Меню

Высоковольтный кабель постоянного тока

Интернет-учебник по расчету кабельной продукции

Особенности электрического расчета изоляции кабелей высокого напряжения постоянного тока

Кабели постоянного тока представляют интерес при передачи энергии на большие расстояния. В кабелях переменного тока при этом допустимая нагрузка значительно снижается из-за дополнительных потерь от емкостного тока и потерь в металлических частях конструкции кабеля. (где U — фазное напряжение, В; С — емкость кабелей, Ом; — угловая частота, ; l — длина линии, м). У кабелей на U=220 и 500 кВ, соответственно и при длине линии в 30-40 км близок к максимально допустимому току кабеля.

Для подземных линий кабель постоянного тока составляется конкурентоспособным с кабелями переменного тока при его использовании на расстояние не менее 60 км. Он позволяет осуществлять регулировку мощности и обеспечивает ее постоянство (не позволяет ей резко увеличиваться) при коротком замыкании. При постоянном токе допустимая длина кабельной линии определяется, в основном, потерями в токопроводящей жиле.

У реальных изоляционных материалов энергетическая проводимость минимальна при постоянном токе. Омическое сопротивление изоляции для одножильного кабеля МОм·км зависит только от геометрических размеров кабеля.

Электрическая прочность изоляции кабеля при постоянном напряжении из-за значительно меньшей интенсивности частичных разрядов существенно выше, чем при переменном. Например, распределение напряжения между слоями пропитанной бумаги и прочным составом при постоянном токе происходит не по емкостям (что имеет место при переменном напряжении), а по сопротивлениям. Поэтому при постоянном токе наиболее напряженной частью изоляции является пропитанная бумага, а не пленка масла, как на переменном напряжении, так как проводимость пропитанной бумаги в несколько раз меньше проводимости пропитывающего состава. Таким образом при постоянном токе на наиболее прочную часть изоляции — пропитанную бумагу приходятся и больше напряженности, в результате чего электрическая прочность изоляции при постоянном токе выше, чем при переменном. В соответствии с этим, например, провода с поливинилхлоридной изоляцией марок ПВ1, ППВ, АППВ используются в цепях переменного тока напряжением до 450 В, а в цепях постоянного тока — до 1000 В; кабели с пропитанной бумажной изоляцией на напряжение 35 кВ выдерживают испытания переменным напряжением 115 кВ, в постоянным — 320 кВ. В таблице 1 [1] приведены физические свойства и электрическая прочность некоторых кабельных бумаг. Для бумаги КВАУ-080 среднее пробивное напряжение на постоянном напряжении превышает аналогичное напряжение на переменном токе примерно в 2-4 раза.

Марка бумаги Объемная масса, Воздухо- проницаемость, мл/мин Переменное напряжение, , кВ Постоянное напряжение, , кВ Импульсное напряжение, , кВ
КВМУ-080 1,13 2,1 86,6 211,0 270,2
КВМУ-120 1,11 3,6 97,5 224,7 243,0
КВМС-080 0,64 13,9 64,5 110,2 185,5
КВМС-120 0,65 23,3 69,5 165,8 167,4
КВМС-170 0,76 23,1 70,9 190,8 173,4

Аналогичные по порядку величины данные сообщались и в [2]. В статье дан обзор проекта прокладки маслонаполненного кабеля постоянного тока мощностью 1000 МВт на острове Хоккайдо (Япония). При исследовании электрической прочности изоляции наблюдалась ее уменьшение со временем, примерно на 35% за секунд (как и при переменном напряжении). Это объяснялось накоплением объемных зарядов и искажением под их влиянием распределения электрического поля. Влияние объемных зарядов увеличивалось с ростом температуры. Был сделан вывод о том, что старение изоляции под действием постоянного напряжения происходило значительно менее интенсивно, чем при переменном напряжении и что наиболее тяжелым режимом для изоляции является наложение импульсов, возникающих при перенапряжениях, на постоянное напряжение. Толщина изоляции была выбрана по импульсному уровню (1250 кВ) и составляла 21мм. При этом рабочая напряженность постоянного электрического поля кабеля СИП-2А [3], предназначенного для работы в сетях переменного напряжения, составляет около 0,7 МВ/м.

