Меню

Время размыкания контактов выключателя

Размыкание электрических цепей

Под размыканием электрических цепей обычно понимается переходный процесс, при котором ток цепи изменяется от какого-то определенного его значения до нуля. В конечной стадии размыкания цепи между контактами отключающего устройства возникает промежуток, который кроме нулевой проводимости должен также получить достаточно высокую электрическую прочность, чтобы противостоять действию восстанавливающегося на нем напряжения цепи.

Физические особенности дугового разряда

Электрическая дуга может возникать при пробое промежутка между контактами (электродами) или при размыкании их. При размыкании контактов возникновению дуги между ними способствует образование на поверхности контактов раскаленных «точек», которые являются следствием значительных плотностей тока на небольших площадках «отрыва». Это вызывает образование дуги при разрыве контактов даже при довольно низком напряжении (порядка нескольких десятков вольт).

Обычно полагают, что минимальными условиями возникновения на контактах хотя бы неустойчивой дуги являются ток около 0,5 А и напряжение 15 — 20 В.

Размыкание контактов при меньших значениях напряжения и тока обычно сопровождается только небольшими искрами. При более высоких напряжениях в размыкаемом контуре, но при меньших токах возможно образование между размыкающимися контактами тлеющего разряда.

Для существования тлеющего разряда характерно значительное падение напряжения у катода (до 300 В). Если тлеющий разряд переходит в дуговой, например при увеличении тока в цепи, то падение напряжения у катода снижается до 10 — 20 В.

Характерными особенностями дугового разряда при высоком давлении газовой среды являются:

высокая плотность тока в дуговом столбе;

высокая температура газа внутри канала дуги, достигающая 5000 К, а в условиях интенсивной деиоиизации 12000 — 15 000 К и выше;

высокая плотность тока и малое падение напряжения у электродов.

Обычно стремятся к тому, чтобы процесс размыкания цепи совершался по возможности быстро. Для этой цели служат специальные коммутационные аппараты (выключатели, автоматы, контакторы, предохранители, выключатели нагрузки и др.).

Явления дуги наблюдаются не только в выключателях. Электрическая дуга может возникать при размыкании контактов высоковольтных разъединителей, при перекрытии изоляции линий, при перегорании плавких элементов предохранителей и т. д.

Сложность устройств этих аппаратов зависит от требований, предъявляемых к ним в отношении уровней рабочих напряжений, величин номинальных токов и токов короткого замыкания, уровней возникающих перенапряжений, атмосферных условий, степени быстродействия и пр.

Особенности размыкания электрических цепей разъединителями

С вопросом гашения длинных открытых дуг переменного тока наиболее часто приходится сталкиваться при эксплуатации простых разъединителей в качестве отключающих аппаратов. Такие разъединители не имеют специальных дугогасящих устройств и при размыкании контактов растягивают дугу просто в воздухе.

Для улучшения условий растяжения дуги разъединители снабжаются роговыми или дополнительными стержневыми электродами, по которым осуществляется подъем дуги вверх и растяжение ее на большую длину.

В Интернете загружено много видеороликов, на которых снят процесс возникновения электрической дуги при размыкании контактов разъединителей под нагрузкой (их легко найти по запросу «electric arc disconnector»).

Угасанию открытых дуг на разъединителях или между проводом и землей на линиях электропередачи в сильной степени способствует ветер. При наличии ветра дуга может оказаться более короткой и, следовательно, ликвидироваться быстрее, чем при отсутствии ветра. Однако такой фактор, как ветер, не приходится учитывать ввиду его непостоянства, а исходить из более тяжелых условий — полного отсутствия ветра.

С помощью разъединителей нельзя отключить большой ток, так как дуга при этом достигает значительной длины, образуя много пламени, сильно оплавляет контакты отключающего аппарата. Мощная открытая дуга легко повреждает изоляторы, с которыми она соприкасается, вызывает перекрытие между фазами, что ведет к коротким замыканиям в сети.

Обычные разъединители широко используются при отключении токов холостого хода небольших трансформаторов, емкостных зарядных токов линий, малых токов нагрузки и пр.

Способы размыкания электрических цепей

Принципиально возможны следующие способы размыкания электрических цепей постоянного и переменного тока.

1. Простое дуговое размыкание электрических цепей

К этой группе относятся такие способы размыкания электрических цепей постоянного и переменного тока, при которых не принимаются какие-либо специальные дополнительные меры для ограничения величины тока в цепи перед размыканием контактов или специальные меры для уменьшения энергии дуги в дуговом промежутке выключателя.

При таком способе размыкания условия разрыва цепи обеспечиваются самой дугогасительной камерой отключающего аппарата за счет создания необходимой электрической прочности промежутка при переходе тока через нуль (переменный ток) или достижения достаточного значения напряжения на дуге (постоянный ток).

