цепи переменного тока

Постоянный ток не может существовать в цепи, содержащий конденсатор. Движению электронов препятствует диэлектрик, расположенный между обкладками. Но переменный ток в такой цепи существовать может, что доказывает опыт с лампой (см. рисунок ниже).

Пусть фактически такая цепь разомкнута, но если по ней течет переменный ток, конденсатор то заряжается, то разряжается. Ток, текущий при перезарядке конденсатора нагревает нить лампы, и она начинает светиться.

Найдем, как меняется сила тока в цепи, содержащей только конденсатор, если сопротивление проводов и обкладок конденсатора можно пренебречь (см. рис. выше). Напряжение на конденсаторе будет равно:

u = φ 1 − φ 2 = q C . .

Учтем, что напряжение на конденсаторе равно напряжению на концах цепи:

q C . . = U m a x cos . ω t

Следовательно, заряд конденсатора меняется по гармоническому закону:

q = C U m a x cos . ω t

Тогда сила тока, представляющая собой производную заряда по времени, будет равна:

i = q ´ = − C U m a x sin . ω t = C U m a x cos . ( ω t + π 2 . . )

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на π 2 . . (см. график ниже). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того, как напряжение достигнет максимума, сила тока становится равной нулю и т.д.

Амплитуда силы тока равна:

I m a x = U m a x C ω

Также будем использовать действующие значения силы тока и напряжения. Тогда получим, что:

Величина X C , равная обратному произведению циклической частоты на электрическую емкость конденсатора, называется емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Обратите внимание, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода (при разрядке конденсатора), эта энергия возвращается в сеть.

Пример №1. Максимальный заряд на обкладках конденсатора колебательного контура q m a x = 10 − 6 Кл. Амплитудное значение силы тока в контуре I m a x = 10 − 3 А. Определите период колебания (потерями на нагревание проводника пренебречь).

Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значения магнитного поля катушки:

q 2 m a x 2 C . . = L I 2 m a x 2 . .

L C = q 2 m a x I 2 m a x . .

√ L C = q m a x I m a x . .

T = 2 π √ L C = 2 π q m a x I m a x . . = 2 · 3 , 14 10 − 6 10 − 3 . . ≈ 6 , 3 · 10 − 3 ( с )

Катушка индуктивности в цепи переменного тока

Соберем две электрических цепи, состоящих из лампы накаливания, катушки индуктивности и источника питания: в первом случае постоянного, во втором — переменного (см. рисунки «а» и «б» ниже).

Опыт покажет, что в цепи постоянного тока лампа светится ярче по сравнению с той, что включена в цепь переменного тока. Это говорит о том, что сила тока в цепи постоянного тока выше действующего значения силы тока в цепи переменного тока.

Результат опыта легко объясняется явлением самоиндукции. При подключении катушки к постоянному источнику тока сила тока нарастает постепенно. Возрастающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь спустя какое-то время сила тока достигает наибольшего значения, соответствующему данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не успевает достигнуть максимального значения. Поэтому максимальное значение силы тока в цепи переменного тока с катушкой индуктивности ограничивается индуктивность. Чем больше индуктивность и чем больше частота приложенного напряжения, тем меньше амплитуда силы переменного тока.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь (см. рисунок ниже). Для этого найдем связь между напряжением на катушке и ЭДС самоиндукции в ней.

Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна равняться нулю. Иначе, согласно закону Ома, сила тока была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля → E i , порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля → E к , создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.

Из равенства → E i = − → E к следует, что удельная работа вихревого поля (т.е. ЭДС самоиндукции e i ) равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Учитывая, что удельная работа кулоновского поля равна напряжения на концах катушки, можно записать:

Напомним, что сила переменного тока изменяется по гармоническому закону:

i = I m a x sin . ω t

Тогда ЭДС самоиндукции равна:

e i = − L i ´ = − L ω I m a x cos . ω t

Так как u = − e i , то напряжение на концах катушки оказывается равным:

u = L ω I m a x cos . ω t = L ω I m a x sin . ( ω t + π 2 . . ) = U m a x ( ω t + π 2 . . )

Амплитуда напряжения равна:

U m a x = L ω I m a x

Следовательно, колебания напряжения на катушке опережают колебания силы тока на π 2 . . , или колебания силы тока отстают от колебаний напряжения на π 2 . . , что одно и то же.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (см. график ниже).

