Меню

Выключатели автоматические материал корпуса

Автоматические выключатели

Об энергии короткого замыкания

С момента изобретения мощных источников тока началась и история развития автоматического выключателя. В чем, собственно, заключается проблема – щелк и все, цепь разомкнута. Но на самом деле все гораздо сложнее. По электрическому проводу может течь огромная, по своей разрушающей возможности, энергия. И именно автоматический выключатель должен сделать разрыв в цепи и при этом остаться неповрежденным.

Если говорить о простом размыкании, сделанным при выключенных потребителях электроэнергии, то все довольно просто. Никаких подводных камней нет. Самый сложный случай – была какая-то авария, и автоматический выключатель сам отключился. Что в таких ситуациях происходит чаще всего? Вы правильно ответили – открывается электрощиток, и рычажок автомата переводится в верхнее положение.

Если причина аварии не была устранена или хотя бы не «отгорела» , то происходит еще одна авария, только происходит она не где-нибудь , а прямо перед вами – внутри корпуса автоматического выключателя.

Энергию короткого замыкания можно примерно оценить, имея точные данные по проекту электроснабжения помещения. Но это будет просто приблизительная оценка. Реальное короткое замыкание в проводке квартиры – это всегда искры, хлопок и обгорание материалов в зоне действия дуги. Именно в таких условиях контакты автоматического выключателя работают и остаются целыми. Это достигается разными способами и путями.

Материалы для автоматических выключателей

Бытует мнение, что наилучшим материалом для контактов автоматических выключателей, является серебро. Для контактов – несомненно , но именно для простых контактов. Серебро имеет много положительных качеств и востребовано в электротехнике.

Два отрицательных момента портит его идеальную картинку – это довольно высокая цена и низкая температура плавления. При 960 градусах по Цельсию изделии из этого благородного металла превратятся в лужицу расплава.

Если вернуться к возможной температуре в зоне действия дуги короткого замыкания, то это – около 6000°С . Это очень высокая температура и серебро в чистом виде расплавиться за очень короткое время.

Что бы этого избежать, для изготовления контактов применяются различные сплавы и покрытия. Идеального материала для контакта еще не придумали. К этим материалам, или композициям из них, предъявляются требования, противоречивые по своей природе. Но эти требования вполне логичны :

  • Устойчивость к механическому износу;
  • Коррозия и электрический износ так же должны быть минимальными ;
  • Максимально возможная электропроводность и теплопроводность ;
  • Максимальная устойчивость к свариванию.

Все контактные материалы могут не полностью удовлетворяют всем предъявляемым к ним требованиям. Например, многие материалы, обладают хорошей электропроводностью и теплопроводностью, но не имеют достаточной твердости или подвержены окислению.

При разработке и изготовлении электрических контактов выбирают то материал или группу материалов, которые наиболее полно удовлетворяет всем требованиям, предъявляемым к работе данной контактной пары. Для электрических контактов и деталей автоматически выключателей наиболее часто используются традиционные для электротехники материалы : твердая и мягкая медь, латунь для изготовления токоведущих деталей аппаратуры, сталь и , естественно, благородные и редкие металлы. Без них качественный контакт получить не удается. Это типовой перечень проводниковых материалов, которые находят самое широкое применение при изготовлении электрических контактов.

Форма контактов

Современная теория электрических контактов еще разрабатывается. Даже не все физические явления, происходящие между контактов, до конца исследованы и объяснены. Но на многие вопросы уже получены ответы, и наработанный опыт позволяет сформировать общая теория электрических контактов.

Поверхность можно определить, как границу между реально существующими телами и окружающей их средой. Простейшей формой поверхности принято считать плоскость, но ее практически невозможно получить.

Всякую плоскость можно представить как часть некоторой прямолинейной поверхности с очень большим радиусом кривизны. И по этому такие поверхности обладают некоторой стрелой прогиба. Величина этого прогиба зависит как от метода изготовления поверхности, так и от условий ее работы. Стрела прогиба характеризует величину отклонения реальной плоскости от идеальной. Поверхности реальных плоскостей имеют волнистости. С помощью микроскопа можна увидеть и более сложные построения отдельных элементов поверхности.

Поверхности можно разделить на три группы :

Многие поверхности оптических приборов, с некоторой натяжкой, можно отнести к гладким. Поверхности электрических контактов наиболее часто являются шероховатыми. Долговечность электрических контактов, в значительной мере, определяется качеством обработки их поверхности, которое зависит от чистоты и свойств применяемого металла.

Форма неровностей поверхности значительно влияет на следующие эксплуатационные свойства электрических контактов :

  • Износоустойчивость трущихся поверхностей ;
  • Усталостную прочность ;
  • Сопротивляемость эрозии ;
  • Коррозионную устойчивость.