При дуговом отключении контакты аппарата могут размыкаться при любой фазе тока, протекающего и цепи, поэтому контакты и элементы дугогасительной камеры должны быть рассчитаны на воздействие дуги относительно большой мощности и энергии.

Дугогасительные камеры электрических аппаратов

Дугогасительная камера автоматического выключателя

2. Ограниченно-дуговые размыкания электрических цепей

К такого рода способам отключения можно отнести такие, при которых до начала размыкания цепи в нее вводится относительно большое активное или реактивное сопротивление, благодаря чему ток в цепи снижается довольно значительно по сравнению с его значением, существовавшим до начала ограничения. Коммутационный аппарат размыкает остающийся в цепи ограниченный ток.

При этом на контактах возникает дуга ограниченной мощности и гашение дуги остающегося тока представляет собой более простую задачу, чем если бы ток не был ограничен.

Условно к этой же группе мы относим и такие способы отключения, при которых фаза размыкания тока строго фиксируется или время горения дуги на контактах ограничивается какими-либо специальными мерами, например вентильными приборами и пр.

3. Бездуговое размыкание электрических цепей

Процесс размыкания электрических цепей в данном случае характеризуется тем, что дуговой разряд на главных контактах возникает совсем или возникает в виде весьма кратковременной неустойчивой дуги за счет влияния индуктивности и взаимной индуктивности контуров. Такого типа размыкание цепей обычно достигается с помощью мощных вентилей (кремниевых диодов или тиристоров), применяемых в качестве шунтирующих элементов главных контактов выключателя.

Особенности гашения дуги при размыкании электрических цепей постоянного и переменного тока

Условия гашения дуги переменного тока при активной деионизации промежутка выключающего аппарата принципиально отключаются от условий угасания дуг постоянного тока и длинных открытых дуг переменного тока.

В дуге постоянного тока или в открытой длинной дуге переменного тока гашение в основном наступает потому, что при растяжении дуги источник электрической энергии не в состоянии покрыть падение напряжения в дуговом столбе, вследствие чего наступает неустойчивое состояние и дуга гаснет.

При образовании дуги в цепи переменного тока, когда дуговой столб подвергается активной деионизации или разбивается на ряд коротких дуг, может произойти гашение дуги и тогда, когда источник имеет еще большой запас напряжения для поддержания горения дуги, но которое оказывается недостаточным для обеспечения ее зажигания — при переходе тока через нуль.

В условиях активной деионизации во время перехода тока через нуль проводимость дугового столба уменьшается настолько сильно, что для возбуждения дуги в следующий полупериод к нему необходимо приложить хотя бы на короткое время значительное напряжение.

Если цепь не в состоянии обеспечить достаточное напряжение и скорость его подъема на промежутке после перехода тока через нуль, то ток обрывается, т. е. дуга не возникает в следующий полупериод и происходит окончательное отключение цепи.

Далее рассмотрим наиболее распространенное простое дуговое размыкание цепей.

Если напряжение и ток источника цепи превосходят определенные критические величины, то на контактах электрического отключающего аппарата при их размыкании возникает устойчивый дуговой разряд. При дальнейшем расхождении контактов или выдувании дуги в дугогасительной камере отключающего аппарата создаются условия неустойчивого горения дуги и она может быть погашена.

С ростом напряжения и тока цепи трудности создания условий неустойчивого горения дуги быстро возрастают. При напряжениях, достигающих тысяч и десятков тысяч вольт, и относительно больших токах (тысячи ампер) на контактах отключающего аппарата возникает очень мощная дуга, для гашения которой, а следовательно, и разрыва цепи должны приниматься меры, ведущие к использованию более или менее сложных дугогасительных устройств. Особенно значительные трудности возникают при отключении цепей постоянного тока.

Значительные трудности также приходится преодолевать при обрыве токов короткого замыкания в цепях переменного тока за короткие отрезки времени (сотые и тысячные доли секунды).

Быстрый обрыв цепи и ликвидация возникающих коротких замыкании в электрических установках диктуются рядом обстоятельств и в первую очередь необходимостью сохранения устойчивости работы электрических систем, защиты проводов и оборудования от термических воздействий токов короткого замыкания, защиты контактов и дугогасительных камер отключающих аппаратов от разрушительного действия мощной дуги.

Быстрая ликвидация дуги при размыкании цепи имеет также большое значение и в аппаратах цепей управления низкого напряжения, которые обычно предназначаются для очень больших чисел коммутационных процессов. Сокращение длительности горения дуги ведет к уменьшению обгорания контактов и других элементов аппарата, а следовательно, к увеличению срока службы.