Но в момент, когда напряжение становится равным нулю, сила тока максимальна по модулю. Амплитуда силы тока в катушке равна:

I m a x = U m a x L ω . .

Также будем использовать вместо амплитуд действующие значения силы тока и напряжения. Тогда получим:

Величина X L , равная произведению циклической частоты на индуктивность, называется индуктивным сопротивлением. Индуктивное сопротивление зависит от частоты. Поэтому в цепи постоянного тока, в котором отсутствует частота, индуктивное сопротивление катушки равно нулю.

Пример №2. Катушка с индуктивным сопротивлением X L = 500 Ом присоединена к источнику переменного напряжения, частота которого ν = 1000 Гц. Действующее значение напряжения U = 100 В. Определите амплитуду силы тока I m a x в цепи и индуктивность катушки L. Активным сопротивлением пренебречь.

Индуктивное сопротивление катушки выражается формулой:

X L = L ω = 2 π ν L

Так как амплитуда напряжения связана с его действующим значением соотношением U m a x = U √ 2 , то для амплитуды силы тока получаем:

Резонанс в электрической цепи

Механические и электромагнитные колебания имеют разную природу, но процессы, происходящие при этом, идентичны. Поэтому можно предположить, что резонанс в электрической цепи так же реален, как резонанс в колебательной системе, на которую действует периодическая сила.

Напомним, что в механической системе резонанс тем более заметен, чем меньше в колебательной системе трение между ее элементами. Роль трения в электрической цепи играет активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника, который при этом нагревается. Следовательно, резонанс в электрической цепи будет отчетливо наблюдаться при малом активном сопротивлении R.

Если активное сопротивление мало, то собственная частота колебаний в колебательном контуре определяется формулой:

Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру равна собственной частоте колебательного контура:

Резонанс в электрическом колебательном контуре — явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

После включения внешнего переменного напряжения резонансное значение силы тока в цепи устанавливается не моментально, а постепенно. Амплитуда колебаний силы тока возрастает до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:

I 2 m a x R 2 . . = U m a x I m a x 2 . .

Упростив это уравнение, получим:

I m a x R = U m a x

Следовательно, амплитуда установившихся колебаний силы тока при резонансе определяется уравнением:

I m a x = U m a x R . .

При сопротивлении, стремящемся к нулю, сила тока возрастает до бесконечно больших значений. При большом сопротивлении сила тока возрастает незначительно. Это хорошо видно на графике ниже.

Пример №3. В цепь переменного тока с частотой ν = 500 Гц включена катушка индуктивностью L = 10 мГн. Какой емкости конденсатор надо включить в эту цепь, чтобы наступил резонанс?

Электрическая цепь, описываемая в условии, представляет собой колебательный контур. Резонанс в этой цепи наступит, когда частота переменного тока будет равна собственной частоте колебательного контура (ν = ν).

ν 0 = 1 2 π √ L C . .

К колебательному контуру подсоединили источник тока, на клеммах которого напряжение гармонически меняется с частотой ν.

Индуктивность L катушки колебательного контура можно плавно менять от максимального значения Lmax до минимального Lmin, а ёмкость его конденсатора постоянна.

Ученик постепенно уменьшал индуктивность катушки от максимального значения до минимального и обнаружил, что амплитуда силы тока в контуре всё время возрастала. Опираясь на свои знания по электродинамике, объясните наблюдения ученика.

Алгоритм решения

Решение

В колебательном контуре источником тока возбуждаются вынужденные колебания. Частота этих колебаний равна частоте источника — ν. Амплитуда колебаний зависит от того, как соотносятся между собой внешняя частота и частота собственных электромагнитных колебаний, которая определяется формулой:

ν 0 = 1 2 π √ L C . .