Гладкие и совершенно параллельные поверхности получить, в принципе, невозможно. По этому поверхности двух соединенных электрических контактов соприкасаются между собой лишь в некоторых точках. В случаи повышение сжатия контактных поверхностей происходит раздавливание и деформация металла в местах выступов и превращение их в маленькие поверхности с отличным пропусканием тока. Зона полной проводимости находится вместе наибольшего давления между контактами.

Зона неполной проводимости состоит из совокупности частей поверхности, покрытых пленками окислов. Электроны могут переходить через такие пленки, благодаря туннельному эффекту. От одной контактной поверхности к другой.

Зона полной непроводимости начинается там, где туннельный эффект уже невозможен. В этих зонах пленки окисления имеют значительную толщину.

При сравнительно небольших силах сжатия выступающие участки поверхностей входят в механическое соприкосновение. Это упругие деформации. Есть и пластические деформации, возникающие в случае, когда давление на контактирующие поверхности возрастает настолько, что достигается предел упругости. А в результате появляется остаточная деформация.

Одни метали хорошо сопротивляются оказываемому на них давлению, так как они достаточно тверды, другие – плохо, так как они пластичны. Пластичные металлы, и серебро в этом списке в самом начале, предпочтительнее для использования в качестве электрических контактов. Но есть еще требования износостойкости, и тут мягкие материалы уже завершают список.

Борьба с окислением

На поверхностях практически всех электрических контактов образуются пленки. Эти пленки имеют сложный химический состав. Компонентами пленки является металл контакта, кислород, сера и прочие химические элементы. Например. Атомы кислорода сначала создают на поверхности металлов тонкую атомную пленку сцепления, которая со временем и с повышением температуры утолщается.

Толщина возникающих пленок зависит от таких фактов :

  • Химической активности металлов ;
  • Степени их очистки и полировки ;
  • Химического состава среды, в которой находятся контакты ;
  • Температуры и многих других факторов.

Так, в чистом воздухе окисная пленка алюминия имеет толщину 10-15 нм, а цинка – 0,5 – 0,6 нм. Эти цифры дают представление о скорости проникновения в глубину металлов атмосферной коррозии. Она составляет :

  • Для свинца – 4 мкм/год ;
  • Для алюминия – 8 мкм/год ;
  • Для меди и олова – 12 мкм/год ;
  • Для цинка – 50 мкм/год ;
  • Для железа – 200 мкм/год.

Если толщина пленки превышает 2,5 – 3 нм, туннельный эффект прекращается. При этом электроны уже не могут преодолеть достаточно большой потенциальный барьер, и пленка становится диэлектриком.

Пленки потускнения

Эти пленки плохо проводят электрический ток и относятся у диэлектрическим пленкам. Они появляются на поверхности чистых металлов и легко определяются – по потере металлического блеска поверхности. Окисные пленки могут возникать из-за соединения металла с кислородом воздуха, а сульфидные пленки – и из-за металла с серой.

На поверхности некоторых металлов окисные пленки создаются чрезвычайно быстро, буквально за доли секунды или секунды, на других они формируются в течение минуты.

На поверхности никеля окисная пленка формируется достаточно медленно, но при повышении температуры толщина ее может быстро увеличиваться. В конце концов, постепенное утолщение пленки приводит к разрыву электрической цепи.

Бронза при нормальной температуре заметно не окисляется.

Поверхность контакта из вольфрама практически не покрывается пленками окисления.

Золото, даже при высокой температуре, заметному окислению не подвержено. Платина не окисляется. Правда, при соединении з некоторыми газами может создавать на своей поверхности пленки, которые несколько ухудшают проводимость в месте контакта.

Серебро окисляется, но совсем мало. Окисные пленки на серебре легко снимаются. Значительно более опасными и прочными являются пленки, образуемые серебром с серой и ее соединениями, особенно в присутствии влаги. Серебро при этом тускнеет, и на его поверхности появляются пятна темного цвета. Но при достаточных механических сдавливающих усилиях эта пленка потускнения может разрушиться, и появятся очаги проводимости.

Существует ряд способов снятия пленок потускнения с поверхности металлов в целях улучшения электрического контакта. Например, разрушения пленок с помощью ударного воздействия или сильного сдавливания. Это называется искусственным старением. Пленки и сами по себе с течением времени могут растрескиваться и отваливаться. Это приводит к улучшению электрического контакта. Процесс некоторого улучшения контакта при его эксплуатации, называется естественным старением.

Читайте также:  Проходной диммируемый выключатель legrand

Зависимость электрической проводимости контактов от механического сжатия

Размеры контактной поверхности, а , следовательно, и электрическая проводимость, существенно зависят от силы сжатия. Характер изменения проводимости малых, средних и больших контактных усилиях несколько различается, но во всех случаях сдавливание контактов ведет начала к упругой, а затем – к пластической деформации.

