Меню

Закон био савара лапласа для катушки с током

Задачи на применение закона Био-Савара-Лапласа с решением

Закон Био-Савара-Лапласа в магнитостатике – примерно то же самое, что и закон Кулона в электростатике. С помощью этого закона определяется индукция магнитного поля, созданного постоянным электрическим током. В сегодняшней статье разберем несколько примеров решения задач по магнитостатике на применение закона Био-Савара-Лапласа.

Присоединяйтесь к нам в телеграме, чтобы вовремя получать полезную рассылку и актуальные новости. А еще, не пропустите приятные скидки и акции на нашем втором канале.

Закон Био-Савара-Лапласа: решение задач

В нашем блоге есть материалы, которые помогут справиться с задачами по разным темам:

Задача на закон Био-Савара-Лапласа №1

Условие

Прямой провод согнут в виде квадрата со стороной а=8 см. Какой силы ток надо пропустить по проводнику, чтобы напряженность магнитного поля в точке пересечения диагоналей была 20 А/м?

Решение

Согласно принципу суперпозиции напряженность магнитного поля в точке пересечения диагоналей квадрата будет равна сумме напряженностей, которые создают стороны. Поскольку стороны одинаковые, то:

H = 4 H 1 = 4 B 1 μ 0

Будем использовать формулу для магнитной индукции поля, создаваемого отрезком прямого провода с током (выводится из закона Био-Савара-Лапласа):

B = μ 0 2 π I r 0 cos α B 1 = μ 0 2 π I a 2 cos α = μ 0 2 π I a cos α , α = 45 °

Тогда для напряженности в точке пересечения диагоналей получим:

Н = 4 π I a cos α

Отсюда можем выразить ток:

I = π a H 4 cos α = 3 , 14 × 0 , 08 × 20 4 cos 45 = 1 , 78 А

Ответ: 1,78 А.

Задача на закон Био-Савара-Лапласа №2

Условие

Используя закон Био-Савара-Лапласа, определите магнитную индукцию в вакууме B поля в центре кругового проводника радиусом 10 см, если сила тока в проводнике равна 5 A.

Решение

Модуль магнитной индукции в центре кругового тока вычисляется по формуле:

B = μ 0 μ I 2 r μ = 1 — м а г н и т н а я п р о н и ц а е м о с т ь д л я в а к у у м а μ 0 = 1 , 25 × 10 — 6 Г н м — м а г н и т н а я п о с т о я н н а я

В = 1 , 25 × 10 — 6 × 1 × 5 2 × 0 , 1 = 3 , 1 × 10 — 5 Т л

Ответ: 0,31 мкТл.

Задача на закон Био-Савара-Лапласа №3

Условие

Используя закон Био-Савара-Лапласа выведите формулу для индукуии из предыдущей задачи.

Решение

Пусть ток идет по тонкому проводу в форме окружности, имеющей радиус R.

Разобъем провод на бесконечно малые элементы dl. Каждый такой элемент создает в центре окружности индукцию dB, направленную вдоль положительной нормали к контуру. По закону Био-Савара-Лапласа:

B = μ 0 4 π I d l sin α r 2

Угол альфа между векторами r и Idl равен 90 градусам, а r=R. Тогда, можно записать:

Интегрируя это выражение по контуру, получим:

Задача на закон Био-Савара-Лапласа №4

Условие

По квадратной рамке со стороной a=0,2 м течет ток 4 А. Определить напряженность и индукцию магнитного поля в центре рамки.

Решение

Будем рассматривать каждую из четырех сторон рамки, как отдельный проводник, создающий в ее центре магнитную индукцию. Направление векторно-магнитной индукции определяется по правилу правого винта: все векторы направлены в одну сторону, перпендикулярно рамке.