По мере увеличения внешней частоты от нуля до ν амплитуда растет. Она достигает максимума тогда, когда происходит резонанс. При этом внешняя частота равна частоте собственных электромагнитных колебаний: ν = ν. Затем амплитуда начинает убывать.

В данном случае, ученик меняет не внешнюю частоту, а частоту собственных электромагнитных колебаний. При плавном уменьшении индуктивности контура от максимального значения Lmax до минимального Lmin частота возрастает от ν0min до ν0max. Причем:

ν 0 m i n = 1 2 π √ L m i n C . .

ν 0 m a x = 1 2 π √ L m a x C . .

Из того факта, что амплитуда всё время увеличивалась, можем сделать вывод, что частота ν всё время приближалась к частоте источника тока, при этом ν > ν0max. В противном случае наблюдалось бы уменьшений амплитуды силы тока.

Читайте также:  Аккумуляторы rocket каким током заряжать

pазбирался: Алиса Никитина | обсудить разбор | оценить

В колебательном контуре, состоящем из катушки индуктивности и конденсатора, происходят свободные незатухающие электромагнитные колебания.

Из приведённого ниже списка выберите две величины, которые остаются постоянными при этих колебаниях.

а) период колебаний силы тока в контуре

б) фаза колебаний напряжения на конденсаторе

в) заряд конденсатора

г) энергия магнитного поля катушки

д) амплитуда колебаний напряжения на катушке

Алгоритм решения

  1. Определить, от чего зависит каждая из перечисленных величин.
  2. Установить, какие величины меняются, а какие нет.

Решение

В колебательном контуре происходят гармонические колебания. Поэтому период колебаний силы тока в контуре — величина постоянная.

Фаза — это величина, которая определяет положение колебательной системы в любой момент времени. Поскольку в системе происходят колебания, фаза меняется.

Заряд конденсатора — колебания происходят за счет постоянной перезарядки конденсатора. Следовательно, эта величина тоже меняется.

Энергия магнитного поля катушки — в колебательном контуре происходят взаимные превращения энергии магнитного поля катушки в энергию электрического поля конденсатора, и обратно. Поэтому энергия магнитного поля катушки постоянно меняется.

В условии задачи сказано, что колебания незатухающие. Это значит, что полная механическая энергия колебательной системы сохраняется. Поскольку именно от нее зависит амплитуда колебаний напряжения на катушке, то эта величина также остается постоянной.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.

Источник

Зависимость ЭДС индукции от времени. Переменный электрический ток. Трансформатор.

1.с.(20.16) Катушка с индуктивностью 35 мГн включается в сеть переменного тока. Определить индуктивное сопротивление катушки при частоте 60. 240 и 480 Гц.

Ответ:13.2 Ом; 52.8 Ом;. 106 Ом

2.с.(20.20) Конденсатор ёмкостью 250 мкФ включается в сеть переменного тока. Определить его сопротивление при частоте 50,200 и 400 Гц.

Ответ: 12.7Ом; 3.2 Ом; 1.6Ом.

3.с.(20.19) Действующие значение напряжения и силы тока в катушке индуктивности соответственно равны 127 В и 0.5 А. Определить индуктивность катушки, если частот

Переменного тока равна 50 Гц.

4.с.(961). Написать уравнение, выражающее зависимость напряжения и силы тока от времени для электроплитки сопротивлением 50 Ом, включенной в сеть переменного тока с частотой 50 Гц и напряжением 220В.

Ответ: i = 6.2 cos 100πt ;u=310 cos100πt

5.с.(966)Конденсатор включен в цепь переменного тока стандартной частоты. Напряжение в сети 220 В. Сила тока в цепи этого конденсатора 2.5А. Какова ёмкость конденсатора?

6.с.(969)Катушка с ничтожно малым активным сопротивлением включена в цепь переменного тока с частотой 50Гц. При напряжении 125 В сила тока равна 2.5 А. Какова индуктивность катушки?