Проводимость контактов, находящихся под большим сжатием, более стабильна во времени, чем проводимость контактов, к которым приложены средние и , тем более, малые сдавливающие усилия.

Но возникает другая проблема – прилипание контактных поверхностей друг к другу. Пластичные металлы могут прилипать друг к другу и без повышения температуры. А при нагреве эти процессы значительно усиливаются. Прилипание контактов возможно лишь в случае применения чистых металлов, на поверхности которых отсутствует слой окисной или иной пленки. При наличии пленок эффект прилипания ослабляется или полностью прекращается. При прохождение электрического тока через области контакта с окисными пленками, они могут полностью разрушиться, и тогда область контакта будет состоять из чистого металла. Возникают условия для прилипания и даже сваривания контактов.

Перейдем к чистой практике

Теория и практика на примере рассмотрения автоматического выключателя идут рука об руку. Выбор автомата затруднен богатством представленного предпочтения, и производитель уже определен, то осталось выбрать номинал и тип. Это уже проще. Но сначала про сам автоматический выключатель (рис.1), что в нем есть и для чего.

Рис.1. Устройство автоматических выключателей

Независимо от номиналов самого выключателя, хоть он рассчитан для работы в линии 10 ампер, хоть 63 ампера, его устройство практически одинаково.

Корпус автоматического выключателя выполнен из пластика, не поддерживающего горение. Про воздействие высокой температуры, это материал может оплавиться, может потерять форму, но он не горит и даже при сильном нагреве не может стать источником возгорания.

Контактная пара состоит из неподвижного и подвижного контакта. Форма и материал его тщательно подбираются, исходя из требуемого режима работы. Катушка электромагнитного расцепителя имеет необходимое сечение провода и требуемое количество витков для расчетного тока срабатывания в режиме короткого замыкания.

Рычаг управления позволяет включать и отключать автоматический выключатель. Дугогасящая камера вступает в работу только в экстремальных ситуациях, когда при разрыве контактов возникла мощная электрическая дуга, и ее энергию необходимо погасить.

Биметаллическая пластина служит, своего рода измерительным инструментом, и определяет силу тока, текущего в линии. Регулировочный винт предназначен ТОЛЬКО для заводских настроек. Именно про его помощи возможна точная подстройка автоматического выключателя на заданные номиналы срабатывания. Для подсоединения линии к автоматическому выключателю предназначены винтовые зажимы.

Это очень важно, так как автоматический выключатель должен сработать при аварийной ситуации, а не стать самим источником ее. В книге намеренно не расписываются свойства автоматических выключателей разных серий, все эти данные есть в любом каталоге. Тип, марка, номинал – все это всегда указывается в проектах. И что-то изменять здесь не стоит.

Чтобы автоматический выключатель прослужил долго – его надо правильно установить. Обычно все проблемы возникают только от плохо затянутых контактов. Периодическая инспекция электрического щита, выявление мест локального нагрева и протяжка контактов позволит избежать проблем с электроснабжением.

Источник

6 преимуществ современных автоматических выключателей в литом корпусе

Развитие электротехнического рынка диктует свои условия совершенствования продукции. Конструкторские бюро заводов-изготовителей улучшают не только проверенные временем решения, но и представляют инновационные разработки. В частности, широкое распространение и применение в последние годы получили современные автоматические выключатели в литом корпусе. О преимуществах и особенностях конструкций этих аппаратов и пойдет речь в этой статье.

Компактные габариты

Современные автоматические выключатели в литом корпусе в 2 раза компактнее аналогичных аппаратов предыдущих поколений. Новая конструкция автоматов позволяет более эффективно использовать внутреннее пространство электрического щита, не снижая технических характеристик защитных аппаратов. Это позволяет еще на этапе проектирования закладывать корпуса меньших габаритов, что снижает стоимость конечного решения.

Сравнительное фото OptiMat E250 с А3134 на номинальный ток 200А Сравнительное фото OptiMat E250 с А3786 на номинальный ток 250А

Модульность конструкции

Принцип модульного построения выключателей в литом корпусе дает возможность самостоятельно встраивать дополнительные аксессуары и расширять ряд функций аппарата защиты в соответствии с потребностями и требованиями по организации защиты электрической сети. Дооснастить аппарат может сам заказчик уже после непосредственного приобретения автоматического выключателя, то есть потребителю не нужно заказывать необходимое исполнение аппарата у завода-изготовителя.

Аксессуары позволяют управлять автоматическими выключателями дистанционно, а также получать информацию о текущем состоянии аппарата. Применяя специальные комплекты, можно получить исполнения выключателей втычного или выдвижного типа.

