Меню

В энергию электрического тока могут преобразовываться

Какие существуют виды источников электрического тока?

Источник электрического тока – это устройство, с помощью которого создаётся электрический ток в замкнутой электрической цепи. В настоящее время изобретено большое количество видов таких источников. Каждый вид используется для определённых целей.

Какие существуют виды источников электрического тока?

Виды источников электрического тока

Существуют следующие виды источников электрического тока:

  • механические;
  • тепловые;
  • световые;
  • химические.

Механические источники

В этих источниках происходит преобразование механической энергии в электрическую. Преобразование осуществляется в специальных устройствах – генераторах. Основными генераторами являются турбогенераторы, где электрическая машина приводится в действие газовым или паровым потоком, и гидрогенераторы, преобразующие энергию падающей воды в электричество. Большая часть электроэнергии на Земле производится именно механическими преобразователями.

Какие существуют виды источников электрического тока?

Тепловые источники

Здесь преобразуется в электричество тепловая энергия. Возникновение электрического тока обусловлено разностью температур двух пар контактирующих металлов или полупроводников — термопар. В этом случае заряженные частицы переносятся от нагретого участка к холодному. Величина тока зависит напрямую от разности температур: чем больше эта разность, тем больше электрический ток. Термопары на основе полупроводников дают термоэдс в 1000 раз больше, чем биметаллические, поэтому из них можно изготавливать источники тока. Металлические термопары используют лишь для измерения температуры.

В настоящее время разработаны новые элементы на основе преобразования тепла, выделяющегося при естественном распаде радиоактивных изотопов. Такие элементы получили название радиоизотопный термоэлектрический генератор. В космических аппаратах хорошо себя зарекомендовал генератор, где применяется изотоп плутоний-238. Он даёт мощность 470 Вт при напряжении 30 В. Так как период полураспада этого изотопа 87,7 года, то срок службы генератора очень большой. Преобразователем тепла в электричество служит биметаллическая термопара.

Световые источники

С развитием физики полупроводников в конце ХХ века появились новые источники тока – солнечные батареи, в которых энергия света преобразуется в электрическую энергию. В них используется свойство полупроводников выдавать напряжение при воздействии на них светового потока. Особенно сильно этот эффект наблюдается у кремниевых полупроводников. Но всё-таки КПД таких элементов не превышает 15%. Солнечные батареи стали незаменимы в космической отрасли, начали применяться и в быту. Цена таких источников питания постоянно снижается, но остаётся достаточно высокой: около 100 рублей за 1 ватт мощности.

Какие существуют виды источников электрического тока?

Химические источники

Все химические источники можно разбить на 3 группы:

  1. Гальванические
  2. Аккумуляторы
  3. Тепловые

Гальванические элементы работают на основе взаимодействия двух разных металлов, помещённых в электролит. В качестве пар металлов и электролита могут быть разные химические элементы и их соединения. От этого зависит вид и характеристики элемента.

ВАЖНО! Гальванические элементы используются только разово, т.е. после разряда их невозможно восстановить.

Существует 3 вида гальванических источников (или батареек):

  1. Солевые;
  2. Щелочные;
  3. Литиевые.

Солевые, или иначе «сухие», батарейки используют пастообразный электролит из соли какого-либо металла, помещённый в цинковый стаканчик. Катодом служит графито-марганцевый стержень, расположенный в центре стаканчика. Дешёвые материалы и лёгкость изготовления таких батареек сделали их самыми дешёвыми из всех. Но по характеристикам они значительно уступают щелочным и литиевым.

Какие существуют виды источников электрического тока?

В щелочных батарейках в качестве электролита используется пастообразный раствор щёлочи — гидрооксида калия. Цинковый анод заменён на порошкообразный цинк, что позволило увеличить отдаваемый элементом ток и время работы. Эти элементы служат в 1,5 раза дольше солевых.

В литиевом элементе анод сделан из лития — щелочного металла, что значительно увеличило продолжительность работы. Но одновременно увеличилась цена из-за относительной дороговизны лития. Кроме того, литиевая батарейка может иметь различное напряжение в зависимости от материала катода. Выпускают батарейки с напряжением от 1,5 В до 3,7 В.