1.д.(20.18).Сила тока в катушке с индуктивностью 0.5 Гн изменяется по закону

i =0.1sin 628t.определить зависимость от времени напряжение на катушке и ее индуктивное сопротивление.

Ответ: u =31.4 sin(628t + π\2); 314 Ом.

2.д.(976). Трансформатор, содержащий в первичной обмотке 840 витков, повышает напряжение с 220 до 660 В. Каков коэффициент трансформации? Сколько витков содержится во вторичной обмотке? В какой обмотке провод имеет большую площадь поперечного сечения?

Ответ: 1\3; 2520; в первичной.

3.д.(978р.)Понижающий трансформатор с коэффициентом трансформации, равным 10, включен в сеть напряжением 220 В. Каково напряжение на выходе трансформатора, если сопротивление вторичной обмотки 0.2 Ом, а сопротивление полезной нагрузки 2 Ом?

4.д.( 20.4) В рамке, содержащей 100 витков и равномерно вращающейся в однородном магнитном поле, магнитный поток изменяется по закону Ф = 0.0001cos 628t. Определить частоту изменения э.д.с. индукции, её максимальное и действующее значения.

Ответ:100Гц.; 6.28 В; 4.44В.

5.д.(20.5). Зависимость э.д.с. от времени в цепи переменного тока выражается формулой

e = 120 sin 628t .Определить действующее значение э.д.с и период ее изменения.

Ответ: 84.9 В ; 10¯² с.

6.д.(20.3). Магнитный поток в рамке, равномерно вращающейся в магнитном поле, изменяется по закону Ф = 0.02cos314t. Найти зависимость от времени э.д.с. индукции, возникающей в рамке. Определить максимальное и действующее значение э.д.с. индукции.

Ответ: e= 6.28 sin314t ; 6.28В; 4.44В

1.в.(20.21) Сила тока в цепи изменяется по закону і = 0.2sin314t. На какое напряжение должен быть рассчитан конденсатор емкостью 2 мк Ф, включенный в эту цепь, чтобы не произошло его пробоя?

Ответ: не менее 319 В.

2.в.(20.24) В неразветвленной цепи переменного тока r = 3Ом,X = 6Ом, X = 2Ом. Определить полное сопротивление цепи и коэффициент мощности.

Ответ: 5Ом.; Cosψ =0.6.

3.в.(20.29) В цепи переменного тока активное сопротивление r = 2 Ом, индуктивность катушки L = 50 мГн и ёмкость конденсатора С = 25 мкФ. Определить полное сопротивление цепи при частоте переменного тока 50 Гц.

Ответ:1.12 ·10 ² Ом

4.в.(20.31)Катушка с активным сопротивлением15 Ом и индуктивностью 52 мГн включена в цепь переменного тока с частотой 50 Гц последовательно с конденсатором ёмкостью

120 мкФ. Напряжение в сети равно 220В. Определить силу тока в цепи, полную, активную и реактивную мощность тока.

Ответ:12.1 А .;2.7 кВ·А; 2.2 кВт.

5.в.(20.45) Определить коэффициент мощности генератора переменного тока, если при амплитудных значениях напряжения и силы тока U =200В и І =100А активная мощность, отдаваемая генератором, Р = 9кВт.

6.в.(20.49) Повышающий трансформатор работает от сети с напряжением U = 120В. Число витков в первичной обмотке 90. Определить коэффициент трансформации и число витков во вторичной обмотке, если при холостом ходе трансформатора напряжение на её зажимах U =3000В.Ответ:0.04; 2250.

Таблица 1. Основные физические постоянные .