Читайте также:  Розетки выключатели шнайдер глосса

Однако очень быстрая ликвидация дуги может привести к возникновению очень больших перенапряжений в цепи, так как дуга при размыкании цепи поглощает электромагнитную энергию, запасенную в контуре, которая могла бы перейти в электростатическую энергию перенапряжений. Таким образом, дуговой разряд в отдельных случаях может играть и положительную роль. С этим необходимо считаться.

Проблема создания надежных быстродействующих отключающих аппаратов высокого и низкого напряжения прежде всего упирается в правильное решение вопроса гашения дуги в них.

Отключение электрических цепей низкого и высокого напряжения с образованием мощной дуги на контактах электрических аппаратов представляет собой сложный процесс, изучению которого посвящено огромное количество теоретических и экспериментальных исследований и конструкторских разработок.

Существует большое число методов гашения электрических дуг переменного и постоянного тока, которые находят применение на практике в зависимости от уровней рабочих напряжений, величии токов, требуемых времен действия отключающих устройств, условий безопасности и пр.

В настоящее время простые дуговые отключения предоставляют собой пока еще основной путь, по которому продолжает идти техника коммутационных аппаратов переменного и постоянного тока высокого и низкого напряжения.

Источник

Номинальные циклы операций

Включение (В).

Под собственным временем включения tв. с выключателя понимается интервал времени от момента подачи команды на включение выключатели до момента соприкосновения (замыкания) контактов, замыкающих цепь тока в полюсе, включающемся последним. Под моментом подачи команды на включение понимают момент приложения к зажимам цепи управления напряжения, равного номинальному. Для воздушных выключателей и выключателей других видов с пневматическими (пневмогидравлическими) приводами время tв. с принимается равным измеренному при номинальном давлении воздуха.
Для выключателей, имеющих шунтирующие резисторы двухстороннего действия, различают время включения до момента соприкосновения (замыкания) дугогасительных контактов шунтирующей цепи и то же — основных контактов.

Отключение (О).

Под собственным временем отключения tо. с выключателя понимается интервал времени от момента подачи команды на отключение до момента прекращения соприкосновения (размыкания) дугогасительных контактов. Под моментом подачи команды на отключение понимают:
а) для выключателей, отключаемых от постороннего вспомогательного источника тока, — момент приложения напряжения (начало протекания тока), равного номинальному;
б) для выключателей, отключаемых от встроенных в привод максимальных расцепителей тока, — момент начала прохождения тока через обмотки этих расцепителей, равного току срабатывания при установке механизма выдержки времени на нуль;
в) для выключателей, отключаемых от встроенных в привод расцепителей минимального напряжения, — момент понижения напряжения до значения, равного напряжению срабатывания при установке механизма выдержки времени на нуль.
Для выключатели, снабженных шунтирующими резисторами, различают время отключения до момента размыкания основных дугогасительных контактов и то же — дугогасительных контактов шунтирующей цепи.

Время дуги выключателя

Время дуги выключателя tд — интервал времени между моментом появления дуги в полюсе, размыкающемся первым, и моментом погасания дуги во всех полюсах. Для выключателей, имеющих резисторы, шунтирующие разрывы дугогасительного устройства, различают время дуги выключателя до момента погасания:
а) основной дуги (между основными дугогасительными контактами), в которой ток не ограничен резистором;
б) дуги шунтирующей цепи (между дугогасительными контактами шунтирующей цепи), в которой ток ограничен резистором.

Полное время отключения tо — интервал времени от момента подачи команды на отключение до момента погасания дуги во всех полюсах.

Источник

время размыкания

2.16 время размыкания: По 2.5.39 МЭК 60947-1 со следующим дополнением:

— для выключателя с непосредственным управлением начальным моментом времени размыкания служит момент появления тока, достаточного, чтобы вызвать срабатывание выключателя;

— для выключателя, управляемого источником энергии любой формы, начальным моментом времени размыкания служит момент подачи или прекращения подачи энергии этого источника на отключающий расцепитель.

Примечание — Для выключателей «время размыкания контактов» часто называют длительностью отключения, хотя длительность отключения включает промежуток времени от момента размыкания контактов до момента, когда команда на размыкание контактов становится необратимой.

2.16 время размыкания (opening time):

Применяется 2.5.39 ГОСТ Р 50030.1 со следующими дополнениями:

— для выключателя с непосредственным управлением начальным моментом времени размыкания служит момент появления тока, достаточного, чтобы вызвать срабатывание выключателя;

— для выключателя, управляемого источником энергии любой формы, начальным моментом времени размыкания служит момент подачи или прекращения подачи энергии этого источника на отключающий расцепитель.

Примечание — Для выключателей «время размыкания контактов» часто называют длительностью отключения, хотя длительность отключения включает промежуток времени от момента размыкания контактов до момента, когда команда на размыкание контактов становится необратимой.