OptiMat D250, OptiMat D630 OptiMat D250, OptiMat D630 с дополнительными устройствами OptiMat D250, OptiMat D630 выдвижного исполнения

Модульная конструкция аппарата и «принцип конструктора» представляют пользу не только для потребителей, но и для дистрибьюторов. Конструктивные особенности аппаратов нового поколения позволяют последним минимизировать складские остатки, а также более эффективно использовать свои площади и ресурсы.

Современные материалы корпуса

Современная контактная система

Построение полностью селективных систем защит

На базе автоматических выключателей серии OptiMat возможна реализация полностью селективных систем защит. Микропроцессорные расцепители выключателей OptiMat A и OptiMat D отличаются высокой точностью исполнения защитных характеристик и обладают широким рядом настроек. Серия OptiMat также включает автоматические выключатели в литом корпусе OptiMat E и модульные автоматы OptiDin ВМ с термомагнитными расцепителями. Все аппараты серий OptiMat и OptiDin ВМ полностью согласованы в защитных характеристиках, что позволяет обеспечить селективность на каждом этапе распределения электроэнергии 0,4 и 0,69 кВ и отключать только поврежденный участок сети. Для наиболее точного выбора аппаратов и соблюдения принципа селективности в защищаемой электросети производители рекомендуют пользоваться таблицами селективности.

Принцип каскадирования или легальный способ сэкономить

Этот принцип позволяет устанавливать нижестоящие выключатели с меньшей отключающей способностью, если «выше» установлен токоограничивающий автоматический выключатель. Заводы-изготовители предоставляют соответствующие таблицы каскадирования и дают гарантию надежности защиты при такой компоновке аппаратов в защищаемой сети. Это позволяет потребителю существенно экономить средства, оставаясь уверенным в качественной защите собственной электрической сети.

Источник



Автоматические выключатели — конструкция и принцип работы

Здравствуйте, уважаемые читатели сайта elektrik-sam.info!

Эта статья продолжает серию публикаций по электрическим аппаратам защиты — автоматическим выключателям, УЗО, дифавтоматам, в которых мы подробно разберем назначение, конструкцию и принцип их работы, а также рассмотрим их основные характеристики и детально разберем расчет и выбор электрических аппаратов защиты. Завершит этот цикл статей пошаговой алгоритм, в котором кратко, схематично и в логической последовательности будет рассмотрен полный алгоритм расчета и выбора автоматических выключателей и УЗО.

Чтобы не пропустить выход новых материалов по этой теме подписывайтесь на новостную рассылку, форма подписки внизу этой статьи.

Ну а в этой статье мы разберемся, что же такое автоматический выключатель, для чего предназначен, как он устроен и рассмотрим, как он работает.

Автоматический выключатель (или обычно просто «автомат») — это контактный коммутационный аппарат, который предназначен для включения и отключения (т.е. для коммутации) электрической цепи, защиты кабелей, проводов и потребителей (электрических приборов) от токов перегрузки и от токов короткого замыкания.

Т.е. автоматический выключатель выполняет три основный функции:

1) коммутацию цепи (позволяет включать и отключать конкретный участок электрической цепи);

2) обеспечивает защиту от токов перегрузки, отключая защищаемую цепь, когда в ней протекает ток, превышающий допустимый (например, при подключении в линию мощного прибора или приборов);

3) отключает от питающей сети защищаемую цепь, когда в ней возникают большие по значению токи короткого замыкания.

Таким образом, автоматы выполняют одновременно и функции защиты и функции управления.

По конструктивному исполнению выпускаются три основных типа автоматических выключателей:

воздушные автоматические выключатели (применяются в промышленности в цепях с большими токами в тысячи ампер);

автоматические выключатели в литом корпусе (рассчитаны на большой диапазон рабочих токов от 16 до 1000 Ампер);

модульные автоматические выключатели, наиболее нам известные, к которым мы привыкли. Они широко применяются в быту, в наших домах и квартирах.

Модульными они называются потому, что их ширина стандартизирована и в зависимости от количества полюсов, кратна 17.5 мм, более подробно этот вопрос будет рассмотрен в отдельной статье.

Мы с вами будем рассматривать именно модульные автоматические выключатели и устройства защитного отключения.

Устройство и принцип работы автоматического выключателя.

Рассматривая конструкцию УЗО, я говорил, что для исследования от заказчика достались также и автоматические выключатели, конструкцию которых мы сейчас рассмотрим.

Читайте также:  Bihu выключатель с розеткой bh006

Корпус автоматического выключателя изготавливается из диэлектрического материала. На передней панели нанесена торговая марка (брэнд) производителя, каталожный номер. Основные характеристики — номинал (в нашем случае номинальный ток 16 Ампер) и время токовая характеристика (у нашего образца С).