Наряду с маслонаполненными кабелями известны высоковольтные кабели постоянного тока с полиэтиленовой изоляцией [4, 5]. Применение полиэтилена обеспечивает простоту конструкции, монтажа и эксплуатации. По толщине изоляции кабель постоянного тока с полиэтиленовой изоляцией на 250кВ соответствует 154кВ кабелю переменного тока. Причем, усиление неоднородности распределения объемных зарядов у сшитого полиэтилена научились компенсировать введением минеральных наполнителей.

Исследования показали, что кабели с изоляцией из экструдированного полиэтилена можно использовать для напряжений до 400 кВ при средней рабочей напряженности 20-25 МВ/м и электрической прочности 120 МВ/м; толщина изоляции — около 12 мм.

Источник

КАБЕЛИ ПОСТОЯННОГО ТОКА

Силовые кабели на напряжение до 3 кв постоянного тока имеют одинаковую конструкцию с кабелями переменного тока. Высоковольт­ные линии постоянного тока, как правило, двухпроводные. Жилы

каждого из двух кабелей этой линии имеют соответствующую рабо­чему напряжению толщину изоляции по отношению к земле.

Кабель для электрофильтров на напряжение 75 кв постоянного тока одинаков с одножильными освинцованными кабелями марки СБ на 35 кв переменного тока. Жилу этого кабеля сечением 95 мм2 изготовляют алюминиевой. Толщину бумажной изоляции кабеля принимают равной 12 мм. Поверх изоляции накладывают экран из ме­таллизированной бумаги и свинцовую оболочку толщиной 1,4 мм. Этому кабелю присвоена марка АСБЭ (рис. 4-19). Наружный диа­метр кабеля поверх брони и защитных покровов — 49,4 мм, масса— Силовые кабели 220— 400 кв постоянного тока из­готовляют с круглыми жи­лами из алюминия сечением по заказу. Изоляцию ка­беля выполняют кабельной бумагой, пропитанной вяз­кими изоляционными соста­вами (вязкое масло или маслоканифольный состав). С целью увеличения электрической прочности изоляции кабелей постоян­ного тока высокого напря­жения применяют тонкую уплотненную бумагу у токопроводящей жилы и под оболочкой, а в средней части изоляции — бумагу большей толщины. Применение уп­лотненной бумаги (плотно­стью 1—1,1) повышает элек­трическую прочность изоля­ции на 10—15%.

Толщина изоляции ка­беля 220 кв равна 12 мм, а 400 кв— 18 мм (в сталь­ной трубе). Поверх изоляции накладывают из ленты перфори­рованной металлизированной бумаги, свинцовую или алюминиевую оболочку и защитные покровы. С целью повышения надежности ка­беля для длительной эксплуатации защитные покровы снабжают слоем поливинилхлоридного пластиката. Общая толщина защитного покрова равна 7,0 мм. Сечение силового кабеля постоянного тока на напряжение ±400 кв приведено на рис. 4–20.

Источник

Производство высоковольтных кабелей

Основной характеристикой силовых кабелей является их рабочее напряжение. Для высоковольтных кабелей этот параметр составляет от нескольких сотен до десятков тысяч вольт. Кроме того, высоковольтные провода должны быть устойчивы к воздействию вибрационных нагрузок, механических воздействий, перепадам давления и температуры, агрессивным средам и жидкостям, а также пожаробезопасны.

Читайте также:  Общее сопротивление конденсатора в цепи переменного тока

Кабель АПвПуг 10

Кабель АПвПуг 10 предназначен для использования в электросетях с напряжением 10 кВ и частотой 50 Гц. Его особенностью является утолщенная наружная оболочка. Это позволяет применять его в экстремальных условиях. Монтаж может вестись как по земле, так и в грунте. При этом агрессивность почвы может не учитываться.

Классификация высоковольтных проводов

По своему функциональному назначению высоковольтные провода делятся на следующие группы:

  • • Монтажные провода – применяются для соединения электрических приборов и их блоков, могут быть экранированными, изолированными и покрытыми защитными составами;
  • • Провода зажигания – используются в системах зажигания и двигателях различных видов транспорта, мощных осветительных приборах, работающих в условиях повышенного напряжения, высокой температуры и давления;
  • • Импульсные кабели – рассчитаны на передачу импульсных электрических сигналов высокой мощности. Применяются в РЛС и другой специализированной радиоэлектронной аппаратуре;
  • • Гибкие кабели – используются в подвижных токоприемниках малой мощности с током до 40 А.