Найдем индукцию, создаваемую одной стороной рамки:

B 1 = μ μ 0 I 4 π r ( cos α 1 — cos α 2 )

r = a 2 α 1 = 45 ° α 2 = 135 ° В 1 = μ μ 0 I 2 π a ( cos 45 — cos 135 )

По принципу суперпозиции, запишем формулу для общей индукции в центре рамки и вычислим:

B = 4 B 1 = 2 μ μ 0 I π a ( cos 45 — cos 135 ) B = 1 × 1 , 25 × 10 — 6 × 4 2 × 3 , 14 × 0 , 2 ( 0 , 707 + 0 , 707 ) = 22 , 6 × 10 — 6 Т л

Ответ: 22,6 мкТл.

Задача на закон Био-Савара-Лапласа №5

Условие

Проводник согнут в виде правильного треугольника со стороной а=20 см. Какой ток протекает по периметру треугольника, если в его центре напряженность поля равна Н = 71,64 А/м?

Решение

Условно разбиваем проводник на три проводника, каждый из которых создает магнитное поле. По закону Био – Савара – Лапласа элемент контура dl, по которому течет ток I, создает в некоторой точке А пространства магнитное поле напряженностью:

d H 0 = I sin α 4 π r 2 d l

r – расстояние от точки А до элемента тока dl, α – угол между радиус-вектором и элементом тока dl. Напряженность магнитного поля в точке О будет равна:

Н 0 = ∫ — ∞ + ∞ I sin α 4 π r 2 d l

l = b × c t g α d l = — b d α sin 2 α r = b sin α

Теперь выражение для напряженности можно переписать в следующем виде:

H 0 = — I 4 π b ∫ α 1 α 2 sin α d α = I 4 π b cos α 1 — cos α 2 b = a 2 t g α H 0 = I 2 π × a × t g α cos α 1 — cos α 2

Из рисунка видно, что угол α1 равен 30 градусам, а угол α2 = 150. Очевидно, что результирующая напряженность:

Н = 3 I 2 π × a × t g 30 cos 30 — cos 150

Отсюда найдем ток:

I = 2 π H × a × t g 30 3 ( cos 30 — cos 150 ) = 2 × 3 , 14 × 71 , 64 × 0 , 2 × 0 , 577 3 ( 0 , 866 + 0 , 866 ) = 10 А

Ответ: 10 А.

Вопросы на закон Био-Савара-Лапласа

Вопрос 1. Сформулируйте закон Био-Савара-Лапласа

Ответ. Закон Био-Савара-Лапласа гласит:

Магнитное поле любого тока может быть вычислено как векторная сумма (суперпозиция) полей, создаваемых отдельными элементарными участками тока.

Элементарный участок dl с током I создает магнитную индукцию:

B = μ 0 4 π I d l sin α r 2

Здесь альфа — угол между радиусом-вектором и направлением тока в проводнике.

Вопрос 2. Что такое магнитная индукция?

Ответ. Магнитная индукция — векторная физическая величина, силовая характеристика магнитного поля. Определяет, с какой силой поле действует на заряд, движущийся в нем.

Вопрос 3. Сформулируйте теорему о циркуляции магнитной индукции.

Ответ. Циркуляция вектора магнитной индукции по произвольному замкнутому контуру, охватывающему токи, прямо пропорциональна алгебраической сумме токов, пронизывающих этот контур:

∮ В d l = μ 0 ∑ i I i

Вопрос 4. Как определяется направление вектора магнитной индукции?

Ответ. Направление вектора магнитной индукции определяется по правилу буравчика (правого винта):

Направление вращения головки винта дает направление вектора магнитной индукции, поступательное движение винта соответствует направлению тока в элементе.

Вопрос 5. Что такое напряженность магнитного поля?

Ответ. Напряженность — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. Связана с индукцией формулой:

Нужна помощь в решении задач и выполнении других заданий? Профессиональный сервис для учащихся всегда к вашим услугам.

  • Контрольная работа от 1 дня / от 100 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 7950 р. Узнать стоимость
  • Курсовая работа 5 дней / от 1800 р. Узнать стоимость
  • Реферат от 1 дня / от 700 р. Узнать стоимость
Читайте также:  Fsp140 4fs01 уменьшить ток подсветки

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

Закон Био-Савара. Теорема о циркуляции

Французские ученые Ж. Био и Ф. Савар в 1820 -м году проводили эксперименты над магнитным полем постоянных токов. Физики доказали, что индукция магнитного поля проходящих по проводнику токов зависит от совместного действия всех участков данного проводника. Работа магнитного поля основана на принципе суперпозиции.