Атомная единица массы, а.е.м 1,66 ∙ 10 -27 кг.
Постоянная Авогадро 6,02 ∙ 1О 23 моль -1
Постоянная Больцмана 1,38 ∙ 10 -23 Дж/ К
Молярная газовая постоянная 8,31 Дж/ моль ∙ К
Масса покоя электрона 9,1 ∙ 10 -31 кг.
Масса покоя протона 1,67∙ 10 -27 кг.
Масса покоя нейтрона 1,68 ∙ 10 -27 кг.
Элементарный заряд 1,60 ∙10 -19 Кл.
Нормальное атмосферное давление 101325 Па.
Молярная масса воздуха 0,029 кг/ моль.
Температура нормальная 20º С
Ускорение свободного падения ( Земля) 9,8 м/с 2 .
Электрическая постоянная 8,85 ∙ 10 -12 Кл 2 / Н ∙ м 2 .
Электрический кеффициент 9 ∙ 10 9 Н ∙ м 2 / Кл 2

Таблица 2. Приставки для образования десятичных кратных и дольных единиц.

Кратные Дольные
Приставка Обозначение Множитель Приставка Обозначение Множитель
экса Э 10 16 Атто а 10 -18
пета П 10 15 Фемто ф 10 -15
тера Т 10 12 Пико п 10 -12
гига Г 10 9 Нано н 10 -9
мега М 10 6 Микро мк 10 -6
кило к 10 3 Мили м 10 -3
гекто г 10 2 Санти с 10 -2
дека да 10 1 деци д 10 -1

Таблица 3. Удельная теплота сгорания топлива.

Вещество Дж / кг Вещество Дж / кг.
Бензин 46 ∙ 10 6 Керосин 46 ∙ 10 6
Кокс 30 ∙ 10 6 Порох 3,8 ∙ 10 6
Дерево 10 ∙ 10 6 Спирт 29 ∙ 10 6

Таблица 4. Плотности веществ, кг /м 3

Алюминий Бензин Азот 1,25
Бетон Вода пресная Водород 0,09
Вольфрам Вода соленая Воздух 1,29
Лед Глицерин Гелий 0,18
Олово Керосин Кислород 1,43
Сталь Ртуть Озон 2,14
Стекло Спирт Углекислый газ 1,98
Цинк Эфир Хлор 3,21

Таблица 5. Значение синусов и косинусов для некоторых углов.

Угол 30 º 45 º 60 º 90 º 180 º
Синус 0,5 0,707 0,866
Косинус 0,865 0,707 0,5 — 1

Таблица 6. Работа выхода электронов.

Вещество эВ аДж Вещество Эв аДж
Калий 2,2 0,35 Цезий 1,8 0,29
Оксид бария 1,0 0,16 Цинк 4,2 0,67

Таблица 7. Тепловые свойства веществ. Твердые тела .

Вещество Удельная теплоемкость Дж/ кг Температура плавления ºС Удельная теплота Плавления Дж/ кг
Алюминий 380 000с
Кирпич —- ———
Лед 330 000
Олово 59 000
Свинец 25 000
Сталь 82 000

Таблица 8. Жидкости

Вещество Удельная теплоемкость Дж/ кг ∙ К Температура кипения ºС Удельная теплота парообразования Дж/кг
Вода 2,3 ∙ 10 6
Ртуть 0,29 ∙ 10 6
Спирт 0,35 ∙ 10 6

Таблица 9.Коэффициент поверхностного натяжения жидкостей,

мН /м ( при 20 ºС)

Ртуть 510 Мыльный раствор 40 Керосин 24
Вода 73 Нефть 30 Спирт 22
Глицерин 64 Уксусная кислота 28 Бензин 21
Молоко 46 Эфир 17

Таблица 10. Газы

Вещество Удельная теплоемкость Дж/ кг·К Температура конденсации, ºС
Азот — 195
Водород 14 300 — 253
Воздух
Гелий — 269
Кислород — 183

Таблица 11. Предел прочности на растяжение и модуль упругости.

Вещество Предел прочности, МПа Модуль упругости, ГПа
Алюминий
Латунь
Медь
Свинец
Серебро
Сталь
Резина 2 – 35 ( 0,5 – 8 ) МПа

Таблица 12. Диэлектрическая проницаемость вещества.