Этапы изготовления высоковольтных кабелей

Технологический процесс изготовления высоковольтных проводов состоит из следующих этапов:

  1. Подготовка проволоки

Заготовкой для производства токопроводящих жил служит медный пруток круглого сечения. При помощи протяжного станка его продевают через фильеры требуемого диаметра. Таким образом длина заготовки увеличивается, а диаметр сечения уменьшается. При необходимости операцию повторяют несколько раз, постепенно уменьшая диаметр проволоки.

Кабель АПвПу2г (20 кВ)

Кабель АПвПу2г (20 кВ) предназначается для передачи и распределения электрической энергии. Он относится к категории силовых. Используется в установках стационарного типа. Провод выдерживает рабочее переменное напряжение в 20 кВ при частоте в 50 Гц. Тип климатического исполнения позволяет использовать его в регионах с холодными, умеренными и тропическими погодными условиями.

Полученную проволоку подвергают термической обработке в вакуумных печах для придания ей необходимой гибкости.

В зависимости от вида изготавливаемого кабеля производят скручивание полученных жил.

  1. Наложение изоляции

При помощи экструдера (линия для наложения изоляции) производят монтаж изолирующего покрытия. В качестве изоляционного материала для высоковольтных проводов применяется резина. Различные полимеры или электроизоляционная бумага.

  1. Экранирование

В зависимости от вида изоляционного материала в качестве экрана может применяться металлическая лента, металлизированная или полупроводящая бумага, полупроводящий полиэтилен. При производстве бронированных медных кабелей экранирующим материалом служит оцинкованная стальная лента или проволока.

Проводится проверка готового кабеля на пробой, замыкания и обрыв жил, и другие электрические параметры, а также на нарушение герметичности изоляции.

После проведения всех испытаний кабели наматываются на барабаны и упаковываются для отправки потребителю.

Марки высоковольтных проводов

Параметры высоковольтных проводов регламентируются ГОСТ 16442-80. Согласно данного стандарта бронированные кабели отличаются максимальным рабочим напряжением, количеством жил. Видом и материалом изготовления экранов, брони и изоляции. Ниже приведены наиболее популярные марки высоковольтных кабелей.

  1. Бронированные кабели
  • • ВБбШв – броня данного кабеля представляет собой две стальные ленты, жилы изготовлены из меди, изоляция и шланг – из ПВХ пластиката;
  • • ВБШв – отличается наличием подушки из крепированной бумаги, склеенной битумом, подушка расположена между слоями изоляции и брони;
  • • ВКбШв – в качестве брони применяется стальная проволока, такие провода гибче и подвижнее;
  • • ВБбШнг – оболочка таких кабелей выполнена из негорючего материала.
  1. Провод ППСРВМ

Провод данной марки применяются для наружных соединений вагонов поездов и трамваев, а также во внешних электрических цепях троллейбусов. Температурный диапазон применения составляет от -50 до + 60 ºС. Они обладают устойчивостью к механическим нагрузкам и воздействию агрессивных веществ. Модификация ППСРВМ-1 отличается более высокими стандартными значениями площади сечения жил.

Кабель ЦСБлШв-10

Кабель ЦСБлШв-10 относится к медным силовым кабелям с бумажной изоляцией, рассчитанных на напряжение переменного тока 6-10кВ, частота 50ГЦ. Отличительной особенностью медного кабеля ЦСБлШв-10 является особая нестекающая пропитка.

Аббревиатура ВР означает «кабель высоковольтный с резиновой изоляцией». Рассмотрим маркировку проводов ВР на примере провода ВР-25-2. Данные провода рассчитаны на переменное напряжение до 25 кВ и применяются для подключения трансформаторов электропоездов. Сечение медной жилы кабеля составляет 25 кв мм. В качестве изоляционного материала применяется озоностойкая резина, экран выполнен из проводящей прорезиненной ткани, оплетка – из луженой медной проволоки. Цифра 2 в маркировке означает вариант климатического исполнения провода.

