Меню

Увеличение тока покоя усилителя

Как правильно выставить ток покоя?

Морозик

Усилок Sony TA-F361R
Все бы ничего, но иногда ( после работы 10-20 минут) начинают дымить резисторы фильтра на выходе.
Причем на стенде не могу отловить данный момент.
В среднем положении движка подстроечника на
эмитерах верхних транзисторов 0.03В и 0.01В (L и R).
Достаточно ли выставить на эмитерах
указанные на схеме 0.1 вольт? Или надо включать в разрыв амперметр? И как влияет ток покоя на
устойчивость к возбуждению?

EvgeniS

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Учитывайте, что некоторые неисправности являются не причиной, а следствием другой неисправности, либо не правильной настройки. Подробную информацию Вы найдете в соответствующих разделах.

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

Если у Вас есть свой вопрос по определению дефекта, способу его устранения, либо поиску и замене запчастей, Вы должны создать свою, новую тему в соответствующем разделе.

  • О прошивках

    Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

    На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

    • Прошивки ТВ (упорядоченные)
    • Запросы прошивок для ТВ
    • Прошивки для мониторов
    • Запросы разных прошивок
    • . и другие разделы

    По вопросам прошивки Вы должны выбрать раздел для вашего типа аппарата, иначе ответ и сам файл Вы не получите, а тема будет удалена.

  • Схемы аппаратуры

    Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    • Схемы телевизоров (запросы)
    • Схемы телевизоров (хранилище)
    • Схемы мониторов (запросы)
    • Различные схемы (запросы)

    Внимательно читайте описание. Перед запросом схемы или прошивки произведите поиск по форуму, возможно она уже есть в архивах. Поиск доступен после создания аккаунта.

  • Справочники

    На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

    • Справочник по транзисторам
    • ТДКС — распиновка, ремонт, прочее
    • Справочники по микросхемам
    • . и другие .

    Информация размещена в каталогах, файловых архивах, и отдельных темах, в зависимости от типов элементов.

    Marking (маркировка) — обозначение на электронных компонентах

    Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

    Package (корпус) — вид корпуса электронного компонента

    При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

    • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
    • SOT-89 — пластковый корпус для поверхностного монтажа
    • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
    • TO-220 — тип корпуса для монтажа (пайки) в отверстия
    • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
    • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
    • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

  • Краткие сокращения

    При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

    Сокращение Краткое описание
    LED Light Emitting Diode — Светодиод (Светоизлучающий диод)
    MOSFET Metal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
    EEPROM Electrically Erasable Programmable Read-Only Memory — Электрически стираемая память
    eMMC embedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
    LCD Liquid Crystal Display — Жидкокристаллический дисплей (экран)
    SCL Serial Clock — Шина интерфейса I2C для передачи тактового сигнала
    SDA Serial Data — Шина интерфейса I2C для обмена данными
    ICSP In-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
    IIC, I2C Inter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
    PCB Printed Circuit Board — Печатная плата
    PWM Pulse Width Modulation — Широтно-импульсная модуляция
    SPI Serial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
    USB Universal Serial Bus — Универсальная последовательная шина
    DMA Direct Memory Access — Модуль для считывания и записи RAM без задействования процессора
    AC Alternating Current — Переменный ток
    DC Direct Current — Постоянный ток
    FM Frequency Modulation — Частотная модуляция (ЧМ)
    AFC Automatic Frequency Control — Автоматическое управление частотой

    Частые вопросы

    После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

    Кто отвечает в форуме на вопросы ?

    Ответ в тему Как правильно выставить ток покоя? как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

    Как найти нужную информацию по форуму ?

    Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

    По каким еще маркам можно спросить ?

    По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

    Читайте также:  Как из постоянного тока сделать переменный простая схема 12в

    Какие еще файлы я смогу здесь скачать ?

    При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

    Полезные ссылки

    Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

    Источник

    Увеличение тока покоя усилителя

    — Прилагается рисунок: —

    — Прилагается рисунок: —

    Не совсем понятно, что Вы понимаете под словом «дейф». Если «уплывание» нуля под влиянием возмущающих факторов (например, температуры), то — ничем. Это имманентное свойство данной схемы и ее компонентов. Если просто «ноль» — то переменным резистором R5 (470 Ом) в эмиттерах VT2 и VT4. Мерить на выходе усилителя, можно обычным тестером.