Аккумуляторы — источники электрического тока, которые можно подвергать многим циклам заряда-разряда. Основными видами аккумуляторов являются:

  1. Свинцово-кислотные;
  2. Литий-ионные;
  3. Никель-кадмиевые.

Свинцово-кислотные аккумуляторы состоят из свинцовых пластин, погружённых в раствор серной кислоты. При замыкании внешней электрической цепи происходит химическая реакция, в результате которой свинец преобразуется в сульфат свинца на катоде и аноде, а также образуется вода. В процессе зарядки сульфат свинца на аноде восстанавливается до свинца, а на катоде до диоксида свинца.

Какие существуют виды источников электрического тока?

Литий-ионный аккумулятор получил своё название из-за того, что в качестве носителя электричества в электролите служат ионы лития. Ионы возникают на катоде, который изготовлен из соли лития на подложке из алюминиевой фольги. Анод изготавливается из различных материалов: графита, оксидов кобальта и других соединений на подложке из медной фольги.

Напряжение в зависимости от применяемых компонентов может быть от 3 В до 4,2 В. Благодаря низкому саморазряду и большому количеству циклов заряда-разряда литий-ионные аккумуляторы приобрели большую популярность в бытовой технике.

ВАЖНО! Литий-ионные аккумуляторы очень чувствительны к перезарядке. Поэтому для их зарядки нужно использовать зарядные устройства, предназначенные только для них, которые имеют встроенные специальные схемы, предотвращающие перезаряд. Иначе может произойти разрушение аккумулятора и его возгорание.

Какие существуют виды источников электрического тока?

В никель-кадмиевых аккумуляторах катод сделан из соли никеля на стальной сетке, анод из соли кадмия на стальной сетке, а электролит — смесь гидроксида лития и гидроксида калия. Номинальное напряжение такого аккумулятора — 1,37 В. Он выдерживает от 100 до 900 циклов зарядки-разрядки.

Тепловые химические элементы служат как источники резервного питания. Они дают отличные характеристики по удельной плотности тока, но имеют короткий срок службы (до 1 часа). Применяются в основном в ракетной технике, где нужны надёжность и кратковременная работа.

Источник

Преобразование энергии из одного вида в другой

Энергия играет важную роль не только для жизни на Земле, но и в любом изменении во Вселенной. Преобразование энергии происходит постоянно изменяя свою форму.

Формы её различны и могут быть:

  • химическая
  • электромагнитная
  • световая
  • ядерная
  • гравитационная
  • механическая
  • внутренняя или связи частиц.

преобразование энергии

Химическая

Например, при горении компонентов бензиновой смеси в автомобиле незначительная часть физической величины покоя превращается в тепло, то есть в движение частиц. С помощью поршней тепло превращается в кинетическую форму движения автомобиля.

Подобным образом горение (окисление) угля, бензина, дерева и других видов топлива представляет собой главный способ преобразования энергии из вещества в тепло и свет. Однако, это весьма неэффективный способ, потому что при этом освобождается менее одной миллиардной доли физической величины мощности покоя вещества.

Например, из одного килограмма угля освобождается около 5 000 ккал тепла, что составляет приблизительно 5 кВт/ч энергии.

Мы знаем, что один кг материи (включая и уголь) содержит энергию 25 миллиардов кВт/ч.

Таким образом, при горении используется меньше чем одна миллиардная доля, а всё остальное остается в пепле и дыме. Итак, мы видим, что горение, которое является в настоящее время главным источником энергии для человечества, – невероятно неэффективный способ получения ее из вещества.

Основной химической реакцией во всех живых организмах является окисление. Организм человека в процессе дыхания получает из воздуха кислород, в процессе питания получает углерод и водород, связанные в органических молекулах (в сахаре, белках и т.д.). При окислении углерода и водорода происходит преобразование энергии необходимое для всех жизненно важных процессов в организме.

преобразование из одной формы в другую

Каждая химическая реакция означает перегруппировку атомов в молекулах. Она осуществляется при участии электромагнитного взаимодействия между атомами.