  1. Провода компании Helukabel

Этот популярный немецкий производитель маркирует свои провода следующим образом:

  • • Первой буквой обозначаются Ту на провод, чаще всего это буква N (HD 603 S1:1994/A2:2003);
  • • Затем идет обозначение материала изоляции (например, 2Х – сшитый полиэтилен);
  • • Далее обозначается тип экрана (S – ленто-проволочный, медный; G – оцинкованная стальная лента);
  • • Буква (F) означает дополнительную защиту от воздействия влаги;
  • • Последними буквами и цифрами обозначают тип оболочки (2Y – полиэтилен, Y – ПВХ).

Источник



Высокотемпературные сверхпроводящие кабельные линии постоянного тока – шаг к умным электросетям

В. Е. Сытников, доктор техн. наук, заместитель научного руководителя, АО «НТЦ ФСК ЕЭС»

Т. В. Рябин, заместитель генерального директора, АО «НТЦ ФСК ЕЭС»;

Д. В. Сорокин, канд. техн. наук, начальник Центра системных исследований и разработок ИЭС ААС, АО «НТЦ ФСК ЕЭС»

Электроэнергетика XXI века должна обеспечивать высокую эффективность выработки, транспортировки и потребления энергии. Этого можно достичь путем повышения требований к управляемости энергосистемы, а также к экологическим и ресурсосберегающим характеристикам на всех этапах производства и распределения электроэнергии. Использование сверхпроводниковых технологий позволяет перейти на качественно новый интеллектуальный уровень функционирования данной отрасли. ПАО «ФСК ЕЭС» была принята программа НИОКР, включающая создание высокотемпературных сверхпроводящих кабельных линий (далее – ВТСП КЛ) переменного и постоянного тока 1 .

В большинстве промышленно развитых стран мира ведутся интенсивные исследования и разработка новых видов электротехнических устройств на основе сверхпроводников. Интерес к данным разработкам особенно усилился в последние годы в связи с открытием высокотемпературных сверхпроводников (далее – ВТСП), не требующих сложных и дорогих охлаждающих приборов.

Перспективы внедрения сверхпроводящих кабелей

Именно силовые сверхпроводящие кабели являются наиболее разработанным и продвинутым способом применения сверхпроводимости в электроэнергетике в настоящее время [1, 2]. Основными преимуществами сверхпроводящих кабелей являются:

Читайте также:  Электропоезда переменного тока это

ВТСП КЛ постоянного и переменного тока – инновационная разработка, позволяющая решить значительную часть проблем электрических сетей. Однако при использовании ВТСП КЛ постоянного тока линия становится управляемым элементом сети, регулирующим потоки передаваемой энергии вплоть до реверса передачи. ВТСП КЛ постоянного тока имеют ряд дополнительных преимуществ по сравнению с линиями переменного тока:

  • ограничение токов короткого замыкания, что позволяет соединить по низкой стороне отдельные секторы энергосистемы без увеличения токов короткого замыкания;
  • повышение устойчивости сети и предотвращение каскадных отключений потребителей за счет взаимного резервирования энергорайонов;
  • регулирование распределения потоков мощности в параллельных линиях;
  • передача мощности с минимальными потерями в кабеле и, как следствие, снижение требований к криогенной системе;
  • возможность связи несинхронизированных энергосистем.

В электрических сетях возможно создание схемы с применением как ВТСП КЛ переменного, так и линий постоянного тока. Обе системы имеют свои предпочтительные области применения, и в конечном итоге выбор определяется как техническими, так и экономическими соображениями.

Сверхпроводящие вставки между подстанциями в мегаполисах

Энергетические сети мегаполисов являются динамично развивающейся структурой, которая имеет следующие особенности:

  • быстрый рост потребления энергии, что обычно превышает средний темп роста потребления по всей стране;
  • высокая плотность энергопотребления;
  • наличие дефицитных по энергообеспечению районов;
  • высокая степень разветвленности распределительных электрических сетей, что обусловлено необходимостью многократного дублирования линий электроснабжения потребителей;
  • секционирование электрической сети с целью уменьшения токов короткого замыкания.

