Меню

Законы получения переменного тока

Получение переменного тока

Дата публикации: 19 марта 2015 .
Категория: Статьи.

Пусть имеется однородное магнитное поле, образованное между полюсами NS электромагнита (рисунок 1, а).

Рисунок 1. Принцип получения переменного тока
а – вращение проводника в однородном магнитном поле; б – график изменения переменного тока

Внутри поля под действием посторонней силы вращается по окружности в сторону движения часовой стрелки металлический прямолинейный проводник. Как известно, пересечение проводником магнитных линий приведет к появлению в проводнике индуктированной электродвижущей силы (ЭДС). Величина этой ЭДС, как было указано в статье «Величина и направление ЭДС индукции», зависит от величины магнитной индукции B, активной длины проводника l, скорости пересечения проводником магнитных линий v и синуса угла α между направлением движения проводника и направлением магнитного поля.

Разложим окружную скорость v на две составляющие – нормальную и тангенциальную по отношению к направлению магнитной индукции B, как было показано в вышеуказанной статье. Нормальная составляющая скорости vn обусловливает наводимую ЭДС индукции и равна:

Тангенциальная составляющая скорости vt не принимает участия в создании индуктированной ЭДС и равна:

при α = 90° нормальная скорость

то есть в этом случае нормальная составляющая скорости имеет максимальное значение. Такое же значение имеет в этот момент величина индуктированной ЭДС в проводнике:

откуда общее выражение для ЭДС в проводнике будет:

При движении проводник будет занимать различные положения. На чертеже положения проводника даны через каждые 45° угла поворота. Рассматривая отдельные положения проводника, мы видим, что угол пересечения α меняется и, кроме того, при переходе проводника через нейтральную линию направление индуктированной ЭДС, определяемое по правилу правой руки, также меняется. Для наглядности составим таблицу зависимости величины и направления ЭДС (пропорциональной sin α) от положения проводника и угла между векторами индукции и скорости вращения проводника (таблица 1).

Зависимость величины и направления ЭДС от положения проводника

Положение проводника Угол α между векторами индукции B и скорости v Sin α Направление ЭДС в проводнике
1
2
3
4
5
6
7
8
9 или 1
0
45
90
135
180
225
270
315
360
0
0,707
1
0,707
0
– 0,707
– 1
– 0,707

К нам
К нам
К нам

От нас
От нас
От нас

Из таблицы видно, что за один полный оборот проводника ЭДС в нем сначала увеличивается от нуля до максимального значения, затем уменьшается до нуля и, изменив свое направление, вновь увеличивается до максимального значения и вновь уменьшается до нуля. При дальнейшем движении проводника изменения ЭДС будут повторяться.

Для наглядного представления о ходе изменения индуктированной ЭДС в проводнике воспользуемся графическим методом. Проведем две взаимно перпендикулярные оси (рисунок 1, б). На горизонтальной оси в одном масштабе отложим углы поворота проводника, а на вертикальной в другом масштабе – величину ЭДС, индуктированную в проводнике в каждый момент времени. Если ЭДС, индуктированную в проводнике при прохождении его под южным полюсом, считать положительной и откладывать от горизонтальной оси вверх, то ЭДС индуктированную в проводнике при прохождении его под северным полюсом, следует считать отрицательной и откладывать от горизонтальной оси вниз. Проведя затем через концы отрезков, изображающих в масштабе величины ЭДС, непрерывную линию, получим кривую, называемую синусоидой. При помощи кривой мы можем легко определить ЭДС в любой момент времени. Для этого на горизонтальной оси откладываем интересующий нас угол поворота проводника от начального положения. Затем от этой точки восстанавливаем перпендикуляр. Отрезок, заключенный между точками пересечения перпендикуляра с кривой и горизонтальной осью, будет в масштабе выражать величину индуктированной ЭДС в проводнике в этот момент времени.

В нашем примере проводник вращается в однородном магнитном поле. В проводнике индуктировалась ЭДС, изменяющаяся по закону синуса. Такая ЭДС называется синусоидальной.
В дальнейших статьях мы увидим, что электротехника предпочитает пользоваться переменными величинами, изменяющимися по синусоидальному закону.