Читайте также:  Устройство токоприемника переменного тока

Электромагнитная

Имеется две составляющие электрическая и магнитная которые взаимодействуют и порождают друг друга. В генераторе переменного тока или динамо-машине движение превращается в электрическое движущееся поле.

Электрическая составляющая с помощью различных приборов может преобразовывать энергию в тепловую, световую, механическую, электромагнитной волны распространяющийся по пространству и т.д.

Световая

В лампах рефлекторов электричество трансформируется в движение фотонов, в свет, а тот, в свою очередь, поглощается поверхностью дороги и превращается в тепло, то есть в кинетическую форму молекул.

Вселенная состоит из частиц и фотонов представляющих собой кванты световой волны или электромагнитного излучения. Это основные элементарные частицы . Между ними беспрестанно происходит обмен энергией. Например, вещество постоянно излучает фотоны и одновременно поглощает их. Другие процессы где происходит преобразование энергии между этими составными Вселенной являются аннигиляция и материализация.

Это важное свойство называется законом сохранения энергии.

Ядерное взаимодействие

Ядерное взаимодействие гораздо сильнее электромагнитного. Оно способно освобождать из материи энергию в несколько миллионов раз большую, чем электромагнитное взаимодействие. В атомной электростанции с помощью ядерных сил получают примерно тысячную долю энергии покоя урана.

Звезды способны сделать это еще лучше человека. При превращении водорода в железо, которое происходит в недрах тяжелых звезд, освобождается почти один процент от энергетической возможности водорода.

Солнце освобождает энергию подобным образом, что и водородная бомба за счет синтеза легких элементов в тяжелые. Различие состоит в том, что Солнце это делает гораздо более совершенно, чисто, исключительно ради сохранения жизни, а не для ее уничтожения. Поэтому светимость Солнца и обеспечивает жизнь на Земле.

Электромагнитные силы (соединение электрона с ядром или соединение молекул в кристаллы) всегда очень неэффективны.

Гравитационная

И гравитационная сила способна эффективно преобразовывать энергию, но лишь в космических телах, имеющих гигантскую массу, например, в массивных звездах, компактных ядрах галактик и пр. Там гравитация способна выжать из материи почти половину из возможного.

Земля — сравнительно малое тело, поэтому на ней невозможно получить большую величину с помощью гравитации.

Механическая

Самая объяснимая, состоящая из кинетической и потенциальной мера способности совершать работу.

Само механическое движение того или иного объекта может способствовать преобразованию энергии из одного вида в другой. В природе явление этого преобразования встречается везде.

Источник

Виды источников тока

Источники тока используют для длительного поддержания электрического поля и получения электрического тока. Все они могут иметь различные принципы работы, внешний вид, конструкцию и размеры.

Источники тока – это устройства:
— способные создавать и поддерживать электрический ток;
— в них сторонние силы совершают работу по перемещению зарядов против электрических сил;
— а механическая, внутренняя, химическая или иная энергия превращается в электрическую.

Какие виды источников тока существуют

Энергия не может возникать из ничего. Об этом говорит закон сохранения энергии. Во всех без исключения источниках, электроэнергия создается за счет других ее видов.

В зависимости от того, какая именно энергия превращается в электрическую, выделяют такие виды (рис. 1) источников:

  1. механические – генераторы,
  2. тепловые – термопары, термогенераторы,
  3. световые (фотоэлектрические) – солнечные батареи и фотоэлементы,
  4. химические – гальванические элементы и аккумуляторы.

Рассмотрим подробнее эти виды.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Фотоэлектрические источники

Атомы некоторых веществ под действием видимого света способны терять электроны. Например, селен, кремний, оксиды цинка, меди, висмута. На основе этих и, некоторых других веществ создают источники, генерирующие электрический ток под действием (рис. 6) света.

Эти источники используют фотоэлектрический эффект (сокращенно — фотоэффект) (ссылка). В них энергия света преобразуется в электрическую.

Существует два вида фотоэффекта – внутренний, который используется в полупроводниках (ссылка) и внешний, используемый в вакуумных фотоэлементах на основе различных металлов.