Принцип суперпозиции: если магнитное поле работает за счет нескольких проводников с током, тогда индукция результативного поля – это совокупность индукций полей, которые создаются каждым проводником по отдельности.

Индукция B → проводника с током представлена, как векторная сумма элементарных индукций ∆ B → вырабатываемых отдельными участками проводника. На практике нельзя отделить один участок проводника с током, поскольку постоянные токи всегда замкнутые. Возможно лишь измерить совокупную индукцию магнитного поля, которое создают все элементы тока. Как найти индукцию магнитного поля?

Закон Био–Савара

Закон Био-Савара определил вклад ∆ B → в магнитную индукцию B → результативного магнитного поля, образуемый маленьким участком Δ l проводника с током I .

∆ B = μ 0 · I · ∆ l · sin α 4 π r 2 .

В формуле r – это расстояние от заданного участка Δ l до точки наблюдения, α – это угол между направлением на точку наблюдения и направлением тока на заданном участке, μ 0 – это магнитная постоянная.

Используя правило буравчика, определим направление вектора ∆ B → : оно указывает на ту сторону, в которую вращается рукоятка буравчика при его поступательном движении вдоль тока. Рисунок 1 . 17 . 1 наглядно показывает закон Био-Савара с применением магнитного поля прямолинейного проводника с током. Если сложить (интегрировать) вклады в магнитное поле всех участков проводника с током, тогда получим формулу для магнитной индукции поля прямого тока:

Рисунок 1 . 17 . 1 . Иллюстрация закона Био–Савара.

С помощью этого закона можно определять магнитные поля токов с различными конфигурациями. Запросто рассчитать магнитное поле в центре кругового витка с током. Вычисления приводят к соотношению:

где R – это радиус кругового проводника.

Чтобы определить направление вектора B → тоже используется правило буравчика, только в этом случае рукоятка вращается по направлению кругового тока, а поступательное движение буравчика указывает, куда направлен вектор магнитной индукции.

Теорема о циркуляции вектора магнитной индукции

Вычисления магнитного поля зачастую упрощаются с учетом симметрии в конфигурации токов. В этом помогает теорема о циркуляции вектора магнитной индукции.

Объясним, что означает циркуляция вектора B → . Допустим, в пространстве с магнитным полем существует какой-то условный замкнутый контур, а также положительное направление его обхода. Тогда, на каждом отдельном маленьком участке Δ l данного контура определяется касательная составляющая B l вектора B → в этом месте, то есть определяется проекция вектора B → на направление касательной к заданному участку контура. Рисунок 1 . 17 . 2 наглядно демонстрирует это.

Рисунок 1 . 17 . 2 . Замкнутый контур ( L ) с заданным направлением обхода. Изображение токов I 1 , I 2 и
I 3 ,
создающих магнитное поле.

Циркуляция вектора B → – это сумма произведений B l ∆ l , взятая по целому контуру L : B → = ∑ ( L ) B l ∆ l.

Некоторые токи, при которых магнитное поле создается, пропускают выбранный контур L тем временем, как остальные токи находятся в стороне от контура.

Согласно теореме о циркуляции, циркуляция вектора B → магнитного поля постоянных токов по любому из контуров L все время определяется, как произведение магнитной постоянной μ 0 на сумму всех токов:

∑ ( L ) B l ∆ l = μ 0 ∑ l i.

На рисунке 1 . 17 . 2 продемонстрирован пример с несколькими проводниками с токами, образующими магнитное поле. Ток I 2 и ток I 3 пронзают контур L в противоположных направлениях, им приписываются различные знаки. Положительным является ток, который связан с заданным направлением обхода контура по правилу буравчика.

Значит, I 3 > 0 , а I 2 0 . Ток I 1 не пронзает контур L .