Все эти факторы определяют основные проблемы в сетях городских агломераций:

  • высокий уровень потерь электроэнергии в распределительных сетях;
  • высокие уровни токов короткого замыкания, значения которых в некоторых случаях превосходят отключающую способность коммутационного оборудования;
  • низкий уровень управляемости.

При этом загрузка подстанций в городе очень неравномерна. Во многих случаях трансформаторы подстанций загружены только на 30–60 %. Как правило, подстанции глубокого ввода в городах запитываются по отдельным линиям высокого напряжения. Соединение подстанций на стороне среднего напряжения может обеспечить взаимное резервирование энергорайонов и высвободить резервные трансформаторные мощности, что в конечном итоге приведет к снижению потерь энергии в сети. Кроме того, такой тип подключения позволяет использовать высвободившиеся мощности для подключения дополнительной нагрузки без необходимости ввода в эксплуатацию новых трансформаторов или строительства новых подстанций и линий электропередачи [3–5].

При наличии вставки (рис. 1) три трансформатора полностью обеспечат электроэнергией присоединенных потребителей при загрузке не более 80 %. Четвертый трансформатор и питающая его линия могут быть выведены в оперативный резерв, что приведет к снижению потерь энергии. Также они могут использоваться для подключения дополнительных потребителей. Такая вставка может быть выполнена как по традиционным технологиям, так и с использованием сверхпроводящих кабельных линий.

Основной проблемой при реализации такой схемы является тот факт, что прямое соединение подстанций приведет к существенному увеличению тока короткого замыкания. Данная схема станет работоспособной только в случае, если вставка будет выполнять две функции: передачу мощности и ограничение токов короткого замыкания. Следовательно, при передаче больших потоков энергии на распределительном напряжении сверхпроводящие линии имеют неоспоримые преимущества.

Решение задачи создания вставки сулит большие перспективы по совершенствованию систем электроснабжения мегаполисов. В настоящее время в мире осуществляются три крупных научных проекта, имеющих целью передачу высокой мощности на среднем напряжении между двумя подстанциями при одновременном ограничении токов короткого замыкания: проект HYDRA, Нью-Йорк, США; проект AmpaCity, Эссен, Германия 2 ; проект «Санкт-Петербург», Россия [3, 6]. На последнем проекте остановимся подробнее.

Российская ВТСП КЛ постоянного тока

Цель проекта «Санкт-Петербург» – разработка и установка сверхпроводящей линии постоянного тока мощностью 50 МВт между двумя городскими подстанциями с целью повышения надежности электроснабжения потребителей и ограничения тока короткого замыкания в городской сети Северной столицы. Проект предусматривает монтаж кабельных линий между подстанцией 330/20 кВ «Центральная» и подстанцией 220/20 кВ РП 9 (рис. 2). Сверхпроводящая линия постоянного тока свяжет две подстанции на стороне среднего напряжения 20 кВ. Длина линии – 2 500 м, а передаваемая мощность – 50 МВт. В петербургском проекте функции передачи мощности и ограничения токов короткого замыкания разделены между кабелем и преобразователями при их соответствующей настройке. Сверхпроводящий кабель постоянного тока, в отличие от кабеля переменного тока, не имеет потерь энергии, что существенно снижает требования к мощности криогенной установки. Однако при данной схеме возникают дополнительные потери энергии в преобразователях. Линия постоянного тока является активным элементом сети и позволяет управлять энергетическими потоками в прилегающих линиях как по направлению, так и по мощности передачи.

Влияние проекта на электрические режимы

В энергорайоне ПС 330 кВ «Центральная» и ПС 220 кВ РП 9 (далее – Центральная/РП 9) возможно возникновение ряда послеаварийных режимов, обусловленных аварийным отключением линий электропередачи и связанных с нарушением электроснабжения потребителей (выделением энергорайонов на изолированную нагрузку).

Расчеты показали, что резервирование электроснабжения потребителей за счет строительства и ввода в эксплуатацию линии электропередачи переменного тока (традиционной кабельной или воздушной линии электропередачи) Центральная/РП 9 невозможно, так как это повышает тяжесть послеаварийных режимов. Избежать этого можно за счет ввода в эксплуатацию управляемой передачи постоянного тока с ВТСП КЛ постоянного тока.

