Меню

Величина тока в замкнутой цепи прямо пропорциональна

Электрический ток. Закон Ома

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Сила тока — количественная характеристика электрического тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда \(q\) , прошедшего через поперечное сечение проводника за время \(t\) , к этому времени. \[I=\dfrac\]

Единицы измерения: \(\displaystyle [\text<А>]\) (Ампер).

Электродвижущая сила (ЭДС)

Сторонняя сила \(\vec_\text<ст>\) не имеет отношения к стационарному электрическому полю.

Данная величина называется электродвижущей силой (ЭДС) источника тока.

Единицы измерения: \(\displaystyle [\text<В>]\) (Вольт).

Электрическое напряжение между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из точки A в точку B.

Единицы измерения: \(\displaystyle [\text<В>]\) (Вольт).

Закон Ома для участка цепи

Омическое сопротивление \(R\) — сопротивление цепи постоянному току, вызывающее безвозвратные потери энергии постоянного тока.

Единицы измерения: \(\displaystyle [\text<Ом>]\) (Ом).

Сопротивление проводника прямо пропорционально его длине \(l\) и обратно пропорционально площади поперечного сечения \(S\) :

Коэффициент пропорциональности \(\rho\) — удельное сопротивление данного вещества.

Единицы измерения: \(\displaystyle [\text<Ом>\cdot\text<м>]\) (Ом на метр).

Зависимость удельного сопротивления от температуры

Множитель \(\alpha\) называется температурным коэффициентом сопротивления. Его значения для различных металлов и сплавов можно найти в таблицах.

\(\rho_0\) — удельное сопротивление проводника при \(0^oC\) .

Последовательное и параллельное соединение проводников

Последовательное соединение проводников

Параллельное соединение проводников

Закон Ома для полной цепи

Сила тока в полной цепи прямо пропорциональна ЭДС и обратно пропорциональна полному сопротивлению цепи, где под полным сопротивлением понимается сумма внешних и внутренних сопротивлений.

Единицы измерения: \(\displaystyle [\text<Дж>]\) (Джоуль).

Мощность тока — отношение работы тока ко времени, за которое эта работа совершена.

Единицы измерения: \(\displaystyle [\text<Вт>]\) (Ватт).

Пусть на рассматриваемом участке цепи не совершается механическая работа и не протекают химические реакции. Работа поля \(A\) целиком превращается в тепло \(Q=A\) .

Первое правило Кирхгофа

Алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи, равна нулю.

Также можно легко запомнить первый закон Кирхгофа следующим образом: сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Здесь ток \(I_1\) — ток, втекающий в узел, а токи \(I_2\) и \(I_3\) — токи, вытекающие из узла. Тогда можно записать:

\(I_1 = I_2 + I_3,\ (1)\)

Перенесем токи \(I_2\) и \(I_3\) в левую часть выражения (1), тем самым получим:

\(I_1 — I_2 — I_3 = 0,\ (2)\)

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «—».

Второе правило Кирхгофа

Алгебраическая сумма напряжений на резистивных элементах замкнутого контура равна алгебраической сумме ЭДС, входящих в этот контур.

Термин «алгебраическая сумма» означает, что как величина ЭДС, так и величина падения напряжения на элементах может быть как со знаком «+», так и со знаком «—». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта: либо по часовой стрелке, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура, записываются со знаком «+», в противном случае ЭДС записываются со знаком «—».

Читайте также:  Калькулятор силы тока в проводнике

— напряжения, падающие на элементах цепи, записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «—».

Например, рассмотрим цепь на рисунке и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке и выбрав направление токов через резисторы, как показано на рисунке.

\(E_1- E_2 = -UR_1 — UR_2\) или \(E_1 = E_2 — UR_1 — UR_2\)

Источник

Закон Ома для полной (замкнутой) цепи

Закон Ома для полной цепи определяет значение тока в реальной цепи, который зависит не только от сопротивления нагрузки, но и от сопротивления самого источника тока. Другое название этого закона — закон Ома для замкнутой цепи. Рассмотрим смысл закона Ома для полной цепи более подробно.