Теорема о циркуляции в этом примере математически выражается следующей формулой:

∑ ( L ) B l ∆ l = μ 0 ( I 3 — I 2 ) .

Общий вид теоремы о циркуляции можно вывести из принципа суперпозиции и закона Био-Савара.

Самый простой пример использования теоремы о циркуляции – это вывод формулы магнитного поля прямолинейного проводника с током. С учетом симметрии в этой задаче контуром L лучше выбрать окружность какого-то радиуса R , лежащую в перпендикулярной проводнику плоскости. Центр окружности задан в какой-то точке проводника. Из-за симметрии вектор B → направляется по касательной ( B l = B ) , а его модуль имеет одинаковое значение по всей окружности. Использование теоремы о циркуляции приводит к выражению:

∑ ( L ) B l ∆ l = 2 π R B = μ 0 I ,

отсюда можно вывести формулу для модуля магнитной индукции поля прямолинейного проводника с током, приведенную раньше.

Из данного примера видно, что теорема о циркуляции вектора магнитной индукции B → можно использовать для вычисления магнитных полей, которые создаются симметричным распределением токов, когда можно наугад определить общую структуру поля.

Существует много примеров определения магнитных полей при помощи теоремы о циркуляции.

Рассмотрим одну из них – это задачу расчета поля тороидальной катушки (рисунок 1 . 17 . 3 ).

Рисунок 1 . 17 . 3 . Использование теоремы о циркуляции к тороидальной катушке.

Предположим, что катушка намотана виток к витку на ненамагниченный тороидальный сердечник. В ней линии магнитной индукции сходятся внутри катушки и выступают концентрическими окружностями. Они имеет такое направление, что, смотря вдоль них, наблюдатель увидел бы ток в витках, циркулирующих по часовой стрелке.

Одна линия индукции какого-то радиуса r 1 ≤ r r 2 представлена на рисунке 1 . 17 . 3 . Используем теорему о циркуляции для контура L в виде окружности, которая совпадает с линией индукции магнитного поля, изображенной на рисунке 1 . 17 . 3 . Опираясь на соображения о симметрии, делаем вывод, что модуль вектора B → имеет одинаковое значение по всей линии. Исходя из теоремы о циркуляции, запишем:

B · 2 π r = μ 0 I N ,

где N – это полное количество витков, а I – это ток, протекающий по виткам катушки. Значит, B = μ 0 I N 2 π r .

Так, модуль вектора магнитной индукции в тороидальной катушке находится в зависимости от радиуса r . При условии, что сердечник катушки тонкий, то есть r 2 – r 1 ≪ r , тогда магнитное поле внутри катушки почти однородное.

Величина n = N 2 π r – это количество витков на единицу длины катушки. Следовательно, B = μ 0 I n .

Сюда не относится радиус тора, потому оно действует и в предельном случае r → ∞ .

Однако в пределе каждая часть тороидальной катушки при необходимости рассматривается в качестве длинной прямолинейной катушки, которая называется соленоид. Вдали торцов такой катушки модуль магнитной индукции определяется, как соотношение в случае с тороидальной катушкой.

Читайте также:  Какие утверждения соответствуют результатам проведенных экспериментальных наблюдений сила тока при

На рисунке 1 . 17 . 4 представлено магнитное поле катушки конечной длины. Обращаем внимание, что в центре катушки магнитное поле почти однородное и намного сильнее, чем снаружи. Это объясняется густотой линий магнитной индукции. В предельном случае бесконечно длинного соленоида однородное магнитное поле полностью находится внутри него.

Рисунок 1 . 17 . 4 . Магнитное поле катушки конечной длины. В центральной части соленоида магнитное поле почти однородное и существенно больше по модулю поля вне катушки.

В случае с бесконечно длинным соленоидом соотношение для модуля магнитной индукции получаем прямо из теоремы о циркуляции, применяя ее к прямоугольному контуру, изображенному на рисунке 1 . 17 . 5 .

Рисунок 1 . 17 . 5 . Теорема о циркуляции при расчете магнитного поля бесконечно длинного соленоида.