Управление величиной и направлением потока мощности ВТСП КЛ постоянного тока позволяет также обеспечить возможность:

  • снижения потерь активной мощности в электрических сетях (за счет перераспределения и ликвидации транзитных потоков мощности);
  • подключения новых потребителей на базе существующей электросетевой инфраструктуры (за счет перераспределения потоков мощности и снятия токовых перегрузок электрических сетей в нормальных эксплуатационных и послеаварийных режимах энергосистем).

Влияние проекта на уровень токов короткого замыкания

Расчеты токов короткого замыкания выполнены 3 для случая ввода в схему традиционной кабельной линии переменного тока, а также ВТСП КЛ постоянного тока. По результатам расчетов (табл. 1) приходим к выводу, что включение в схему электроснабжения Санкт-Петербурга кабельной линии переменного тока Центральная/РП 9 приводит к росту величины тока короткого замыкания выше уровня номинального тока отключения выключателей. Это означает, что потребуется реализация дополнительных токоограничивающих мероприятий или замена коммутационных аппаратов на подстанциях. Применение же ВСТП КЛ постоянного тока (таб. 3) не приводит к увеличению токов короткого замыкания в энергосистеме.

Читайте также:  Распиновка коммутаторов постоянного тока

Оценка потерь энергии в сверхпроводящих линиях

В линиях переменного тока среднего напряжения потери электрической энергии возникают в самом кабеле, электрической изоляции и токовых вводах. В линии постоянного тока потери энергии в кабеле и изоляции отсутствуют, однако они есть в преобразовательных устройствах, токовых вводах. Кроме того, криогенная система потребляет электроэнергию для компенсации всех теплопритоков в холодную зону и для прокачки хладагента по всей трассе.

Для трехфазной линии переменного тока среднего напряжения на передаваемую мощность 100 МВА потери энергии на фазу складываются из следующих величин:

  • электромагнитные потери в жиле кабеля – 1,0–1,5 Вт/м;
  • теплопритоки через криостат – 1,5 Вт/м;
  • теплопритоки через токовводы – (200–300 Вт) x 2;
  • потери энергии в изоляции – порядка 0,1 Вт/м.

Общие теплопритоки в холодную зону при длине трехфазной линии 10 км составят 78,5–93,5 кВт. Умножая эту величину на типичное значение коэффициента рефрижерации, равное 20, получим 1,57–1,87 МВА, или менее 2% от передаваемой мощности.

Для аналогичной линии постоянного тока теплоприток в холодную зону ограничивается только теплопритоками через криостат и токовводы. Тогда общие потери энергии в кабеле длиной 10 км с учетом криогенной системы составят 0,31 МВА, или 0,31 % от передаваемой мощности.

Для оценки общих потерь в линии постоянного тока следует прибавить потери в преобразователях – 2% от передаваемой мощности. Итоговые потери в ВТСП КЛ постоянного тока длиной 10 км на передаваемую мощность 100 МВт оцениваются величиной не более 2,5 % от передаваемой мощности.

Приведенные оценки показывают, что потери энергии в сверхпроводящих кабельных линиях существенно меньше, чем в традиционных кабельных линиях. При увеличении передаваемой мощности процент потерь энергии снижается. При сегодняшнем уровне характеристик материалов возможна передача энергии 150–300 МВт при напряжении 20 кВ и до 1 000 МВт при 110 кВ.

Возможности внедрения

Успешные испытания ВТСП КЛ постоянного и переменного [7] токов продемонстрировали высокую эффективность сверхпроводящих линий.

Одним из основных преимуществ сверхпроводящих кабельных линий является возможность передачи больших потоков энергии (сотни мегаватт) на распределительном напряжении. Эти открывшиеся новые возможности целесообразно учитывать и использовать при проектировании или кардинальной реконструкции сетевых объектов.

Например, при реконструкции/создании энергосистемы Новой Москвы целесообразно было бы предусмотреть создание продольных мощных сверхпроводящих линий, а несколько мощных подстанций связать в кольцевую структуру сверхпроводящими линиями постоянного тока на стороне среднего напряжения. Это позволит существенно повысить энергоэффективность сети, уменьшить количество базовых подстанций, обеспечить высокую управляемость энергопотоками и в конечном счете увеличить надежность энергоснабжения потребителей. Такая сеть может стать реальным прообразом умной сети будущего.