Также на передней поверхности указываются и другие параметры автоматического выключателя, о которых речь пойдет в отдельной статье.

На задней части имеется специальное крепление для монтажа на DIN-рейку и крепления на ней с помощью специальной защелки.

DIN-рейка — это металлическая рейка специальной формы, шириной 35 мм, предназначенная для крепления модульных устройств (автоматов, УЗО, различных реле, пускателей, клеммников и т.д.; выпускаются счетчики электроэнергии специально для установки на DIN-рейку). Для монтажа на рейку необходимо завести корпус автомата за верхнюю часть DIN-рейки и нажать на нижнюю часть автомата, чтобы фиксатор защелкнулся. Для снятия с DIN-рейки необходимо поддеть снизу фиксатор защелки и снять автомат.

Встречаются модульные устройства с тугими защелками, в этом случае при установке на DIN-рейку необходимо поддевать снизу защелку фиксатора, заводить автомат на рейку и потом отпускать защелку, либо защелкивать ее принудительно, надавливая на нее отверткой.

Корпус автоматического выключателя состоит из двух половинок, соединенных четырьмя заклепками. Чтобы разобрать корпус, необходимо высверлить заклепки и снять одну из половинок корпуса.

В результате получаем доступ к внутреннему механизму автоматического выключателя.

Итак, в конструкцию автоматического выключателя входят:

1 — верхняя винтовая клемма;

2 — нижняя винтовая клемма;

3 — неподвижный контакт;

4 — подвижный контакт;

5 — гибкий проводник;

6 — катушка электромагнитного расцепителя;

7 — сердечник электромагнитного расцепителя;

8 — механизм расцепителя;

9 — рукоятка управления;

10 — гибкий проводник;

11 — биметаллическая пластина теплового расцепителя;

12 — регулировочный винт теплового расцепителя;

13 — дугогасительная камера;

14 — отверстие для отвода газов;

15 — защелка фиксатора.

Поднимая рукоятку управления вверх, автоматический выключатель подключается к защищаемой цепи, опустив рукоятку вниз — отключатся от нее .

Тепловой расцепитель, представляет собой биметаллическую пластину, которая нагревается проходящим через нее током, и если ток превышает заданное значение, пластина изгибается и приводит в действие механизм расцепителя, отключая таким образом автоматический выключатель от защищаемой цепи.

Электромагнитный расцепитель — это соленоид, т.е. катушка с намотанной проволокой, а внутри сердечник с пружиной. При возникновении короткого замыкания ток в цепи очень быстро нарастает, в обмотке катушки электромагнитного расцепителя наводится магнитный поток, под воздействием наведенного магнитного потока перемещается сердечник, и, преодолевая усилие пружины, воздействует на механизм и отключает автомат.

Как работает автоматический выключатель?

В обычном (неаварийном) режиме работы автоматического выключателя, когда рычаг управления взведен, электрический ток подается к автомату через питающий провод, подключенный к верхней клемме, далее ток проходит на неподвижный контакт, через него на подключенный к нему подвижный контакт, далее через гибкий проводник подается на катушку соленоида, после катушки по гибкому проводнику на биметаллическую пластину теплового расцепителя, от него на нижнюю винтовую клемму и далее в цепь подключенной нагрузки.

На рисунке показан автомат во включенном состоянии: рычаг управления поднят вверх, подвижный и неподвижный соединены.

Перегрузка возникает, когда ток в цепи, контролируемой автоматическим выключателем, начинает превышать номинальный ток автомата. Биметаллическая пластина теплового расцепителя начинает нагреваться проходящим через нее повышенным электрическим током, изгибается, и, если ток в цепи не уменьшается, пластина воздействует на механизм расцепления, и автоматический выключатель отключается, размыкая защищаемую цепь.

Для нагрева и изгибания биметаллической пластины требуется некоторое время. Время срабатывания зависит от величины проходящего через пластину тока, чем больше ток, тем меньше время срабатывания и может быть от нескольких секунд до часа. Минимальный ток срабатывания теплового расцепителя составляет 1,13-1,45 от номинального тока автомата (т.е. тепловой расцепитель начинает срабатывать при превышении номинального тока на 13-45%).

Автоматический выключатель — это устройство аналоговое, этим объясняется такой разброс параметров. Существуют технические сложности при его точной настройке. Ток срабатывания теплового расцепителя устанавливается на заводе регулировочным винтом 12. После того, как остынет биметаллическая пластина, автоматический выключатель готов к дальнейшему использованию.

Температура биметаллической пластины зависит от температуры окружающей среды: если автоматический выключатель установлен в помещении с высокой температурой воздуха, то тепловой расцепитель может сработать при меньшем токе, соответственно при низких температурах ток срабатывания теплового расцепителя может быть выше допустимого. Подробно этот вопрос смотрите в статье Почему в жару срабатывает автоматический выключатель?