3.5.9 время размыкания: Время, замеренное от момента, когда в выключателе, находящемся в замкнутом положении, ток в главной цепи достигает уровня срабатывания максимального расцепителя тока, до момента разъединения дугогасительных контактов во всех полюсах.

Примечание — Время размыкания обычно называют временем расцепления, хотя, точнее, время расцепления относится к интервалу между начальным моментом размыкания и моментом, когда команда на размыкание становится необратимой.

3.5.10 Время горения дуги (МЭС 441-17-37)

3.4.10 время размыкания: Время, измеренное от момента, когда в АВДТ, находящемся в замкнутом состоянии, ток в главной цепи достигает уровня срабатывания максимального расцепителя тока, до момента прекращения дуги на контактах всех полюсов.

Примечание — Время размыкания обычно определяют как время срабатывания, хотя, точнее, время срабатывания относится ко времени между моментом, в который команда на размыкание становится необратимой, и начальным моментом времени размыкания.

3.4.11 Время горения дуги

3.4 время размыкания:

По 2.5.39 ч. 1 1) со следующими дополнениями:

1) ГОСТ 50030.1 здесь и далее.

— для КУУЗ, размыкаемых реле или расцепителем сверхтока, началом размыкания является момент, когда ток достигает значения, достаточного, чтобы вызвать срабатывание КУУЗ;

— для КУУЗ, управляемых любым вспомогательным источником, началом размыкания является момент начала или прекращения подачи питания от вспомогательного источника на размыкающий расцепитель.

Примечание — Для КУУЗ «время размыкания» обычно именуют «временем расцепления», хотя, строго говоря, время расцепления — это время между начальным моментом размыкания и моментом, когда команда на размыкание становится необратимой.

3.5.9 время размыкания (opening time): Время, измеренное от момента, когда в выключателе, находящемся в замкнутом положении, ток в главной цепи достигает уровня срабатывания максимального расцепителя тока, до момента разъединения дугогасительных контактов во всех полюсах.

Примечание — Время размыкания обычно называют временем расцепления, хотя, точнее, время расцепления относится к интервалу между начальным моментом размыкания и моментом, когда команда на размыкание становится необратимой.

3.4.10 время размыкания: Время, измеряемое от момента, когда ток в главной цепи АВДТ, находящегося в замкнутом состоянии, достигает уровня срабатывания максимального расцепителя тока до момента погасания дуги на контактах всех полюсов.

Примечание — Время размыкания обычно определяют как время срабатывания, хотя, точнее, время срабатывания относят ко времени между моментом, когда команда на размыкание становится необратимой и начальным моментом времени размыкания.

Смотри также родственные термины:

2.5.39 время размыкания (контактного коммутационного аппарата ): Интервал времени между установленным начальным моментом размыкания и моментом разъединения дугогасительных контактов во всех полюсах. МЭК 60050(441-17-36).

Примечание — Начальный момент размыкания (например подача сигнала к размыканию на расцепитель и т.п.), устанавливается в стандарте на соответствующий аппарат.

2.5.39 время размыкания (контактного коммутационного аппарата): Интервал времени от установленного начального момента размыкания до момента разъединения дугогасительных контактов во всех полюсах.

Примечание — Начальный момент размыкания, т.е. подача команды на размыкание (например, возбуждение расцепителя и т.п.) устанавливается в стандарте на аппарат конкретного вида.

120. Время размыкания замыкающего контакта электрического реле

D. Rückfallzeit eines Schliessers

E. Opening time of a make contact

F. Temps de rupture d’un contact de travail

Время от момента, когда входная воздействующая величина электрического реле, находящегося в начальном состоянии, снимается в заданных условиях, до момента, когда разомкнется в первый раз замыкающий контакт

7 . ВРЕМЕНА, ХАРАКТЕРИЗУЮЩИЕ ФУНКЦИОНИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ РЕЛЕ

118. Время размыкания размыкающего контакта электрического реле

D. Ansprechzeit eines Offners

E. Opening time of a break contact

F. Temps de rupture d’un contact de repos

Время от момента, когда входная воздействующая величина электрического реле, находящегося в начальном состоянии, принимает в заданных условиях определенное значение, до момента, когда разомкнется в первый раз размыкающий контакт

Источник

Большая Энциклопедия Нефти и Газа

Собственное время — отключение — выключатель

Собственное время отключения выключателя с приводом важно знать для правильного определения или по крайней мере правильной оценки величины отключаемого тока. Время включения — может оказаться также очень важным в определенных случаях. [1]

Собственное время отключения выключателей составляет 0 1 — 0 2 сек. [3]