Проекция вектора магнитной индукции на направление обхода контура a b c d только на стороне a b отлична от 0 . Значит, циркуляция вектора B → по контуру равняется B l , где l – это длина стороны a b . Количество витков соленоида, пронзающих контур a b c d , равняется n · l , где n – это количество витков на единицу длины соленоида, а полный ток, пронзающий контур, равняется I n l . Из теоремы о циркуляции, B l = μ 0 I n l .

Отсюда B = μ 0 I n .

Данное вычисление совпадает с формулой для магнитного поля тонкой тороидальной катушки.

Теорема о циркуляции вектора магнитной индукции

Рисунок 1 . 17 . 6 . Модель магнитного поля кругового витка с током.

Теорема о циркуляции вектора магнитной индукции

Рисунок 1 . 17 . 7 . Модель магнитного поля прямого тока.

Теорема о циркуляции вектора магнитной индукции

Рисунок 1 . 17 . 8 . Модель магнитного поля соленоида.

Источник

Закон Био-Савара. Теорема о циркуляции

Магнитное поле постоянных токов различной конфигурации изучалось экспериментально французскими учеными Жан Батист Био и Феликсом Саваром (1820 г.). Они пришли к выводу, что индукция магнитного поля токов, текущих по проводнику, определяется совместным действием всех отдельных участков проводника. Магнитное поле подчиняется принципу суперпозиции:

Если магнитное поле создается несколькими проводниками с током, то индукция результирующего поля есть векторная сумма индукций полей, создаваемых каждым проводником в отдельности.

Индукцию проводника с током можно представить как векторную сумму элементарных индукций создаваемых отдельными участками проводника. На опыте невозможно выделить отдельный участок проводника с током, так как постоянные токи всегда замкнуты. Можно измерить только суммарную индукцию магнитного поля, создаваемого всеми элементами тока. Закон Био–Савара определяет вклад в магнитную индукцию результирующего магнитного поля, создаваемый малым участком Δl проводника с током I.

Здесь r – расстояние от данного участка Δl до точки наблюдения, α – угол между направлением на точку наблюдения и направлением тока на данном участке, μ – магнитная постоянная. Направление вектора определяется правилом буравчика: оно совпадает с направлением вращения рукоятки буравчика при его поступательном перемещении вдоль тока. Рис. 1.17.1 иллюстрирует закон Био–Савара на примере магнитного поля прямолинейного проводника с током. Если просуммировать (проинтегрировать) вклады в магнитное поле всех отдельных участков прямолинейного проводника с током, то получится формула для магнитной индукции поля прямого тока:

которая уже приводилась в 1.16.

Иллюстрация закона Био–Савара

Закон Био–Савара позволяет рассчитывать магнитные поля токов различных конфигураций. Нетрудно, например, выполнить расчет магнитного поля в центре кругового витка с током. Этот расчет приводит к формуле

где R – радиус кругового проводника. Для определения направления вектора также можно использовать правило буравчика, только теперь его рукоятку нужно вращать в направлении кругового тока, а поступательное перемещение буравчика укажет направление вектора магнитной индукции.

Расчеты магнитного поля часто упрощаются при учете симметрии в конфигурации токов, создающих поле. В этом случае можно пользоваться теоремой о циркуляции вектора магнитной индукции, которая в теории магнитного поля токов играет ту же роль, что и теорема Гаусса в электростатике.

Поясним понятие циркуляции вектора Пусть в пространстве, где создано магнитное поле, выбран некоторый условный замкнутый контур (не обязательно плоский) и указано положительное направление его обхода. На каждом отдельном малом участке Δl этого контура можно определить касательную составляющую вектора в данном месте, то есть определить проекцию вектора на направление касательной к данному участку контура (рис. 1.17.2).

Замкнутый контур (L) с заданным направлением обхода. Изображены токи I1, I2 и I3, создающие магнитное поле

Циркуляцией вектора называют сумму произведений Δl, взятую по всему контуру L:

Некоторые токи, создающие магнитное поле, могут пронизывать выбранный контур L в то время, как другие токи могут находиться в стороне от контура.