    С током покоя посложнее. Сейчас навскидку не припомню схему подключения «выхлопников» данного уся, но обычно разрывается соединение одного из плеч с выходом и замеряется ток в этом разрыве. Так можно выставить ток покоя достаточно точно

    Я пользуюсь несколько иным, упрощенным способом. Берете 2 самые обычные лампы накаливания (для Вашего случая — порядка 50. 70 В) не очень большой мощности (на ток миллиампер 100. 300) и, запитывая их от регулируемого блока питания, измеряете ток через них при слабом свечении нитей накаливания. После этого включаете их в разрыв между выходами БП и шинами питания «+» и «-» платы собственно усилителя, и добиваетесь примерно такого же свечения спиралей (на глаз) при отсутсвии сигнала на входе (закороченном на «землю»).

    При таком способе настройки, во-первых, никогда не сожжете выходные транзисторы (лампы будут играть роль ограничительных нагрузочных сопротивлений), даже если и промахнетесь с регулировкой, а во-вторых, так же «на глаз» (правда, не очень точно) заодно можно выставить и «ноль» — по симметричности свечения спиралей. При этом никаких измерительных приборов вообще не нужно будет.

    Если же захотите отрегулировать аппарат поточнее, то без осциллографа уже не обойтись.

    Источник

    Установка тока покоя усилителя Радиотехника У-101

    Установку тока покоя выходных транзисторов усилителя Радиотехника У-101 обычно выполняют после ремонта плат УНЧ-50-8, либо в целях профилактики.

    Вы можете спросить, как изменится звучание, если ток покоя установить ниже или выше рекомендованного значения? Все очень просто, ток покоя ниже рекомендованного значения приведет к искажениям выходного сигнала на относительно небольшом уровне громкости.
    Завышенный ток приведет к излишнему нагреву транзисторов и радиатора на небольшой громкости, но звучание будет без слышимых искажений.

    Какое же значение тока покоя является нормой для усилителя Радиотехника У-101? Согласно инструкции по ремонту данного усилителя, ток покоя необходимо установить в пределах 40-50мА.

    Прогон усилителя

    Прогон выполняется после ремонта аппарата и перед его настройкой. На один из входов (например «Унив.») нужно подать музыкальную программу и на среднем уровне громкости гонять усилитель не менее часа.

    Процесс настройки тока покоя

    Данный способ прост и взят из инструкции по ремонту усилителя Радиотехника У-101 (СКАЧАТЬ). Существуют и другие способы, но в этой статье я их рассматривать не буду.

    Итак, выполнив прогон нашего аппарата, его необходимо отключить от сети. Далее найти провод питания «+Uпит.вых.» и в разрыв него включить миллиамперметр постоянного тока.

    Установка тока покоя усилителя Радиотехника У-101

    Ток покоя

    Входной сигнал от усилителя должен быть отключен, ручка громкости вывернута на минимум.

    После чего включаем усилитель и на дисплее тестера отобразиться ток покоя

    Установка тока покоя

    Изначально на одном канале значение составило 94мА, а на другом 122мА.

    Его установка производится вращением движка подстроечного резистора R12. Внимание! Настоятельно рекомендую производить подстройку резистором R12 при отключенном усилителе. Резистор старый, его электропроводный слой и бегунок могут за долгое время окислиться. В результате этого, при вращении движка R12 его сопротивление может на некоторое время быть бесконечным, и выйдут из строя транзисторы. Будьте внимательны!

    Подстроечный резистор R12

    Подстройку нужно выполнять очень плавно, диэлектрической отверткой. После подстройки подключаем питание и смотрим показания на дисплее мультиметра. Если ток покоя не установлен в пределах 40-50мА, то отключаем питание усилителя и производим дальнейшую настройку.

    Ток покоя Радиотехники У-101

    Показатель сильно зависит от температуры, поэтому выставив необходимый ток усилитель вновь нужно прогнать и выполнить контрольную настройку. К примеру, выставив ток обоих каналов около 45мА после остывания радиаторов ток уже составил примерно 30мА.

    Схема усилителя Радиотехника У-101 СКАЧАТЬ

    Оставьте комментарий Отменить ответ

    Для отправки комментария вам необходимо авторизоваться.