Читайте также:  Пакетный выключатель однополюсный 220в 16а ip56

Собственное время отключения выключателя указывают заводы-изготовители. Его исчисляют от момента подачи команды на отключение до момента размыкания дугогасительных контактов. [5]

Собственным временем отключения выключателя с приводом называется промежуток времени от подачи импульса на отключение ( замыкание цепи отключающего электромагнита) до начала расхождения дугогасительных контактов. Собственным временем отключения выключателя без привода называется промежуток времени от момента освобождения подвижных частей выключателя до начала расхождения дугогасительных контактов. [6]

Собственным временем отключения выключателя называется промежуток времени от подачи импульса на отключение до начала расхождения контактов выключателя. [7]

Значение собственного времени отключения выключателя принимается для выбранного типа выключателя на основе вышеуказанных рекомендаций. [8]

Под собственным временем отключения выключателя понимается время с момента подачи импульса на отключающую катушку привода до начала расхождения дугогасящих контактов. [9]

Под собственным временем отключения выключателя понимается время от момечта подачи импульса на отключающую катушку до начала расхождения дугогасящих контактов. [10]

При расчете собственного времени отключения выключателя приходится определять момент появления дуга на расходящихся контактах. [11]

Второй период времени собственное время отключения выключателей , обозначенное t и 1, продолжается от момента достижения током величины уставки до появления напряжения на контактах выключателя. Для быстродействующего выключателя отрезок времени t мал и измеряется тысячными долями секунды, в то время как собственное время отключения небыстродействующего выключателя i составляет 0 1 — 0 2 сек. [12]

Основными характеристиками являются: собственное время отключения выключателя ( время от момента подачи напряжения на электромагнит отключения до начала размыкания контактов); собственное время включения ( время от момента подачи напряжения на электромагнит включения до начала замыкания контактов); скорость движения траверсы при отключении; скорость движения траверсы при включении. По этим основным характеристикам, сравнивая их с заводскими данными, судят о качестве монтажа или ремонта. [14]

Соответственно этому увеличивается и собственное время отключения выключателя . В выключателях на сверхвысокие напряжения длительность командного импульса составляет существенную часть их собственного времени отключения. Использование светового луча для передачи командных импульсов позволяет значительно уменьшить время отключения. В разрабатываемой в настоящее время пневмосветовой системе управления воздушным выключателем подвесного типа на напряжение 1150 кВ передача командных импульсов от передающего устройства, находящегося на потенциале земли, к приемному устройству, расположенному на высоком потенциале, осуществляется световым потоком инфракрасного диапазона, создаваемым светодиодами. Этот светоЕсй поток отбрасывается зеркалами на фокусирующие линзы, а от них на фотодиоды. Световые сигналы, принимаемые фотодиодами, преобразуются в электрические импульсы и вызывают срабатывание исполнительных механизмов. [15]

Источник



время размыкания

2.16 время размыкания: По 2.5.39 МЭК 60947-1 со следующим дополнением:

— для выключателя с непосредственным управлением начальным моментом времени размыкания служит момент появления тока, достаточного, чтобы вызвать срабатывание выключателя;

— для выключателя, управляемого источником энергии любой формы, начальным моментом времени размыкания служит момент подачи или прекращения подачи энергии этого источника на отключающий расцепитель.

Примечание — Для выключателей «время размыкания контактов» часто называют длительностью отключения, хотя длительность отключения включает промежуток времени от момента размыкания контактов до момента, когда команда на размыкание контактов становится необратимой.

2.16 время размыкания (opening time):

Применяется 2.5.39 ГОСТ Р 50030.1 со следующими дополнениями:

— для выключателя с непосредственным управлением начальным моментом времени размыкания служит момент появления тока, достаточного, чтобы вызвать срабатывание выключателя;

— для выключателя, управляемого источником энергии любой формы, начальным моментом времени размыкания служит момент подачи или прекращения подачи энергии этого источника на отключающий расцепитель.

Примечание — Для выключателей «время размыкания контактов» часто называют длительностью отключения, хотя длительность отключения включает промежуток времени от момента размыкания контактов до момента, когда команда на размыкание контактов становится необратимой.

3.5.9 время размыкания: Время, замеренное от момента, когда в выключателе, находящемся в замкнутом положении, ток в главной цепи достигает уровня срабатывания максимального расцепителя тока, до момента разъединения дугогасительных контактов во всех полюсах.

Примечание — Время размыкания обычно называют временем расцепления, хотя, точнее, время расцепления относится к интервалу между начальным моментом размыкания и моментом, когда команда на размыкание становится необратимой.

3.5.10 Время горения дуги (МЭС 441-17-37)

3.4.10 время размыкания: Время, измеренное от момента, когда в АВДТ, находящемся в замкнутом состоянии, ток в главной цепи достигает уровня срабатывания максимального расцепителя тока, до момента прекращения дуги на контактах всех полюсов.