Теорема о циркуляции утверждает, что циркуляция вектора магнитного поля постоянных токов по любому контуру L всегда равна произведению магнитной постоянной μ на сумму всех токов, пронизывающих контур:

В качестве примера на рис. 1.17.2 изображены несколько проводников с токами, создающими магнитное поле. Токи I2 и I3 пронизывают контур L в противоположных направлениях, им должны быть приписаны разные знаки – положительными считаются токи, которые связаны с выбранным направлением обхода контура правилом правого винта (буравчика). Следовательно, I3 > 0, а I2 Опубликовано в разделах: Электродинамика, Магнитное поле

Источник



Закон Био-Савара-Лапласа и его применение к расчету магнитного поля прямого и кругового токов.

Закон Био — Савара — Лапласадля проводника с током I, элемент которого dl создает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде

где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r — радиус-вектор,

проведенный из элемента dl проводника в точку А поля, r — модуль радиуса-векто­ра г. Направление dB перпендикулярно dlи r, т. е. перпендикулярно плоскости, в ко­торой они лежат, и совпадает с каса­тельной к линии магнитной индукции. Это направление может быть найдено по пра­вилу нахождения линий магнитной индук­ции (правилу правого винта): направле­ние вращения головки винта дает направ­ление dB, если поступательное движение винта соответствует направлению тока в элементе.

Модуль вектора dB определяется вы­ражением

где а — угол между векторами dl и г.

Для магнитного поля, как и для элек­трического, справедлив принцип суперпо­зиции:магнитная индукция результирую­щего поля, создаваемого несколькими то­ками или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каж­дым током или движущимся зарядом в от­дельности:

Расчет характеристик магнитного поля (В и Н) по приведенным формулам в об­щем случае довольно сложен. Однако если распределение тока имеет определенную симметрию, то применение закона Био — Савара — Лапласа совместно с принци­пом суперпозиции позволяет довольно просто рассчитать конкретные поля. Рас­смотрим два примера.

1. Магнитное поле прямого тока —тока, текущего по тонкому прямому про воду бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одина­ковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве по­стоянной интегрирования выберем угол а (угол между векторами dl и r), выразив через него все остальные величины. Из рис. 165 следует, что

Читайте также:  Шоковое состояние после удара током

(радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что маг­нитная индукция, создаваемая одним эле­ментом проводника, равна

Так как угол а для всех элементов прямо­го тока изменяется в пределах от 0 до я, то, согласно (110.3) и (110.4),

Следовательно, магнитная индукция поля прямого тока

2. Магнитное поле в центре кругового проводника с током(рис. 166). Как следу­ет из рисунка, все элементы кругового проводника с током создают в центре магнитное поле одинакового направления — вдоль нормали от витка.

Поэтому сложе­ние векторов dB можно заменить сложени­ем их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sina=1) и расстояние всех эле­ментов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),

Следовательно, магнитная индукция поля в центре кругового проводника с током

18. Поток магнитного поля. Теорема Гаусса для Ḃ.

Потоком вектора магнитной индукции (магнитным потоком) через площадку наз. скалярная величина , где угол между векторами (вектор нормали к плоскости контура) и .

Единица: вебер (Вб). .

Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору : . Магнитный поток сквозь поверхность с площадью находится алгебраическим суммированием потоков сквозь участки поверхности.

Теорема Гаусса:поток вектора магнитной индукции через любую замкнутую поверхность равен нулю: .

Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

19. Теорема о циркуляции вектора Ḃ, её применение к расчету полей. Поле соленоида.

Теорема о циркуляции вектора В имеет в учении о магнитном поле такое же значение как теорема Гаусса в электростатике, так как позволяет находить магнитную индукцию поля без применения закона Био-Савара-Лапласа.

1). Продемонстрируем справедливость теоремы о циркуляции вектора В на примере магнитного поля прямого тока 1, перпендикулярного плоскости чертежа и направленного к нам (рис. 13). Представим себе замкнутый контур в виде окружности радиуса r. В каждой точке этого контура вектор В одинаков по модулю и направлен по касательной к окружности. Следовательно, циркуляция вектора В равна

Рис.13. Рис.14.