    Источник

    

    Усилитель: что мешает звучать правильно? (часть 2) (страница 3)

    Следующим звеном, после входного каскада, следует линейный усилитель. Качество его работы оказывает влияние на функционирование всего устройства и при неудачном схемном решении можно всё «легко и непринужденно» испортить. Эта часть усилителя охватывается общей обратной связью и искажения, возникающие в нём, компенсируются. Вот только не стоит возлагать на последнее повышенные ожидания – единожды возникнув, искажения уже никогда не исчезнут. Существует множество схемных решений подобного узла, поэтому вынести какую-то одну общую рекомендацию затруднительно. Просто перейдем к третьей части.

    Выходной каскад

    Выходной каскад оканчивает усилитель, поэтому он должен обеспечивать хорошее согласование с нагрузкой. Это означает работу с большими напряжениями и токами, причем нагрузка обладает довольно большой реактивной составляющей, как по электрическим, так и по механическим характеристикам. Кроме того, геометрические размеры усилителя и тепловая мощность, рассеиваемая на радиаторах, ограничивает его максимальную мощность. Всё это накладывает весьма жесткие требования к возможным схемным решениям, а потому наиболее распространен двухтактный выходной каскад класса АВ.

    Идея работы каскада заключается в разделении положительной и отрицательной полуволн на два плеча и формирование тока от положительного или отрицательного источника питания в соответствующие моменты времени. Это хорошо работает с большой амплитудой сигнала, но если уровень уменьшается, то всё более значимым становится момент перехода через нуль – именно тогда происходит переключение выходных транзисторов. Для уменьшения вносимых искажений, в усилителе устанавливается некоторый минимальный ток покоя выходного каскада, что обеспечивает одновременную работу плеч (положительной и отрицательной полуволн) для небольшого уровня сигнала.

    Читайте также:  Как изменить ток якоря двигателя постоянного тока

    реклама

    То есть, фактически вводится небольшой режим А, отсюда и появилась эта буква в названии класса AB. Увы, делать очень уж большой ток покоя нельзя, страдает эффективность усилителя – фактически, эта мощность будет тратиться всегда, есть ли сигнал или нет. При увеличении амплитуды сигнала наступает момент, когда ток покоя исчерпывается, и могут последовать коммутационные искажения.

    Для обхода этого дефекта можно задать небольшой фоновый ток через неиспользуемый транзистор, что линеаризует рабочую точку (важно для низкого уровня гармоник высокого уровня) и обеспечит рассасывание заряда (устраняет дефект коммутации для высокочастотного сигнала). Или можно пойти дальше, использовать режим ЭА – ‘экономичный А’ (Non switching , Super A). В этом случае ток транзистора неиспользуемого плеча будет плавно уменьшаться по мере увеличения выходного напряжения противоположной полярности.

    Для моделирования классов AB и ЭА следующая схема:

    432x304 14 KB

    Подробнее можно ознакомиться с моделью и выполнить анализ можно над файлом проекта.

    Посмотрим ток выходного каскада. На всех картинках верхний рисунок относится к классу AB, нижний ЭА. Данные снимались для случая:

    • AB – ток покоя уменьшался от 250 мА до 80 мА.
    • ЭА – ток покоя оставался неизменным, 150 мА, менялась агрессивность управления током неактивного плеча – от наиболее активного до полного отключения управления током транзистора.

    Возьмем два случая – амплитуда сигнала 1 вольт (слева) и 10 вольт (справа):

    300x337 5 KB 300x337 8 KB

    При низком уровне сигнала класс AB работает в режиме A и потому не вносит каких-либо видимых искажений. У класса ЭА с этим несколько сложнее, потенциально присутствуют четные гармоники из-за очевидной несимметрии тока. Но это только «потенциально», избыточный ток протекает через транзистор противоположного канала и не попадает в нагрузку. Проще говоря, через источники питания течет ток с относительно небольшим уровнем гармоник, что не приводит к негативным последствиям.

    При увеличении уровня сигнала класс AB фактически отключает неактивное плечо, а ЭА продолжает пытаться им управлять. Взглянем подробнее на место переключения:

    реклама

    300x337 6 KB

    Фактически, в классе ЭА оба плеча одновременно формируют выходное напряжение. Теперь обратимся к спектру гармоник. В данном тесте частота сигнала будет снижена до 100 Гц, что обеспечит большее количество гармоник в слышимом диапазоне, напряжение 10 вольт.