Вакуумные фотоэлементы

В вакуумном фотоэлементе свет попадает на пластинку металла и выбивает электроны с ее поверхности. Такую пластинку называют катодом.

Выбитые электроны улавливаются другим электродом. Его называют анодом и обычно выполняют в виде металлической сетки.

Оба электрода находятся в стеклянном баллоне из которого удалили воздух. Дело в том, что молекулы воздуха могли бы помешать движению электронов, вылетевших из пластинки. Чтобы этого не происходило, воздух из баллона откачивают (рис. 7).

Таким образом, под воздействием света между катодом и анодом в вакууме возникает поток заряженных частиц. Они движутся направлено от катода к аноду. Значит, в фотоэлементе под действием света возникает электрический ток. Так световая энергия переходит в электрическую.

Солнечные батареи

Еще одним источником тока, в котором ток возникает за счет световой энергии, являются, так называемые, солнечные батареи. Их изготавливают из полупроводниковых пластин (рис. 8).

Читайте также:  Пропускание тока через аккумуляторную батарею ведет

Падающий свет из полупроводника электроны не выбивает. А вызывает переход электронов в такое состояние, в котором у них появляется дополнительная энергия и они могут свободно передвигаться по полупроводнику, создавая электрический ток.

Химические источники

Если опустить два кусочка различных металлов (например, железа и меди) в емкость с проводящей жидкостью, можно получить химический источник тока.

В качестве проводящей жидкости можно использовать, например, лимонный сок. Воткнув в лимон два гвоздика из различных металлов (рис. 9) и подключив к ним гальванометр, можно обнаружить, что через гальванометр потечет электрический ток.

Такую конструкцию можно считать простейшим химическим источником тока. Гвоздики в нем — это электроды, а лимонная кислота – электролит.

Примечания:

  1. Проводящие жидкости называют электролитами.
  2. Существует, так называемый ряд электрохимических напряженый металлов. Наибольшее напряжение дают источники, построенные с применением металлов, расположенных в различных концах данного ряда.

Самым первым химических источником тока был Вольтов столб.

Алессандро Вольта и его первый гальванический элемент

Дело в том, что до исследований, проведенных А. Вольта, способ получить электрический ток был известен. Однако, эксперименты с электричеством, проводимые в лабораториях другими учеными, создавали ток всего на доли секунды. Источников, способных создавать ток, длившийся хотя бы единицы секунд, не существовало.

В 1800 году Алессандро Вольта изобрел первый прибор, создававший электрический ток продолжительное время. Этот прибор в честь создателя называют Вольтовым столбом.

Ученый определил, что для получения гальванического (электрического) эффекта нужны два разных метала и проводящая жидкость.

Он длительное время потратил на эксперименты, использовал различные металлы и исследовал их свойства.

В процессе работы Вольта сделал вертикальный столбик, укладывая поочередно медные монеты и цинковые пластинки. Между металлами он укладывал кожаные кружочки, вымоченные в рассоле (рис. 10).

Так он создал первую в мире электрическую батарею. Принцип ее работы — превращение химической энергии в электрическую.

Соединяя проволокой два конца собранного столбика, он наблюдал ее нагревание и так определял действие электрического тока.

А чтобы сравнить, больше, или меньше электричества вырабатывал тот или иной столбик, Алессандро пользовался своим языком. Попросту, касался языком выводов созданного им гальванического элемента.

Такой столбик, при высоте, равной половине метра, вырабатывал напряжение, которое было довольно чувствительным.

В марте 1800 года Вольта направил письмо в Лондонское Королевское общество, в котором подробно описал результаты своей работы. А уже в июне оно было признано сенсационным среди ученых того времени.

Наполеон пригласил А. Вольта в Париж и лично присутствовал во время доклада и опыта, демонстрируемого им, а после наградил изобретателя.

Это изобретение сделало автора знаменитым. А благодаря ему в скором времени были совершены другие открытия в области физики.

Какие открытия были совершены благодаря столбу Вольта

В том же году с помощью Вольтова столба вода была разложена на водород и кислород. Это сделали Карлайл и Николсон.