Вода 81 Слюда 6,0
Воздух 1,0006 Спирт 33
Керосин 2,1 Стекло 7,0
Парафин 2,1 Титанит бария 1220
Парафинированная бумага 2,2 Эбонит 4,3

Таблица 13. Плотность и давление насыщенного водяного пара.

t, º C P,кПа P, кг/ м 3 t.º C P, кПа P, кг/ м 3 t. º C P, кПа P,кг/ м 3
— 5 0,4 3,2 1,23 9,4 2,63 19,4
— 1 0,56 4,5 1,33 10,0 2,80 20,6
0,61 4,8 1,40 10,7 2,97 21,8
0,65 5,2 1,49 11,4 3,17 23,0
0,71 5,6 1,60 12,1 3,34 24,4
0,76 6,0 1,71 12,8 3,54 25,8
0,81 6,4 1,81 13,6 3,77 27,2
0,86 6,8 1,93 14,5 3,98 28,7
0,93 7,3 2,07 15,4 4,24 30,3
1,0 7,8 2,20 16,3 12,33 83,0
1,06 8,3 2,33 17,3 47,34 293,0
1,14 8,8 2,48 18,3 101,3 598,0
Читайте также:  Допустимый ток через светодиод

Таблица 14. Психометрическая таблица

Показания сухого термометра, º С Разность показаний сухого и влажного термометров, º С
Относительная влажность

Таблица 15. Удельное сопротивление ( 10 -6 Ом· м) .

Температурный коэффициент сопротивления ( 1/ К)

Вещество 10 -6 Ом·м 1/К Вещество 10 -6 Ом·м 1/К
Алюминий 0,028 0,004 Платина 0,1 0,004
Вольфрам 0,055 0,005 Ртуть 0,958 0,0009
Константан 0,480 0,00002 Свинец 0,210 0,004
Латунь 0,071 0,001 Серебро 0,016 0,004
Медь 0,017 0,004 Сталь 0,120 0,006
Никелин 0,420 0,0001 Фехраль 0,200 0,0002
Нихром 1,10 0,0001 Цинк 0,060 0,004

Таблица 16. Электрохимический эквивалент, ( 10 -6 кг/Кл.)

Источник

Сила тока

Сила тока с точки зрения гидравлики

Думаю, вы не раз слышали такое словосочетание, как “сила тока“. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать. Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

дети поливают огород

Давайте теперь проведем аналогию. Пусть шланг – это провод, а вода в нем – электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

I – собственно сила тока, Амперы

N – количество электронов

t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

сила тока формула

Δq – это заряд за какой-то определенный промежуток времени, Кулон

Δt – тот самый промежуток времени, секунды

I – сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10 -19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅10 18 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅10 18 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам, Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

Как только сила тока через тонкий проводок предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели, через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

сопротивление проводника

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

удельное сопротивление материалов

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

формула закона Омазакон Ома

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм 2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

сила тока в проводнике

задача на силу тока в проводнике

решение задачи сила тока в проводнике

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

как измерить силу тока

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.

Источник

Задание 14 ЕГЭ по физике

Электричество. Закон сохранения электрического заряда,

закон Кулона, конденсатор, сила тока,

закон Ома для участка цепи, последовательное и параллельное соединение

проводников, работа и мощность тока,

закон Джоуля – Ленца

В задании 14 проверяются знания по теме «Постоянный электрический ток». Это задание базовому уровня. Задачи носят, в основном, расчетный характер. Их решение основывается на знаниях законов и закономерностей постоянного электрического тока, умении «читать» электрические схемы, работать с графическими зависимостями.

1. На графике показана зависимость силы тока I в проводнике от времени t. Определите заряд, прошедший через проводник за Δt = 60 с с момента начала отсчёта времени.

Ответ: _____________________ Кл.

Используя зависимость силы тока от времени, электрический заряд можно определить как площадь геометрической фигуры под графиком. В данной задаче требуется рассчитать площадь трапеции Применяя геометрическую формулу площади трапеции и подставляя значения физических величин, получим (Кл).