Тепловой расцепитель срабатывает не сразу, а через какое-то время, давая возможность току перегрузки вернуться к своему нормальному значению. Если же в течение этого времени ток не снижается, тепловой расцепитель срабатывает, защищая цепь потребителей от перегрева, оплавления изоляции и возможного возгорания проводки.

К перегрузке может приводить подключение в линию мощных приборов, превышающих расчетную мощность защищаемой цепи. Например, при включении в линию очень мощного нагревателя или электроплиты с духовкой (с мощностью, превышающей расчетную мощность линии), или одновременно несколько мощных потребителей (электроплита, кондиционер, стиральная машина, бойлер, электрочайник и т.п.), либо большого количества одновременно включенных приборов.

При коротком замыкании ток в цепи мгновенно возрастает, наводимое в катушке по закону электромагнитной индукции магнитное поле перемещает сердечник соленоида, который приводит в действие механизм расцепителя и размыкает силовые контакты автоматического выключателя (т.е. подвижный и неподвижный контакты). Линия размыкается, позволяя снять с аварийной цепи питание и защитить от возгорания и разрушения сам автомат, электропроводку и замкнувший электроприбор.

Электромагнитный расцепитель срабатывает практически мгновенно (около 0,02с), в отличие от теплового, но при значительно больших значениях тока (от 3-х и более значений номинального тока), поэтому электропроводка не успевает нагреться до температуры плавления изоляции.

При размыкании контактов цепи, когда в ней проходит электрический ток, возникает электрическая дуга, и чем больше ток в цепи — тем дуга мощнее. Электрическая дуга вызывает эррозию и разрушение контактов. Чтобы защитить контакты автоматического выключателя от ее разрушающего действия, дуга, возникающая в момент размыкания контактов, направляется в дугогасительную камеру (состоящую из параллельных пластин), где она дробится, затухает, охлаждается и исчезает. При горении дуги образуются газы, они отводятся наружу из корпуса автомата через специальное отверстие.

Автомат не рекомендуется использовать в качестве обычного выключателя цепи, особенно если его отключать при подключенной мощной нагрузке (т.е. при больших токах в цепи), поскольку это ускорит разрушение и эррозию контактов.

Итак, давайте резюмируем:

— автоматический выключатель позволяет коммутировать цепь (переводя рычаг управления вверх – автомат подключается к цепи; переводя рычаг вниз – автомат отключает питающую линию от цепи нагрузки);

— имеет встроенный тепловой расцепитель, который защищает линию нагрузки от токов перегрузки, он инерционен и срабатывает через некоторое время;

— имеет встроенный электромагнитный расцепитель, защищающий линию нагрузки от больших токов короткого замыкания и срабатывает почти мгновенно;

— содержит дугогасящую камеру, которая защищает силовые контакты от разрушительного действия электромагнитной дуги.

Конструкцию, назначение и принцип действия мы разобрали.

В следующей статье мы рассмотрим основные характеристики автоматического выключателя, которые необходимо знать при его выборе.

Смотрите Конструкция и принцип работы автоматического выключателя в видеоформате:

Полезные статьи по теме:

Источник

Автоматические выключатели — конструкция и принцип работы

Здравствуйте, уважаемые читатели сайта elektrik-sam.info!

Эта статья продолжает серию публикаций по электрическим аппаратам защиты — автоматическим выключателям, УЗО, дифавтоматам, в которых мы подробно разберем назначение, конструкцию и принцип их работы, а также рассмотрим их основные характеристики и детально разберем расчет и выбор электрических аппаратов защиты. Завершит этот цикл статей пошаговой алгоритм, в котором кратко, схематично и в логической последовательности будет рассмотрен полный алгоритм расчета и выбора автоматических выключателей и УЗО.

Чтобы не пропустить выход новых материалов по этой теме подписывайтесь на новостную рассылку, форма подписки внизу этой статьи.

Ну а в этой статье мы разберемся, что же такое автоматический выключатель, для чего предназначен, как он устроен и рассмотрим, как он работает.

Автоматический выключатель (или обычно просто «автомат») — это контактный коммутационный аппарат, который предназначен для включения и отключения (т.е. для коммутации) электрической цепи, защиты кабелей, проводов и потребителей (электрических приборов) от токов перегрузки и от токов короткого замыкания.

Т.е. автоматический выключатель выполняет три основный функции:

1) коммутацию цепи (позволяет включать и отключать конкретный участок электрической цепи);

Читайте также:  Выключатель нагрузки 25а кэаз

2) обеспечивает защиту от токов перегрузки, отключая защищаемую цепь, когда в ней протекает ток, превышающий допустимый (например, при подключении в линию мощного прибора или приборов);

3) отключает от питающей сети защищаемую цепь, когда в ней возникают большие по значению токи короткого замыкания.