Рассмотрим принцип получения синусоидальной ЭДС. Устройство, показанное на рисунке 2, позволяет снимать и отводить во внешнюю цепь переменную ЭДС. Согнутый рамкой проводник вращается в магнитном поле под действием посторонней силы. Концы рамки присоединены к двум медным кольцам 3 и 4, на которые наложены две угольные щетки 5 и 6. Во внешней цепи будет протекать изменяющийся по величине и направлению ток. Такой ток называется переменным в отличие от постоянного, который дают гальванические элементы и аккумуляторы. Переменный ток на электрических схемах принято обозначать условным знаком

Устройство для отвода переменного тока от ротора генератора

Рисунок 2. Устройство для отвода переменного тока от ротора генератора

В создании индуктированной ЭДС будут участвовать не все стороны рамки, а лишь те, которые пересекают магнитные линии. Эти стороны называются активными сторонами (на рисунке 2 они обозначены цифрами 1 и 2).

Конструкция генератора переменного тока, показанная на рисунке 2, не может быть практически использована. Недостатком ее является трудность создания однородного магнитного поля и большое магнитное сопротивление магнитному потоку, который значительный путь проходит по воздуху.

Магнитный поток машины при наличии стального барабана

В конструкциях современных электрических машин между полюсами электромагнита помещают стальной барабан, в пазы которого укладывают проводники обмотки. Такая конструкция машины представлена на рисунке 3. Магнитным линиям в этом случае приходится проходить по воздуху короткий путь между сталью полюсов и барабана. Можно доказать, что магнитные линии, проходя воздушный промежуток, будут входить в барабан в радиальном направлении и в таком же направлении будут выходить из него, чтобы попасть в другой полюс. В этом случае направление окружной скорости в каждый момент перпендикулярно направлению магнитных линий, то есть скорость будет все время нормальной скоростью (v = vn).

Стремление получить синусоидальную ЭДС заставляет конструктора машины придать такую форму полюсным наконечникам, при которой магнитная индукция в воздушном зазоре изменялась бы по закону синуса:

где Bm – максимальная магнитная индукция в воздушном зазоре при α = 90°, то есть

В этот момент ЭДС, индуктированная в проводнике, также имеет максимальное значение:

откуда общее выражение для ЭДС в проводнике будет:

Для получения индуктированной ЭДС в генераторах безразлично, будет ли движущийся проводник пересекать неподвижное магнитное поле или движущееся поле будет пересекать неподвижный проводник. В рассмотренных конструкциях генераторов переменного тока обмотка, где индуктировалась переменная ЭДС, размещалась на вращающейся части машины – роторе, а полюса располагались на неподвижной части машины – статоре. Однако для того чтобы поставить обмотку переменного тока в более благоприятные условия, ее чаще располагают на статоре, а обмотку возбуждения полюсов помещают на роторе. Генератор такой конструкции представлен на рисунке 4.

Двухполюсный генератор переменного тока

Рисунок 4. Получение синусоидального переменного тока в двухполюсном генераторе

Постоянный ток, необходимый для обмотки возбуждения, подается от специального генератора-возбудителя постоянного тока, сидящего на одном валу с генератором переменного тока, или от выпрямительного устройства.

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560 с.

Источник

Как получить переменный электрический ток?

Практически все знают, что в бытовой сети повсеместно используется переменное напряжение, как результат, питание всех домашних устройств осуществляется переменным током. Однако, далеко не всем известны способы получение переменного тока, особенности формирования электрической величины и способы, которыми он генерируется на практике. Поэтому в рамках статьи мы рассмотрим как теоретический, так и практический аспект данного вопроса.

Теория

С одной стороны каждому известно, что первое знакомство человечества с электрической энергией произошло на примере постоянного тока. Только в 1831 году исследование явления магнитной индукции привели к генерации переменных токов. Первые эксперименты задействовали электрический проводник, помещаемый в магнитный поток.

Для примера вам следует рассмотреть обычный проводник, приведенный в состояние замкнутого контура, края проводника можно подключить к измерительному прибору для фиксации изменения электрических величин.

Далее вам необходимо:

  • взять хороший магнит, если под рукой имеется мощный неодимовый, то он подойдет лучше всего;
  • подключите проводник к гальванометру, всю электрическую цепь положите на стол или другую поверхность из изолирующего материала;
  • поднесите магнит к проводнику как можно ближе, желательно, чтобы расстояние было не больше 10 мм;
  • сделайте резкое движение в перпендикулярной плоскости по отношению к проводнику;
  • обратите внимание на прибор, стрелка гальванометра отклонится от равновесного положения в какую-либо сторону – в результате электромагнитных колебаний в проводнике наводится ЭДС индукции, которая и обуславливает возникновение переменного тока в замкнутом контуре.

Повторите манипуляцию с магнитом несколько раз, и вы увидите, как гальванометр равномерно отклоняется в сторону, по мере приближения полюса к проводнику и так же равномерно возвращается в исходную позицию по мере удаления магнита. Отклонение стрелки свидетельствует об изменении величины тока и потенциала, индуцируемых в металле. Амплитуда колебаний тока не постоянна во времени, из-за чего данная величина и называется переменной.