    428x337 12 KB

    Для класса AB характер спектра гармоник мало зависит от величины тока покоя, а у ЭА лучшие результаты достигаются при средней степени агрессивности управления током. Скорее всего, неудачность красного и зеленого графика следует из идеологии управления током транзистора – на момент перехода транзистора из рабочего состояния в нерабочее его ток меняется довольно резко, что порождает больше гармоник, чем устраняется компенсацией управления током в противоположном плече.

    В схемотехнике усилителей звуковой частоты на радиолампах применяется либо класс А, либо класс AB, который в пристальном рассмотрении оказывается классом ЭА с низким или отсутствующим током управления (фиолетовый и серый график). Если сравнить с классом AB, реализуемым в большинстве усилителей на транзисторах (и, конечно же, в интегральном исполнении), то спектр его помех интенсивнее и шире.

    Выходное сопротивление усилителя

    Обычный усилитель обладает крайне низким выходным сопротивлением, обусловленным эффективной работой общей отрицательной обратной связи. Как-то сложилось, что данное решение считается правильным и под него проектируют фильтры акустических систем и динамические головки. Но действительно ли это хорошо? Рассмотрим два дефекта, свойственных акустическим системам – потери и искажения в проводах, соединяющих усилитель и динамики, а также искажения в самих динамических головках при перемещении диффузора.

    Довольно давно обнаружен эффект изменения сопротивления медного проводника при воздействии током разной силы и частоты, так называемый «полупроводниковый эффект». Величина изменения незначительна и никак не проявляет себя в обычных областях применения – передача электроэнергии, блоки питания, но приводит к искажениям при использовании его для передачи сильноточного звукового сигнала от усилителя к акустическим системам. Для обхода этой проблемы выпускают проводники из меди со специальной технологией изготовления, «бескислородная медь». Кроме того, соединители и разъемы тоже обладают свойством вносить искажения в передаваемый сигнал, ведь их сопротивление сочленения непостоянно во времени, хоть и мало по величине.

    В тесте будут участвовать идеальные усилители с тремя типами выходного сопротивления:

    • С крайне низким выходным сопротивлением.
    • Выходное сопротивление усилителя в четыре раза больше сопротивления нагрузки.
    • Усилитель работает в режиме ‘источник тока’ и его выходное сопротивление крайне велико.

    В симуляции будет использована следующая модель:

    360x470 16 KB

    Для эмуляции искажений в нагрузку введен нелинейный элемент из низкоомного резистора и диода Шоттки. Можно было создать искажения линейной нагрузки любым другим способом, для теста это не существенно. В данной симуляции измеряются токи через нагрузки, а не напряжения. Это вызвано тем, что именно ток через катушку вызывает перемещение диффузора обычной динамической головки (и что совершенно не так для электростатических излучающих элементов).

    Хотелось бы остановиться на цветной идентификации графиков:

    • Зеленый – контрольный, идеальный случай. Во всех остальных вариантах в нагрузку внесен нелинейный элемент.
    • Красный – обычный усилитель с крайне низким выходным сопротивлением.
    • Черный – усилитель с выходным сопротивлением в четыре раза больше, чем сопротивление нагрузки.
    • Синий – выходное сопротивление очень большое, усилитель работает в режиме источника тока.
    Читайте также:  Источник бесперебойного питания переменным током

    Нет смысла приводить полученный сигнал, все осциллограммы практически совпадают. Гораздо интереснее посмотреть на спектр:

    реклама

    426x337 5 KB

    Вы видите здесь зеленый график? Я – нет, его полностью закрыл синий (режим источника тока). Это означает, что увеличение выходного сопротивления усилителя уменьшает вред от нелинейных элементов, которые присутствуют в соединительных элементах между усилителем и динамической головкой.