Примечание — Время размыкания обычно определяют как время срабатывания, хотя, точнее, время срабатывания относится ко времени между моментом, в который команда на размыкание становится необратимой, и начальным моментом времени размыкания.

3.4.11 Время горения дуги

3.4 время размыкания:

По 2.5.39 ч. 1 1) со следующими дополнениями:

1) ГОСТ 50030.1 здесь и далее.

— для КУУЗ, размыкаемых реле или расцепителем сверхтока, началом размыкания является момент, когда ток достигает значения, достаточного, чтобы вызвать срабатывание КУУЗ;

— для КУУЗ, управляемых любым вспомогательным источником, началом размыкания является момент начала или прекращения подачи питания от вспомогательного источника на размыкающий расцепитель.

Примечание — Для КУУЗ «время размыкания» обычно именуют «временем расцепления», хотя, строго говоря, время расцепления — это время между начальным моментом размыкания и моментом, когда команда на размыкание становится необратимой.

3.5.9 время размыкания (opening time): Время, измеренное от момента, когда в выключателе, находящемся в замкнутом положении, ток в главной цепи достигает уровня срабатывания максимального расцепителя тока, до момента разъединения дугогасительных контактов во всех полюсах.

Примечание — Время размыкания обычно называют временем расцепления, хотя, точнее, время расцепления относится к интервалу между начальным моментом размыкания и моментом, когда команда на размыкание становится необратимой.

3.4.10 время размыкания: Время, измеряемое от момента, когда ток в главной цепи АВДТ, находящегося в замкнутом состоянии, достигает уровня срабатывания максимального расцепителя тока до момента погасания дуги на контактах всех полюсов.

Примечание — Время размыкания обычно определяют как время срабатывания, хотя, точнее, время срабатывания относят ко времени между моментом, когда команда на размыкание становится необратимой и начальным моментом времени размыкания.

Смотри также родственные термины:

2.5.39 время размыкания (контактного коммутационного аппарата ): Интервал времени между установленным начальным моментом размыкания и моментом разъединения дугогасительных контактов во всех полюсах. МЭК 60050(441-17-36).

Примечание — Начальный момент размыкания (например подача сигнала к размыканию на расцепитель и т.п.), устанавливается в стандарте на соответствующий аппарат.

2.5.39 время размыкания (контактного коммутационного аппарата): Интервал времени от установленного начального момента размыкания до момента разъединения дугогасительных контактов во всех полюсах.

Примечание — Начальный момент размыкания, т.е. подача команды на размыкание (например, возбуждение расцепителя и т.п.) устанавливается в стандарте на аппарат конкретного вида.

120. Время размыкания замыкающего контакта электрического реле

D. Rückfallzeit eines Schliessers

E. Opening time of a make contact

F. Temps de rupture d’un contact de travail

Время от момента, когда входная воздействующая величина электрического реле, находящегося в начальном состоянии, снимается в заданных условиях, до момента, когда разомкнется в первый раз замыкающий контакт

7 . ВРЕМЕНА, ХАРАКТЕРИЗУЮЩИЕ ФУНКЦИОНИРОВАНИЕ ЭЛЕКТРИЧЕСКИХ РЕЛЕ

118. Время размыкания размыкающего контакта электрического реле

D. Ansprechzeit eines Offners

E. Opening time of a break contact

F. Temps de rupture d’un contact de repos

Время от момента, когда входная воздействующая величина электрического реле, находящегося в начальном состоянии, принимает в заданных условиях определенное значение, до момента, когда разомкнется в первый раз размыкающий контакт

Источник

Размыкание электрических цепей

Под размыканием электрических цепей обычно понимается переходный процесс, при котором ток цепи изменяется от какого-то определенного его значения до нуля. В конечной стадии размыкания цепи между контактами отключающего устройства возникает промежуток, который кроме нулевой проводимости должен также получить достаточно высокую электрическую прочность, чтобы противостоять действию восстанавливающегося на нем напряжения цепи.

Физические особенности дугового разряда

Электрическая дуга может возникать при пробое промежутка между контактами (электродами) или при размыкании их. При размыкании контактов возникновению дуги между ними способствует образование на поверхности контактов раскаленных «точек», которые являются следствием значительных плотностей тока на небольших площадках «отрыва». Это вызывает образование дуги при разрыве контактов даже при довольно низком напряжении (порядка нескольких десятков вольт).

Обычно полагают, что минимальными условиями возникновения на контактах хотя бы неустойчивой дуги являются ток около 0,5 А и напряжение 15 — 20 В.

Размыкание контактов при меньших значениях напряжения и тока обычно сопровождается только небольшими искрами. При более высоких напряжениях в размыкаемом контуре, но при меньших токах возможно образование между размыкающимися контактами тлеющего разряда.