Заметьте, если перемещать возле провода один магнитный полюс, то стрелка будет отклоняться в одном направлении, если повернуть противоположным магнитным полюсом, то и направление отклонения стрелки соответственно изменится.

Один контур представляет собой лишь пример для понимания сути получения переменного электрического тока, так как ЭДС в нем будет слишком малой и мощности не хватит даже для питания светодиода. В промышленных масштабах вместо вращения витка используют целые обмотки с множеством витков. На практике не имеет значения, происходит движение магнита относительно проводника или это замкнутый контур движется по отношению к полюсу магнита.

Поэтому для изменения ЭДС в обмотках генератора может применяться как принцип вращения ротора из магнитного материала внутри обмоток статора, так и наоборот, обмоток ротора внутри магнитного статора.

Сама величина электродвижущей силы определяется из соотношения физических параметров по такой формуле:

Формула электродвижущая сила

где n – это количество витков обмоток

а соотношение B/dt – это скорость изменения электромагнитной индукции во времени.

Способы получения

Сегодня насчитывается довольно большое количество методов получения переменного тока. Поэтому в рамках статьи мы рассмотрим наиболее интересные с практической точки зрения.

Рамка с магнитами

Для этого вам понадобится рамка из любого металла, концы которой позволяют организовать вращение. С противоположных концов по отношению к рамке устанавливаются два магнита, направленные противоположными полюсами. Следует заметить, что величина переменного тока будет зависеть от сопротивления проводов, поэтому лучше брать изделие большого сечения и с высокой удельной проводимостью. При вращении контура в его электрической сети будет наводится ЭДС, которая и приведет к протеканию переменного тока.

Рамкой и магнитами

Рис. 1. Рамкой и магнитами

Как видите на рисунке выше, при равномерном максимальном удалении сторон металлического кольца от полюсов магнита величина электродвижущей силы равна нулю, магнитные линии не пересекают проводник. Синусоида напряжения и тока берут начало из нулевой отметки. Затем происходит движение рамки и ЭДС изменяется до тех пор, пока не достигнет своего максимума при оптимальном приближении сторон к магнитам. По мере дальнейшего вращения рамки ее стороны снова будут удаляться от магнитов и переменная ЭДС снова снизится до нуля.

При перемене положения меняется и направление протекания переменного тока, что на графике отображается в виде перехода кривой в отрицательную плоскость графика. Разумеется, для промышленных генераторов такая схема не подходит, поэтому в них используется усовершенствованный принцип.

Асинхронный и синхронный генератор

Асинхронная электрическая машина по своей конструкции схожа с устройством трансформатора. Ее используют для генерации и передачи электроэнергии переменного тока в трехфазных сетях. Как правило, электрическая машина может использоваться и как трехфазный двигатель, и как генератор, многие из них являются обратимыми.

По своему устройству она напоминает рамку, но в трехфазном исполнении – для каждой из фаз в статоре помещается своя катушка, заменяющая один виток кольца. Все обмотки фаз смещены друг относительно друга на 120° в геометрической плоскости.

Устройство асинхронного генератора

Рис. 2. Устройство асинхронного генератора

Благодаря физическому смещению обмоток, переменный ток наводится в них с тем запозданием, по отношению к предыдущей фазе, которое требует ротору для преодоления соответствующего расстояния. За счет чего напряжение и ток в каждой из фаз получаются смещенными друг относительно друга. Частота вращения определяет скорость пересечения синусоидой оси абсцисс за единицу времен. В отечественных сетях промышленная частота переменного тока составляет 50Гц.

Напряжение в трехфазной сети

Рис. 3. Напряжение в трехфазной сети

Однако, как генераторы переменного тока, асинхронные машины имеют ряд недостатков:

  • большие пусковые токи;
  • отставание электродвижущей силы от магнитного поля, которое ее индуцирует;
  • меньшая степень контроля за системой.

Поэтому сейчас довольно часто применяется схема генератора синхронного типа. Конструктивно он схож с предыдущей моделью, с тем отличием, что он имеет дополнительную катушку, подключаемую через скользящий контакт. Она в значительной мере снижает пусковые токи и облегчает работу.

схема синхронного генератора

Рис. 4. Схема синхронного генератора

Инвертор

За счет развития технологий, переменный ток в современном мире можно запросто получить не только от трехфазных генераторов. Немаловажную роль играют солнечные электростанции, которые производят постоянный ток, мало применяемый в быту и производстве напрямую. Для преобразования готового постоянного тока в переменный, используются специальные приборы – инверторы.