Таким образом, автоматы выполняют одновременно и функции защиты и функции управления.

По конструктивному исполнению выпускаются три основных типа автоматических выключателей:

воздушные автоматические выключатели (применяются в промышленности в цепях с большими токами в тысячи ампер);

автоматические выключатели в литом корпусе (рассчитаны на большой диапазон рабочих токов от 16 до 1000 Ампер);

модульные автоматические выключатели, наиболее нам известные, к которым мы привыкли. Они широко применяются в быту, в наших домах и квартирах.

Модульными они называются потому, что их ширина стандартизирована и в зависимости от количества полюсов, кратна 17.5 мм, более подробно этот вопрос будет рассмотрен в отдельной статье.

Мы с вами будем рассматривать именно модульные автоматические выключатели и устройства защитного отключения.

Устройство и принцип работы автоматического выключателя.

Рассматривая конструкцию УЗО, я говорил, что для исследования от заказчика достались также и автоматические выключатели, конструкцию которых мы сейчас рассмотрим.

Корпус автоматического выключателя изготавливается из диэлектрического материала. На передней панели нанесена торговая марка (брэнд) производителя, каталожный номер. Основные характеристики — номинал (в нашем случае номинальный ток 16 Ампер) и время токовая характеристика (у нашего образца С).

Также на передней поверхности указываются и другие параметры автоматического выключателя, о которых речь пойдет в отдельной статье.

На задней части имеется специальное крепление для монтажа на DIN-рейку и крепления на ней с помощью специальной защелки.

DIN-рейка — это металлическая рейка специальной формы, шириной 35 мм, предназначенная для крепления модульных устройств (автоматов, УЗО, различных реле, пускателей, клеммников и т.д.; выпускаются счетчики электроэнергии специально для установки на DIN-рейку). Для монтажа на рейку необходимо завести корпус автомата за верхнюю часть DIN-рейки и нажать на нижнюю часть автомата, чтобы фиксатор защелкнулся. Для снятия с DIN-рейки необходимо поддеть снизу фиксатор защелки и снять автомат.

Встречаются модульные устройства с тугими защелками, в этом случае при установке на DIN-рейку необходимо поддевать снизу защелку фиксатора, заводить автомат на рейку и потом отпускать защелку, либо защелкивать ее принудительно, надавливая на нее отверткой.

Корпус автоматического выключателя состоит из двух половинок, соединенных четырьмя заклепками. Чтобы разобрать корпус, необходимо высверлить заклепки и снять одну из половинок корпуса.

В результате получаем доступ к внутреннему механизму автоматического выключателя.

Итак, в конструкцию автоматического выключателя входят:

1 — верхняя винтовая клемма;

2 — нижняя винтовая клемма;

3 — неподвижный контакт;

4 — подвижный контакт;

5 — гибкий проводник;

6 — катушка электромагнитного расцепителя;

7 — сердечник электромагнитного расцепителя;

8 — механизм расцепителя;

9 — рукоятка управления;

10 — гибкий проводник;

11 — биметаллическая пластина теплового расцепителя;

12 — регулировочный винт теплового расцепителя;

13 — дугогасительная камера;

14 — отверстие для отвода газов;

15 — защелка фиксатора.

Поднимая рукоятку управления вверх, автоматический выключатель подключается к защищаемой цепи, опустив рукоятку вниз — отключатся от нее .

Тепловой расцепитель, представляет собой биметаллическую пластину, которая нагревается проходящим через нее током, и если ток превышает заданное значение, пластина изгибается и приводит в действие механизм расцепителя, отключая таким образом автоматический выключатель от защищаемой цепи.

Электромагнитный расцепитель — это соленоид, т.е. катушка с намотанной проволокой, а внутри сердечник с пружиной. При возникновении короткого замыкания ток в цепи очень быстро нарастает, в обмотке катушки электромагнитного расцепителя наводится магнитный поток, под воздействием наведенного магнитного потока перемещается сердечник, и, преодолевая усилие пружины, воздействует на механизм и отключает автомат.

Как работает автоматический выключатель?

В обычном (неаварийном) режиме работы автоматического выключателя, когда рычаг управления взведен, электрический ток подается к автомату через питающий провод, подключенный к верхней клемме, далее ток проходит на неподвижный контакт, через него на подключенный к нему подвижный контакт, далее через гибкий проводник подается на катушку соленоида, после катушки по гибкому проводнику на биметаллическую пластину теплового расцепителя, от него на нижнюю винтовую клемму и далее в цепь подключенной нагрузки.