Для существования тлеющего разряда характерно значительное падение напряжения у катода (до 300 В). Если тлеющий разряд переходит в дуговой, например при увеличении тока в цепи, то падение напряжения у катода снижается до 10 — 20 В.

Читайте также:  Чери тигго чери выключатель стоп сигнала

Характерными особенностями дугового разряда при высоком давлении газовой среды являются:

высокая плотность тока в дуговом столбе;

высокая температура газа внутри канала дуги, достигающая 5000 К, а в условиях интенсивной деиоиизации 12000 — 15 000 К и выше;

высокая плотность тока и малое падение напряжения у электродов.

Обычно стремятся к тому, чтобы процесс размыкания цепи совершался по возможности быстро. Для этой цели служат специальные коммутационные аппараты (выключатели, автоматы, контакторы, предохранители, выключатели нагрузки и др.).

Явления дуги наблюдаются не только в выключателях. Электрическая дуга может возникать при размыкании контактов высоковольтных разъединителей, при перекрытии изоляции линий, при перегорании плавких элементов предохранителей и т. д.

Сложность устройств этих аппаратов зависит от требований, предъявляемых к ним в отношении уровней рабочих напряжений, величин номинальных токов и токов короткого замыкания, уровней возникающих перенапряжений, атмосферных условий, степени быстродействия и пр.

Особенности размыкания электрических цепей разъединителями

С вопросом гашения длинных открытых дуг переменного тока наиболее часто приходится сталкиваться при эксплуатации простых разъединителей в качестве отключающих аппаратов. Такие разъединители не имеют специальных дугогасящих устройств и при размыкании контактов растягивают дугу просто в воздухе.

Для улучшения условий растяжения дуги разъединители снабжаются роговыми или дополнительными стержневыми электродами, по которым осуществляется подъем дуги вверх и растяжение ее на большую длину.

В Интернете загружено много видеороликов, на которых снят процесс возникновения электрической дуги при размыкании контактов разъединителей под нагрузкой (их легко найти по запросу «electric arc disconnector»).

Угасанию открытых дуг на разъединителях или между проводом и землей на линиях электропередачи в сильной степени способствует ветер. При наличии ветра дуга может оказаться более короткой и, следовательно, ликвидироваться быстрее, чем при отсутствии ветра. Однако такой фактор, как ветер, не приходится учитывать ввиду его непостоянства, а исходить из более тяжелых условий — полного отсутствия ветра.

С помощью разъединителей нельзя отключить большой ток, так как дуга при этом достигает значительной длины, образуя много пламени, сильно оплавляет контакты отключающего аппарата. Мощная открытая дуга легко повреждает изоляторы, с которыми она соприкасается, вызывает перекрытие между фазами, что ведет к коротким замыканиям в сети.

Обычные разъединители широко используются при отключении токов холостого хода небольших трансформаторов, емкостных зарядных токов линий, малых токов нагрузки и пр.

Способы размыкания электрических цепей

Принципиально возможны следующие способы размыкания электрических цепей постоянного и переменного тока.

1. Простое дуговое размыкание электрических цепей

К этой группе относятся такие способы размыкания электрических цепей постоянного и переменного тока, при которых не принимаются какие-либо специальные дополнительные меры для ограничения величины тока в цепи перед размыканием контактов или специальные меры для уменьшения энергии дуги в дуговом промежутке выключателя.

При таком способе размыкания условия разрыва цепи обеспечиваются самой дугогасительной камерой отключающего аппарата за счет создания необходимой электрической прочности промежутка при переходе тока через нуль (переменный ток) или достижения достаточного значения напряжения на дуге (постоянный ток).

При дуговом отключении контакты аппарата могут размыкаться при любой фазе тока, протекающего и цепи, поэтому контакты и элементы дугогасительной камеры должны быть рассчитаны на воздействие дуги относительно большой мощности и энергии.

Дугогасительные камеры электрических аппаратов

Дугогасительная камера автоматического выключателя

2. Ограниченно-дуговые размыкания электрических цепей

К такого рода способам отключения можно отнести такие, при которых до начала размыкания цепи в нее вводится относительно большое активное или реактивное сопротивление, благодаря чему ток в цепи снижается довольно значительно по сравнению с его значением, существовавшим до начала ограничения. Коммутационный аппарат размыкает остающийся в цепи ограниченный ток.

При этом на контактах возникает дуга ограниченной мощности и гашение дуги остающегося тока представляет собой более простую задачу, чем если бы ток не был ограничен.

Условно к этой же группе мы относим и такие способы отключения, при которых фаза размыкания тока строго фиксируется или время горения дуги на контактах ограничивается какими-либо специальными мерами, например вентильными приборами и пр.