Схема инвертора

Рис. 5. Схема инвертора

На рисунке 5 выше приведен пример простейшего инвертора для получения переменного тока. Как видите, постоянное напряжение с батареи подается на пару транзисторов VT1 и VT2. За счет отличий в скорости открытия, один из транзисторов будет открываться раньше и весь ток пойдет через него до получения некоторого прообраза полупериода. Конечно, такая кривая переменного тока будет далека от идеальной синусоиды, но более чем достаточно для повышения величины напряжения на трансформаторе Tr до 220В.

Это наиболее простой вариант преобразования постоянного напряжения в переменное, он может не выдавать одинаковую частоту с индукционными генераторами и рассматривается нами только в качестве примера. Для домашнего и производственного использования выпускают более сложные модели.

Источник

Как получают переменный электрический ток

Электромагнитная индукция и закон Фарадея

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Диск Фарадея

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

ЭДС индукции

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

e = B*l*v*sinα

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Ф=B*S*cosα

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Способы получения переменного тока

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Вращение рамки в магнитном поле

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

Устройство генератора переменного тока

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока – ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Схема преобразователя

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Чистая и модифицированная синусоида

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX – первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Источник



Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

SA Переменный ток

Содержание

Переменный электрический ток

В механической системе вынужденные колебания возникают при действии на нее внешней периодической силы. Аналогично этому вынужденные электромагнитные колебания в электрической цепи происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения.

Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток.

  • Переменный электрический ток — это ток, сила и направление которого периодически меняются.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

u = U_m \cdot \sin \omega t\) или \(

u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Исходя из этого можно дать еще такое определение:

  • Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Генератор переменного тока

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.

  • Генератором переменного тока называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

ЭДС индукции генератора изменяется по синусоидальному закону

где \(<\rm E>_ =B\cdot S\cdot \omega\) — амплитудное (максимальное) значение ЭДС. При подключении к выводам рамки нагрузки сопротивлением R, через нее будет проходить переменный ток. По закону Ома для участка цепи сила тока в нагрузке

где \(I_ = \dfrac\) — амплитудное значение силы тока.

Основными частями генератора являются (рис. 1):

  • индуктор — электромагнит или постоянный магнит, который создает магнитное поле;
  • якорь — обмотка, в которой индуцируется переменная ЭДС;
  • коллектор со щетками — устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Неподвижная часть генератора называется статором, а подвижная — ротором. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц. Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой. В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Из истории. Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» — спросили его. Фарадей ответил: «Какая может быть польза от новорож­денного?» Прошло немногим более половины столетия и, как сказал американский физик Р. Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

*Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec\) (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec\) и нормали к плоскости рамки \(\vec\) меняется со временем по линейному закону. Если в момент времени t = 0 угол α = 0 (см. рис. 1), то

где ω — угловая скорость вращения рамки, ν — частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

Тогда согласно закону Фарадея индуцируется ЭДС индукции

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Действующие значения силы тока и напряжения

Пусть источник тока создает переменное гармоническое напряжение

Согласно закону Ома, сила тока в участке цепи, содержащей только резистор сопротивлением R, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

где \(I_m = \dfrac>.\) Как видим, сила тока в такой цепи также меняется с течением времени по синусоидальному закону. Величины Um, Im называются амплитудными значениями напряжения и силы тока. Зависящие от времени значения напряжения u и силы тока i называют мгновенными.

Кроме этих величин используются еще одна характеристика переменного тока: действующие (эффективные) значения силы тока и напряжения.

  • Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой I.

  • Действующим (эффективным) значением напряжения переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой U.

Действующие (I, U) и амплитудные (Im, Um) значения связаны между собой следующими соотношениями:

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе.

*Вывод формулы

Зная мгновенные значения u и i, можно вычислить мгновенную мощность

которая, в отличие от цепей постоянного тока, изменяется с течением времени. С учетом уравнений (1) и (2) перепишем выражение для мгновенной мощности на резисторе в виде

Первое слагаемое не зависит от времени. Второе слагаемое P2 — функция косинуса удвоенного угла и ее среднее значение за период колебаний равно нулю (рис. 2, найдите сумму площади выделенных фигур с учетом знаков).

Поэтому среднее значение мощности переменного электрического тока за период будет равно

Тогда с учетом закона Ома \(\left(I_ =\dfrac> \right)\) получаем:

По определению действующих значений необходимо сравнивать мощности (количество теплоты в единицу времени) переменного и постоянного тока. Запишем уравнения для расчета мощности постоянного тока

и сравним с уравнениями (4>:

Литература

Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2009. — С. 46-51.

Источник

Читайте также:  Каким током заряжать акб 18650