На рисунке показан автомат во включенном состоянии: рычаг управления поднят вверх, подвижный и неподвижный соединены.

Перегрузка возникает, когда ток в цепи, контролируемой автоматическим выключателем, начинает превышать номинальный ток автомата. Биметаллическая пластина теплового расцепителя начинает нагреваться проходящим через нее повышенным электрическим током, изгибается, и, если ток в цепи не уменьшается, пластина воздействует на механизм расцепления, и автоматический выключатель отключается, размыкая защищаемую цепь.

Для нагрева и изгибания биметаллической пластины требуется некоторое время. Время срабатывания зависит от величины проходящего через пластину тока, чем больше ток, тем меньше время срабатывания и может быть от нескольких секунд до часа. Минимальный ток срабатывания теплового расцепителя составляет 1,13-1,45 от номинального тока автомата (т.е. тепловой расцепитель начинает срабатывать при превышении номинального тока на 13-45%).

Автоматический выключатель — это устройство аналоговое, этим объясняется такой разброс параметров. Существуют технические сложности при его точной настройке. Ток срабатывания теплового расцепителя устанавливается на заводе регулировочным винтом 12. После того, как остынет биметаллическая пластина, автоматический выключатель готов к дальнейшему использованию.

Температура биметаллической пластины зависит от температуры окружающей среды: если автоматический выключатель установлен в помещении с высокой температурой воздуха, то тепловой расцепитель может сработать при меньшем токе, соответственно при низких температурах ток срабатывания теплового расцепителя может быть выше допустимого. Подробно этот вопрос смотрите в статье Почему в жару срабатывает автоматический выключатель?

Тепловой расцепитель срабатывает не сразу, а через какое-то время, давая возможность току перегрузки вернуться к своему нормальному значению. Если же в течение этого времени ток не снижается, тепловой расцепитель срабатывает, защищая цепь потребителей от перегрева, оплавления изоляции и возможного возгорания проводки.

К перегрузке может приводить подключение в линию мощных приборов, превышающих расчетную мощность защищаемой цепи. Например, при включении в линию очень мощного нагревателя или электроплиты с духовкой (с мощностью, превышающей расчетную мощность линии), или одновременно несколько мощных потребителей (электроплита, кондиционер, стиральная машина, бойлер, электрочайник и т.п.), либо большого количества одновременно включенных приборов.

При коротком замыкании ток в цепи мгновенно возрастает, наводимое в катушке по закону электромагнитной индукции магнитное поле перемещает сердечник соленоида, который приводит в действие механизм расцепителя и размыкает силовые контакты автоматического выключателя (т.е. подвижный и неподвижный контакты). Линия размыкается, позволяя снять с аварийной цепи питание и защитить от возгорания и разрушения сам автомат, электропроводку и замкнувший электроприбор.

Электромагнитный расцепитель срабатывает практически мгновенно (около 0,02с), в отличие от теплового, но при значительно больших значениях тока (от 3-х и более значений номинального тока), поэтому электропроводка не успевает нагреться до температуры плавления изоляции.

При размыкании контактов цепи, когда в ней проходит электрический ток, возникает электрическая дуга, и чем больше ток в цепи — тем дуга мощнее. Электрическая дуга вызывает эррозию и разрушение контактов. Чтобы защитить контакты автоматического выключателя от ее разрушающего действия, дуга, возникающая в момент размыкания контактов, направляется в дугогасительную камеру (состоящую из параллельных пластин), где она дробится, затухает, охлаждается и исчезает. При горении дуги образуются газы, они отводятся наружу из корпуса автомата через специальное отверстие.

Автомат не рекомендуется использовать в качестве обычного выключателя цепи, особенно если его отключать при подключенной мощной нагрузке (т.е. при больших токах в цепи), поскольку это ускорит разрушение и эррозию контактов.

Итак, давайте резюмируем:

— автоматический выключатель позволяет коммутировать цепь (переводя рычаг управления вверх – автомат подключается к цепи; переводя рычаг вниз – автомат отключает питающую линию от цепи нагрузки);

— имеет встроенный тепловой расцепитель, который защищает линию нагрузки от токов перегрузки, он инерционен и срабатывает через некоторое время;

— имеет встроенный электромагнитный расцепитель, защищающий линию нагрузки от больших токов короткого замыкания и срабатывает почти мгновенно;

— содержит дугогасящую камеру, которая защищает силовые контакты от разрушительного действия электромагнитной дуги.

Конструкцию, назначение и принцип действия мы разобрали.

В следующей статье мы рассмотрим основные характеристики автоматического выключателя, которые необходимо знать при его выборе.

Смотрите Конструкция и принцип работы автоматического выключателя в видеоформате:

Полезные статьи по теме:

Источник