3. Бездуговое размыкание электрических цепей

Процесс размыкания электрических цепей в данном случае характеризуется тем, что дуговой разряд на главных контактах возникает совсем или возникает в виде весьма кратковременной неустойчивой дуги за счет влияния индуктивности и взаимной индуктивности контуров. Такого типа размыкание цепей обычно достигается с помощью мощных вентилей (кремниевых диодов или тиристоров), применяемых в качестве шунтирующих элементов главных контактов выключателя.

Особенности гашения дуги при размыкании электрических цепей постоянного и переменного тока

Условия гашения дуги переменного тока при активной деионизации промежутка выключающего аппарата принципиально отключаются от условий угасания дуг постоянного тока и длинных открытых дуг переменного тока.

В дуге постоянного тока или в открытой длинной дуге переменного тока гашение в основном наступает потому, что при растяжении дуги источник электрической энергии не в состоянии покрыть падение напряжения в дуговом столбе, вследствие чего наступает неустойчивое состояние и дуга гаснет.

При образовании дуги в цепи переменного тока, когда дуговой столб подвергается активной деионизации или разбивается на ряд коротких дуг, может произойти гашение дуги и тогда, когда источник имеет еще большой запас напряжения для поддержания горения дуги, но которое оказывается недостаточным для обеспечения ее зажигания — при переходе тока через нуль.

В условиях активной деионизации во время перехода тока через нуль проводимость дугового столба уменьшается настолько сильно, что для возбуждения дуги в следующий полупериод к нему необходимо приложить хотя бы на короткое время значительное напряжение.

Если цепь не в состоянии обеспечить достаточное напряжение и скорость его подъема на промежутке после перехода тока через нуль, то ток обрывается, т. е. дуга не возникает в следующий полупериод и происходит окончательное отключение цепи.

Далее рассмотрим наиболее распространенное простое дуговое размыкание цепей.

Если напряжение и ток источника цепи превосходят определенные критические величины, то на контактах электрического отключающего аппарата при их размыкании возникает устойчивый дуговой разряд. При дальнейшем расхождении контактов или выдувании дуги в дугогасительной камере отключающего аппарата создаются условия неустойчивого горения дуги и она может быть погашена.

С ростом напряжения и тока цепи трудности создания условий неустойчивого горения дуги быстро возрастают. При напряжениях, достигающих тысяч и десятков тысяч вольт, и относительно больших токах (тысячи ампер) на контактах отключающего аппарата возникает очень мощная дуга, для гашения которой, а следовательно, и разрыва цепи должны приниматься меры, ведущие к использованию более или менее сложных дугогасительных устройств. Особенно значительные трудности возникают при отключении цепей постоянного тока.

Значительные трудности также приходится преодолевать при обрыве токов короткого замыкания в цепях переменного тока за короткие отрезки времени (сотые и тысячные доли секунды).

Быстрый обрыв цепи и ликвидация возникающих коротких замыкании в электрических установках диктуются рядом обстоятельств и в первую очередь необходимостью сохранения устойчивости работы электрических систем, защиты проводов и оборудования от термических воздействий токов короткого замыкания, защиты контактов и дугогасительных камер отключающих аппаратов от разрушительного действия мощной дуги.

Быстрая ликвидация дуги при размыкании цепи имеет также большое значение и в аппаратах цепей управления низкого напряжения, которые обычно предназначаются для очень больших чисел коммутационных процессов. Сокращение длительности горения дуги ведет к уменьшению обгорания контактов и других элементов аппарата, а следовательно, к увеличению срока службы.

Однако очень быстрая ликвидация дуги может привести к возникновению очень больших перенапряжений в цепи, так как дуга при размыкании цепи поглощает электромагнитную энергию, запасенную в контуре, которая могла бы перейти в электростатическую энергию перенапряжений. Таким образом, дуговой разряд в отдельных случаях может играть и положительную роль. С этим необходимо считаться.

Проблема создания надежных быстродействующих отключающих аппаратов высокого и низкого напряжения прежде всего упирается в правильное решение вопроса гашения дуги в них.

Отключение электрических цепей низкого и высокого напряжения с образованием мощной дуги на контактах электрических аппаратов представляет собой сложный процесс, изучению которого посвящено огромное количество теоретических и экспериментальных исследований и конструкторских разработок.

Существует большое число методов гашения электрических дуг переменного и постоянного тока, которые находят применение на практике в зависимости от уровней рабочих напряжений, величии токов, требуемых времен действия отключающих устройств, условий безопасности и пр.

В настоящее время простые дуговые отключения предоставляют собой пока еще основной путь, по которому продолжает идти техника коммутационных аппаратов переменного и постоянного тока высокого и низкого напряжения.

Источник