Литература

  1. Глебов И. А., Черноплеков Н. А., Альтов В. А. Сверхпроводниковые технологии – новый этап в развитии электротехники и энергетики // Сверхпроводимость: исследования и разработки. 2002. № 41.
  2. Сытников В. Е. Сверхпроводящие кабели и перспективы их использования в энергетических системах XXI века // Сверхпроводимость: исследования и разработки. 2011. № 15.
  3. EPRI. Superconducting Power Equipment Technology Watch 2012. Palo Alto, CA, USA, 2012.
  4. Stemmle M., Merschel R, Noe M. Physics Procedia 36 (2012).
  5. Сытников В. E., Копылов С. И., Шакарян Ю. Г., Кривецкий И. В. ВТСП передача постоянного тока как элемент «интеллектуальной сети» крупных городов. Материалы 1-й Национальной конференции по прикладной сверхпроводимости. М. : НИЦ «Курчатовский институт», 2013.
  6. Kopylov S., Sytnikov V., Bemert S. et. al. // Journal Physics.: Conference. Series. 2014. V. 507. P. 032047.
  7. Волков Э. П., Высоцкий B. C., Kapпышев A. B., Костюк В. В., Сытников В. Е., Фирсов В. П. Создание первого в России сверхпроводящего кабеля с использованием явления высокотемпературной сверхпроводимости. Сборник статей РАН «Инновационные технологии в энергетике» под ред. Э. П. Волкова и В. В. Костюка. М. : Наука, 2010.

1 Основное внимание в статье уделено результатам испытаний и перспективам широкого внедрения в электроэнергетику ВТСП кабельных линий постоянного тока.

2 1. Проект HYDRA, Нью-Йорк, США [1, 6]. Цель проекта – разработка и установка сверхпроводящей кабельной линии переменного тока между двумя городскими подстанциями в Нью-Йорке. Линия должна обеспечивать связь с высокой пропускной способностью (96 МВА) между подстанциями на стороне вторичной обмотки трансформаторов (13,8 кВ). Кабельная система будет иметь способность ограничивать ток короткого замыкания за счет быстрого перехода в нормально проводящее состояние ВТСП лент второго поколения. За счет этого обеспечивается низкое значение сопротивления линии в номинальном режиме (сверхпроводящее состояние линии) и переход в состояние с высоким сопротивлением при перегрузке по току.
В проекте HYDRA сочетаются функции передачи большой мощности и ограничения тока в одном устройстве – сверхпроводящем кабеле специальной конструкции. Это делает чрезвычайно сложной задачу оптимизации кабеля с учетом возможных сетевых режимов, условий охлаждения и прокладки кабеля. Кроме того, технические решения, разработанные для одного проекта, не могут тиражироваться для других в силу различных режимных условий и условий прокладки, а значит, и условий охлаждения кабеля, который периодически должен переходить из сверхпроводящего состояния в нормально проводящее.
2. Проект AmpaCity, Эссен, Германия [2, 7]. Цель проекта – разработка и установка сверхпроводящей передачи переменного тока мощностью 40 МВА между двумя городскими подстанциями. Передача состоит из сверхпроводящего кабеля длиной 1 000 м и токоограничителя на напряжение 10 кВ, включенных последовательно. Эта передача соединяет две подстанции 110/10 кВ Herkules и Dellbrugge в центре города Эссен. Реализация проекта позволит вывести из эксплуатации один трансформатор мощностью 40 МВА и линию 110 кВ.
В проекте AmpaCity функции передачи мощности и ограничения токов короткого замыкания разделены между кабелем и токоограничителем. Это упрощает задачу разработки каждого устройства и позволяет изготавливать кабель с высокой степенью стабилизации, что невозможно в проекте HYDRA. Разумеется, требуется согласование характеристик кабеля и токоограничителя, однако это не является сложной задачей, и разработанные при выполнении проекта технические решения могут тиражироваться при разработке других линий с аналогичными параметрами.

3 Расчеты выполнены на базе применения перспективной схемы энергосистемы Санкт-Петербурга и Ленинградской области на 2020 год.

Поделиться статьей в социальных сетях:

Источник