Потребители электрического тока (например, электрические лампы) вместе с источником тока образуют замкнутую электрическую цепь. На рисунке 1 показана замкнутая электрическая цепь, состоящая из автомобильного аккумулятора и лампочки.

Закон Ома для полной цепи

Рисунок 1. Замкнутая цепь, поясняющея закон Ома для полной цепи.

Ток, проходящий через лампочку, проходит также и через источник тока. Следовательно, проходя по цепи, ток кроме сопротивления проводника встретит еще и то сопротивление, которое ему будет оказывать сам источник тока (сопротивле­ние электролита между пластинами и сопротивление пограничных слоев электролита и пластин). Следовательно, общее сопротивление замкнутой цепи будет складываться из сопротивления лампочки и сопротивления источника тока.

Сопротивление нагрузки, присоединенной к источнику тока, принято называть внешним сопротивлением, а со­противление самого источника тока — внутренним со­противлением. Внутреннее сопротивление обозначается буквой r.

Если по цепи, изображенной на рисунке 1, протекает ток I, то для поддержания этого тока во внешней цепи согласно за­кону Ома между ее концами должна существовать раз­ность потенциалов, равная I*R. Но этот же ток I протекает и по внутренней цепи. Следовательно, для поддержания тока во внутренней цепи, также необходимо существование разности потенциалов между концами сопротивления r. Эта разность потенциалов па закону Ома должна быть равна I*r.

Поэтому для поддержания тока в цепи электродвижущая сила (ЭДС) аккумулятора должна иметь величину:

E=I*r+I*R

Эта формула показывает, что электродвижущая сила в цепи равна сумме внешнего и внутреннего падений напряжения. Вынося I за скобки, получим:

E=I(r+R)

I=E/(r+R)

Две последние формулы выражают закона Ома для полной цепи.

Закон Ома для полной замкнутой цепи формулируется так: сила тока в замкнутой цепи прямо пропорциональ­на ЭДС в цепи и обратно пропорциональ­на общему сопротивлению цепи.

Под общим со­противлением подразумевается сумма внешнего и внутреннего сопротивлений.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Законы Ома и их качественное объяснение

  • Закон Ома: кто придумал, определение
    • Формулировки и основные формулы
  • Объяснение закона Ома в классической теории
  • Закон Ома для полной (замкнутой) цепи
  • Использование закона Ома при параллельном и последовательном соединении
  • Закон Ома для переменного и постоянного тока
  • Закон Ома для однородного и неоднородного участка цепи
  • Закон Ома: кто придумал, определение
    • Формулировки и основные формулы
  • Объяснение закона Ома в классической теории
  • Закон Ома для полной (замкнутой) цепи
  • Использование закона Ома при параллельном и последовательном соединении
  • Закон Ома для переменного и постоянного тока
  • Закон Ома для однородного и неоднородного участка цепи

Есть такие формулы и законы, которые люди узнают еще в школе, а помнят всю жизнь. Обычно это несложные уравнения, состоящие из двух-трех физических величин и объясняющие какие-то фундаментальные вещи в науке, основу основ. Закон Ома как раз такая штука.

Читайте также:  Как собрать блуждающие токи

Закон Ома: кто придумал, определение

Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.

Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году. Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг., когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.

Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.

Георг Симон Ом

Формулировки и основные формулы

Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.

Пояснения к закону:

  1. Чем выше напряжение в проводнике, тем выше будет и сила тока в этом проводнике.
  2. Чем выше сопротивление проводника, тем меньше будет сила тока в нем.

Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:

  • I — сила электротока;
  • U — напряжение;
  • R — сопротивление.

Объяснение закона Ома в классической теории

Формула закона, известная всем со школьных лет, выглядит так:

Из нее легко выводятся формулы для определения \(U\) :

и для определения \(R\) :

Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.

Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.

Закон Ома

Закон Ома для полной (замкнутой) цепи

Замкнутой или полной называется такая электрическая цепь, по которой проходит электроток.

Описание формулы этого закона для полной цепи выглядит так:

где \(\epsilon\) — это электродвижущая сила или напряжение источника питания, которое не зависит от внешней цепи;

\(R\) — сопротивление внешней цепи;

\(r\) — внутреннее сопротивление источника.

Закон Ома для полной цепи

Использование закона Ома при параллельном и последовательном соединении

При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.

При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

  • Сила тока по формуле:

Где \(I\) — общая сила тока в электроцепи, \(I_1\) — сила тока первого участка, \(I_2\) — сила тока второго участка, \(I_3\) — сила тока третьего участка.

  • Напряжение по формуле:

Где \(U\) — общее напряжение, \(U_1\) — напряжение первого участка, \(U_2\) — напряжение второго участка, \(U_3\) — напряжение третьего участка.

  • Сопротивление согласно формуле:

Где \(R\) — общее сопротивление в цепи, \(R_1\) — сопротивление первого участка, \(R_2\) — сопротивление второго участка, \(R_3\) — сопротивление третьего участка.

Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.

При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

Где \(I\) — общая сила тока в электроцепи, \(I_1, I_2, I_3\) — сила тока первого, второго и третьего участков соответственно.

Где \(U\) — общее напряжение, \(U_1, U_2, U_3\) — напряжение первого, второго и третьего участков соответственно.

Читайте также:  Прибор для проверки тока в стене

Где \(R\) — общее сопротивление в цепи, \(R_1, R_2, R_3\) — сопротивление первого, второго и третьего участков соответственно.

Закон Ома для переменного и постоянного тока

Для цепи постоянного тока правильными будут уже озвученные нами взаимосвязи основных параметров электроцепи:

Закон Ома для постоянного тока

При подключении к электроцепи источника переменного тока, сила электротока в цепи будет определяться по формуле:

где \(Z\) — полное сопротивление или импеданс, который состоит из активной \((R)\) и реактивных составляющих ( \(X_C\) — сопротивление емкости и \(X_L\) — сопротивление индуктивности).

Реактивное сопротивление цепи зависит:

  • от значений реактивных элементов,
  • от частоты электротока;
  • от формы тока в цепи.

Закон Ома переменный ток

Закон Ома для однородного и неоднородного участка цепи

Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:

В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.

Поэтому \(R\) зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:

где \(p\) — удельное сопротивление, \( l\) — это длина проводника, а \(S\) — площадь его сечения.

Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.

Закон Ома неоднородный участок

Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому. Если столкнулись с трудностями в учебе и сложными для понимания темами, обращайтесь за помощью к образовательному ресурсу Феникс.Хелп. Квалифицированные эксперты помогут сдать в срок самую сложную работу.

Источник



Закон Ома для участка цепи и полной цепи: формулы и определения

Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.

Закон Ома для участка цепи:

Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

  1. I — сила тока (в системе СИ измеряется — Ампер)
    • Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
    • Формула: I=\frac
    • U — напряжение (в системе СИ измеряется — Вольт)
      • Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.
      • Формула: U=IR
    • R— электрическое сопротивление (в системе СИ измеряется — Ом).
      • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
      • Формула R=\frac

Определение единицы сопротивления — Ом

1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1 (Вольт) протекает ток 1 (Ампер).

Закон Ома для полной цепи

Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

Формула I=\frac <\varepsilon>

  • \varepsilon — ЭДС источника напряжения, В;
  • I — сила тока в цепи, А;
  • R — сопротивление всех внешних элементов цепи, Ом;
  • r — внутреннее сопротивление источника напряжения, Ом.

Как запомнить формулы закона Ома

Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

.Треугольник Ома

Закон Ома

  • U — электрическое напряжение;
  • I — сила тока;
  • P — электрическая мощность;
  • R — электрическое сопротивление

Смотри также:

Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.

Источник