А спустя три года, в 1803 году, Василий Петров создал самый большой в мире столб. Он выдавал напряжение 1700 вольт и содержал более 4000 медных и цинковых кругов. Этот столб помог получить электрическую дугу, которая применяется в электросварке металлов.

После работ Петрова в России стали применять электрические запалы для взрывчатых веществ.

А спустя еще четыре года, в 1807 году, ученым по фамилии Дэви был открыт металлический калий.

Благодаря способности Вольтова столба создавать электрический ток продолжительное время – в течение нескольких часов, началось широкое применение электричества.

По истечении этого времени, на металлах появлялся окисел, препятствующий выработке электрического тока. Нужно было разбирать конструкцию и протирать металлы, избавляя их от этого окисла. А кусочки кожи необходимо было время от времени смачивать рассолом.

Сухой гальванический элемент — батарейка

Значительно позже открытия Вольта, во второй половине 1880-х годов, инженером из Германии Карлом Гасснером был создан сухой гальванический элемент.

Сухим элемент был назван потому, что в качестве электролита в нем использовалась не жидкость, а гелеобразный состав. Такие элементы можно наклонять и даже переворачивать, не боясь пролить электролит. Поэтому, они значительно удобнее жидкостных.

Внутри элемента происходят химические превращения. Эти превращения являются экзотермическими, так как протекают с выделением энергии. Затем внутренняя энергия источника переходит в электрическую.

К примеру, в современном сухом гальваническом элементе (рис. 11), цинк реагирует с хлоридом аммония и при этом получает отрицательный электрический заряд.

Протекая, такие реакции вызывают расходование некоторых частей источника. Например, цинкового электрода.

Из-за этого, в гальванических элементах химические реакции будут необратимыми. Так как, спустя некоторое время, для нормального протекания химических превращений, не будет хватать ресурсов.

Когда скорость химических реакций замедляется, элемент перестает вырабатывать электрический ток. В таких случаях говорят, что элемент разрядился – «села батарейка».

Отработанные гальванические элементы нужно утилизировать. Это позволит использовать вновь некоторые их компоненты, а не загрязнять окружающую среду.

Мировая промышленность выпускает ассортимент стандартизированных элементов питания (рис. 12).

Например, тип АА – пальчиковая батарейка, или ААА – тонкая пальчиковая. Так же, существуют типоразмеры, обозначаемые C D и N. Они имеют ЭДС 1,5 Вольта.

Существуют другие и типы, например, «квадратная» батарейка 3R12, имеющая ЭДС 4,5 Вольт и используемая в карманных фонариках. А, так же, небольшая батарейка вида pp3 с ЭДС 9 Вольт, часто называемая «Крона» или «Корунд».

Гальванические элементы на электрических схемах обозначают специальными значками.

Аккумуляторы и их виды

Устройство аккумулятора внешне напоминает устройство гальванического элемента. Присутствует корпус, в котором находятся две пластины из разных металлов. Одна служит положительным электродом, а другая – отрицательным. Эти пластины помещены в электролит (рис. 13).

Однако, аккумуляторы, в отличие от гальванических элементов, являются многоразовыми устройствами.

Свое название они получили из-за того, что могут аккумулировать, то есть, накапливать электрическую энергию. А затем, отдавать накопленную энергию потребителям.

Химические реакции в аккумуляторах могут протекать в двух направлениях (зарядка — разрядка).

Перед использованием аккумулятор необходимо зарядить. Для этого используют специальные источники тока, которые называют зарядными устройствами. Они пропускают через аккумулятор ток зарядки.

Под воздействием этого тока в аккумуляторе протекают химические реакции, во время которых он накапливает электрические заряды. Один электрод заряжается положительно, а другой – отрицательно.

После, подключив к заряженному аккумулятору потребитель тока, можно использовать накопленную им энергию.

Называть аккумуляторы принято:
— по видам используемых жидкостей — кислотные, щелочные.
— либо по названию металлов, используемых в качестве электродов — свинцовые, железоникелевые, литиевые, и т. п.

В качестве пластин — электродов используют металлы: свинец, железо, литий, титан, кобальт, кадмий, никель, цинк, серебро, алюминий.