Читайте также:  Методы расчетов токов кз метод эквивалентной эдс

Секрет решения. Подобный прием нахождения значения физической величины через площадь под графиком применяется во многих разделах физики: в «Механике», «МКТ и термодинамике», «Электродинамике». Здесь важно правильно выделить геометрическую фигуру, так как иногда требуется найти площадь не всей фигуры, а только ее части. Как всегда, в расчетах требует особого внимания система единиц (СИ). Пренебрежение одним из перечисленных моментов приведет к потере «легкого» балла.

2. Пять одинаковых резисторов с сопротивлением 3 Ом соединены в электрическую цепь, через которую течёт ток I (см. рисунок). Идеальный вольтметр показывает напряжение 9 В. Чему равна сила тока I?

Ответ: __________________________ А.

Резисторы, подключенные к вольтметру, соединены между собой последовательно. Отсюда следует, что сумма напряжений на каждом резисторе равна значению напряжения, которое показывает вольтметр. Запишем это в виде формулы Используя закон Ома, выразим значения напряжений и

Здесь учтено, что в указанной точке (см. схему) ток I разделяется на две равные части из-за равенства сопротивлений в разветвленных частях цепи.

Деление силы тока на две равные части

Подставляя численные значения, получим

Секреты решения. В задачах со схемами необходимо уметь выделять виды соединения проводников. После этого можно использовать известные закономерности для силы тока, напряжения и сопротивления. Ввиду того, что в задачах может быть большое количество проводников, решение в общем виде бывает громоздким, что может привести к математической ошибке. Поэтому лучше подставлять численные значения на ранних этапах решения.

3. На плавком предохранителе счётчика электроэнергии указано: «15 А, 380 В». Какова максимальная суммарная мощность электрических приборов, которые можно одновременно включать в сеть, чтобы предохранитель не расплавился?

Формулы для расчета мощности электрического тока имеют вид:

В зависимости от условия задачи, надо применять ту или иную формулу. Так как в задаче дается сила тока и напряжения, необходимо воспользоваться формулой

Подставляя численные значения, проведем расчет:

Секреты решения.

Формулы для расчета мощности лучше изучать как следствия формул для расчета работы тока или количества теплоты, выделяющейся в проводнике с током.

При делении этих формул на время t получим формулы для расчета мощности.

Источник



Работа и мощность электрического тока. Закон Джоуля-Ленца

1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.

Как было показано, напряжение ​ \( (U) \) ​ на участке цепи равно отношению работы ​ \( (F) \) ​, совершаемой при перемещении электрического заряда ​ \( (q) \) ​ на этом участке, к заряду: ​ \( U=A/q \) ​. Отсюда ​ \( A=qU \) ​. Поскольку заряд равен произведению силы тока ​ \( (I) \) ​ и времени ​ \( (t) \) ​ ​ \( q=It \) ​, то ​ \( A=IUt \) ​, т.е. работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.

Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:

​ \( [A] \) ​= 1 Дж = 1 В · 1 А · 1 с

Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.

Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: ​ \( A=\fract \) ​ или ​ \( A=I^2Rt \) ​.

2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: ​ \( P=A/t \) ​ или ​ \( P=IUt/t \) ​; ​ \( P=IU \) ​, т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.

Единицей мощности является ватт (1 Вт): ​ \( [P]=[I]\cdot[U] \) ​; ​ \( [P] \) ​ = 1 А · 1 В = 1 Вт.

Используя закон Ома, можно получить другие формулы для расчета мощности тока: ​ \( P=\frac;P=I^2R \) ​.

Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.

3. При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: ​ \( Q=A \) ​ или ​ \( Q=IUt \) ​. Учитывая, что ​ \( U=IR \) ​, ​ \( Q=I^2Rt \) ​.

Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.

Этот закон называют законом Джоуля-Ленца.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​ \( R_1 \) ​ в четыре раза меньше сопротивления резистора ​ \( R_2 \) ​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​ \( R_1 \) ​ в 3 раза больше сопротивления резистора ​ \( R_2 \) ​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​ \( A_1 \) ​ и ​ \( A_2 \) ​ в этих проводниках за одно и то же время.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) ​ и ​ \( A_2 \) в этих проводниках за одно и то же время.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Источник