Согласно выражению (9.2), получим Вr = μoI (в вакууме), откуда В = μoI /(2πr).

Таким образом, исходя из теоремы о циркуляции вектора В, получили выражение для магнитной индукции поля прямого тока, выведенное выше (2.6).

2).Рассчитаем индукцию магнитного поля внутри соленоидацилиндрической катушки, состоящей из большого числа витков равномерно намотанных на общий сердечник. Рассмотрим соленоид длиной l, имеющий n витков, по которому течет ток I (рис.14). Длину соленоида считаем во много раз большей, чем диаметр его витков, т.е. рассматриваемый соленоид бесконечно длинный. Экспериментальное изучение магнитного поля соленоида, проведенное с помощью железных опилок показывает, что внутри соленоида поле является однородным, вне соленоида неоднородным и очень слабым, т.е. его можно практически считать равным нулю.

Циркуляция вектора В по замкнутому контуру, совпадающему с одной из линий магнитной индукции, АВСDА, и охватывающему все n витков согласно (9.2), равна

Интеграл по АВСDА можно представить в виде двух – по внешнему участку ABCD (он равен нулю, так как вне соленоида В=0) и по внутреннему DA.

На участке циркуляция вектора В равна Вl (контур совпадает с линией магнитной индукции); следовательно,

Отсюда приходим к выражению для магнитной индукции поля внутри соленоида (в вакууме):

B=μonI / l. (10.2)

Получили, что поле внутри соленоида однородно.

3). Важное значение для практики имеет также магнитное поле тороидакольцевой катушки, витки которой намотаны на сердечник, имеющий форму тора. Магнитное поле сосредоточено внутри тороида, вне его поле отсутствует. Тороид можно рассматривать как достаточно длинный соленоид свитый в кольцо и для расчета напряженности магнитного поля тороида пользоваться формулой (10.2):

В= μonI/l = μonI/(2πr). (10.3)

Причем длину тороида l следует считать по средней линии, пренебрегая небольшим различием между внешней и внутренней окружностями кольца.

Сила Ампера.

Сила Ампера это та сила, с которой магнитное поле действует на проводник, с током помещённый в это поле. Величину этой силы можно определить с помощью закона Ампера. В этом законе определяется бесконечно малая сила для бесконечно малого участка проводника. Что дает возможность применять этот закон для проводников различной формы.

Формула 1 — Закон Ампера

B индукция магнитного поля, в котором находится проводник с током

I сила тока в проводнике

dl бесконечно малый элемент длинны проводника с током

альфа угол между индукцией внешнего магнитного поля и направлением тока в проводнике

Направление силы Ампера находится по правилу левой руки. Формулировка этого правила, звучит так. Когда левая рука расположена таким образом, что лини магнитной индукции внешнего поля входят в ладонь, а четыре вытянутых пальца указывают направление движения тока в проводнике, при этом отогнутый под прямым углом большой палец будет указывать направление силы, которая действует на элемент проводника.

Рисунок 1 — правило левой руки

Некоторые проблемы возникают, при использовании правила левой руки, в случае если угол между индукцией поля и током маленький. Трудно определить, где должна находиться открытая ладонь. Поэтому для простоты применения этого правила, можно ладонь располагать так, чтобы в нее входил не сам вектор магнитной индукции, а его модуль.

Из закона Ампера следует, что сила Ампера будет равна нулю, если угол между линией магнитной индукции поля и током будет равен нулю. То есть проводник будет располагаться вдоль такой линии. И сила Ампера будет иметь максимально возможное значение для этой системы, если угол будут составлять 90 градусов. То есть ток будет перпендикулярен линии магнитной индукции.

С помощью закона Ампера можно найти силу, действующую в системе из двух проводников. Представим себе два бесконечно длинных проводника, которые находятся на расстоянии друг от друга. По этим проводникам протекают токи. Силу, действующую со стороны поля создаваемого проводником с током номер один на проводник номер два можно представить в виде.

Источник