Существуют аккумуляторы с гелеобразным электролитом. Такие аккумуляторы можно наклонять в различные стороны, не боясь утечки электролита. Например, литий-полимерные батареи, используемые в мобильных телефонах.

Примечание: Чем больше геометрические размеры электродов источника, тем большую силу тока в полезной нагрузке он может обеспечить. Поэтому, аккумуляторы для автомобилей с ЭДС 12 и 24 Вольта, рассчитанные на большие токи нагрузки, имеют массу от 10 килограммов и большую.

Читайте также:  Электродвигатель постоянного тока для сварочных полуавтоматов

Аналогия между источником тока и водяным насосом

Аналогию с потоком жидкости часто применяют по отношению к электрическому току.

Независимо от того, какой вид энергии превращается в электрическую, принцип работы источника тока чем-то напоминает работу водяного насоса. Различия в том, что источник тока перекачивает заряды, а не жидкость.

Рассмотрим замкнутый контур, состоящий из трубы и водяного насоса, который способен привести в движение воду, так, чтобы она начала циркулировать по трубе (рис. 14а).

Частицы воды будут двигаться и, ток воды будет циркулировать за счет разности давлений, которую будет создавать и поддерживать насос.

На рисунке 14 кружком с треугольником обозначен насос. Направление движения воды отмечено стрелкой. По левую сторону от насоса давление обозначено \(\large P_<1>\), по правую сторону — \(\large P_<2>\) (рис. 14а).

С помощью неравенства

отмечено, что давление слева от насоса будет больше давления справа.

Подобно движению частиц воды, заряды придут в движение и электрический ток будет циркулировать по замкнутой цепи за счет разности потенциалов, которую будет создавать включенная в эту цепь батарейка (рис. 14б) — источник тока.

Сила, перемещающая заряды во внешней цепи, появляется благодаря тому, что источник тока создает разность потенциалов на своих выводах и электрическое поле.

Слева и справа от источника отмечены потенциалы \(\large \varphi_<1>\) и \(\large \varphi_<2>\). При чем, потенциал слева от источника больше потенциала справа.

Это отмечено неравенством

\[\large \varphi_ <1>> \varphi_<2>\]

Обратите внимание: источник тока (сторонние силы) заставляет двигаться электроны – отрицательно заряженные частицы, от точки с меньшим потенциалом, в точку с потенциалом большим, а электрический ток направлен в противоположную сторону — от «+» к «-».

Разность потенциалов так же называют электрическим напряжением.

\[\large \Delta \varphi = \varphi_ <2>— \varphi_ <1>= U \]

\(\large \varphi \left( B \right) \) – потенциал, измеряется в Вольтах;

\(\large U \left( B \right) \) – напряжение, измеряется в Вольтах;

Источник



В другие виды энергии

Преобразование электрической энергии в другие виды энергии, в основном используемые в производстве и быту, осуществляется электротехническими устройствами, принцип действия которых основан на способности электрического тока при прохождении через резистивные и реактивные элементы, через воздух и газы при определенных условиях, преобразовываться в тепловую, световую, звуковую и другие виды энергии, а также в электромагнитную энергию (создавать магнитное и электрическое поля).

► Эффективная работа электротехнических устройств — преобразователей энергии — обеспечивается при определенных параметрах электрического напряжения и тока (значение, форма и частота) и управлении ими. Для этого используют специальные преобразователи электрической энергии: трансформаторы, преобразователи частоты, выпрямительные устройства, инверторы, регуляторы напряжения и тока, электрические аппараты и др.

Преобразование электрической энергии в тепловую основано на следующих физических явлениях: прохождении тока через сопротивления, электрической дуге, индукционном нагреве и др. В устройствах с нагревательным сопротивлением основным элементом является металлический проводник с повышенным электрическим сопротивлением и высокой температурой плавления. Выделяемая в этом элементе электрическая энергия Wэ=RэI 2 t преобразуется в теплоту, в результате чего элемент нагревается, а теплота WТ передается в окружающую среду. В установившемся режиме WЭ = WT, откуда

где θр = θэ—θср — разность температур элемента и окружающей среды: αг — коэффициент теплоотдачи с поверхности элемента, S — площадь поверхности нагревательного элемента.

К устройствам с нагревательным элементом относят электроплиты, нагревательные печи, электрокипятильники и др. Чем выше допустимый нагрев элемента θэ тем эффективнее работа нагревательного устройства.

Наиболее интенсивное преобразование электрической энергии в тепловую происходит при возникновении электрической дуги. Как известно из физики, при разведении первоначально соприкасающихся металлических или угольных электродов, подключенных к источнику напряжения, между ними возникает электрический разряд, называемый электрической дугой. Сила тока в дуге может достигать огромных значений (тысячи и десятки тысяч ампер) при напряжении в несколько десятков вольт. При возникновении электрической дуги происходит термоэлектронная эмиссия с раскаленной поверхности катода и термическая ионизация молекул, обусловленная высокой температурой газа. Практически все межэлектродное пространство заполнено высокотемпературной плазмой, служащей проводником, по которому быстро перемещаются электроны от катода к аноду. Температура плазмы может достигать 10 000 К.

Электрическая дуга применяется для сварки металлических деталей и в электропечах для плавки качественных сталей и различных тугоплавких материалов.

Наряду с широким использованием электрической дуги в производстве, в ряде аппаратов она является нежелательной, например в коммутационных электрических аппаратах или в линиях электропередач — здесь электрический разряд между проводами, проводами и опорами, называемый коронным, приводит к увеличению электрических потерь.

В практике широко используется индукционный нагрев. Его применяют для поверхностной закалки сталей, нагрева, отжига и плавления металлов. Как известно, если поместить деталь в переменное магнитное поле, то в нем индуцируются (наводятся) токи, называемые вихревыми. Эти токи зависят от формы детали, типа металла, от направления и скорости изменения магнитного поля. Вихревые токи из-за малого сопротивления металла могут быть очень большими и вызывать его значительное нагревание. Глубина проникновения вихревых токов (магнитного поля) зависит от скорости (частоты) изменения магнитного поля, так как они создают собственное магнитное поле, которое направлено навстречу внешнему магнитному полю, вызвавшему их появление.

Чем больше частота изменения внешнего поля, тем сильнее противодействие поля вихревых токов и меньше глубина проникновения их внутрь тела.

Глубина проникновения вихревых токов может быть определена по формуле

где γа—электропроводимость и магнитная проницаемость материала.

Способность вихревых токов создавать собственное поле, противодействующее внешнему полю, используется в технике магнитных экранов. Во многих случаях вихревые токи бывают нежелательными, так как вызывают дополнительные потери и нагревание магнитопроводов электротехнических устройств (электрические аппараты, электрические машины, трансформаторы и др.).

► Для уменьшения действия вихревых токов в этих устройствах их магнитопроводы набирают из тонких пластин, изолированных одна от другой.

Преобразование электрической энергии в световую основано на нагревании проводника до высокой температуры (температурные источники света) и на оптическом излучении при дуговом разряде в газах, вызываюшем люминесцентный эффект при движении заряженных частиц в газонаполненном пространстве (люминесцентные источники света). Электрическая энергия в механическую преобразуется в электрических машинах и аппаратах, электроизмерительных приборах.

Их принцип работы основан на физическом законе электромагнитных сил, из которого следует, что

если проводник с током поместить в магнитное поле, то на проводник действует электромагнитная сила Fэм (рис. 63), значение которой определяется как , где В — магнитная индукция, В·с/м 2 ; I — ток, А; l — длина проводника, м.

► Направление действия этой силы определяется по правилу левой руки. При равномерном движении проводника со скоростью v электромагнитная сила Fэм должна уравновешиваться механической силой. Fэм= Fмех — это уравнение механического состояния равномерно движуще

гося проводника с током. Если левую и правую части уравнения умножить на скорость υ, то получим уравнение преобразования электрической мощности (энергии) в механическую, которое имеет вид

Дата добавления: 2015-04-16 ; просмотров: 60 ; Нарушение авторских прав

Источник