    Теперь перейдем к другой проблеме – изменение индуктивности обмотки катушки динамика при перемещении в поле магнитного зазора. В тесте будут участвовать всё те же три усилителя, а эмуляцию нелинейной индуктивности выполним на дросселе с материалом 4C6. Схема выглядит следующим образом:

    364x473 19 KB

    Соображения по данной схеме полностью изложены в предыдущем тесте и специальных комментариев не требуется. Посмотрим на спектр:

    реклама

    426x337 7 KB

    Налицо явные интермодуляционные искажения. Как и в предыдущем тесте, по мере увеличения выходного сопротивления усилителя уменьшаются негативные последствия изменения свойств дросселя (то есть индуктивности катушки динамика).

    Существует еще один нюанс, связанный с выходным сопротивлением усилителя – импеданс акустической системы непостоянен в рабочей полосе частот. В области низких частот вносятся резонансные эффекты от собственной механической системы динамика и фазоинвертора, для средних частот – разделительный фильтр оказывает влияние в областях раздела рабочих полос динамиков.

    Кроме того, зачастую акустические системы проектируются под усилитель с низким выходным сопротивлением, а потому никто не заботится о сохранении постоянного импеданса акустической системы. Если одна из головок с повышенной чувствительностью, то последовательно с ней устанавливают дополнительный постоянный резистор, что увеличивает импеданс колонки в области рабочих частот этого динамика. Если такую колонку подключить к усилителю с повышенным выходным сопротивлением, то характер звучания станет другим.

    Впрочем, тщательной отстройкой элементов фильтра это дефект можно устранить или в значительной степени уменьшить, но вот резонансные явления в низкочастотной части компенсировать нельзя. Поправка – можно, но крайне неприятно – придется ставить высокодобротный и тщательно настроенный LC контур параллельно низкочастотной динамической головке.

    реклама

    Естественно, в серийных конструкциях никто такого делать не будет, да и в любительской аппаратуре встречается крайне редко, поэтому подключение колонки к усилителю с высоким выходным сопротивлением неизбежно приведет к изменению характера звучания басов – возрастет уровень сигнала с частотой механического резонанса и увеличится время призвука. Этот эффект можно частично уменьшить акустическим демпфированием – помещением материала с пониженной акустической прозрачностью и вязкостью в окна с обратной стороны динамика.

    От себя хочу добавить, что такой прием не слишком хорош, и у него есть возможные неприятные последствия, поэтому лучше менять тип выходного сопротивления усилителя в зависимости от частоты сигнала, чем «издеваться» над динамическими головками. В этом вопросе важно то, что переход на усилитель с токовым выходом меняет характер звучания и кому-то это может нравиться или не нравиться, но у него нет ничего общего с устранением искажений в акустической системе, озвученных в последних двух тестах.

    Итак, речь идет о радиолампах, так при чем здесь выходное сопротивление? Увы, прямо следует из технологии. В усилителе выходное сопротивление достаточно велико и маленьким его делает общая обратная связь. Чем она мощнее, чем больший запас петлевого усиления, тем лучше компенсируются все искажения в усилителе… в том числе и выходное сопротивление. В усилителях на радиолампах глубина обратной связи мала, да и сами регулирующие элементы обладают значительным внутренним сопротивлением (радиолампы вообще, по своей природе, являются скорее источниками тока, чем сопротивлениями).

    Как следствие, ламповые усилители обладают отнюдь не низким выходным сопротивлением, а потому – смотрите раздел – в некоторой степени компенсируют негативные элементы в акустической системе и соединении с усилителем. Что мешает такое же реализовать в «транзисторном» исполнении.

    Выводы

    реклама

    Знаете, эта история с развитием схемотехники очень напоминает эволюцию советского общественного транспорта. В «застойные» времена автобусы благодаря слабым моторам медленнее набирали скорость, на дорогу у меня уходило 25-40 минут. В постперестроечный период парк автомобилей сменился, повысилась мощность мотора и эффективность тормозной системы. Как следствие, на дорогу стало уходить от получаса до нескольких часов, но речь не о том. Увеличение мощности двигателя привело к тому, что отчаянно ощущаешь себя «дровами».

    Понимание того, что водители этого вида транспорта являются профессионалами своего дела, плохо скрашивают ощущения старт-стопного режима в пробке. Быстрый разгон и малое время торможения – отличный способ двигаться в потоке, вот только о дровах забыли? Более мощная динамика автобуса позволяет быстрее доставить до места, но кому нужна экономия пяти процентов времени такой ценой?

    Со схемотехникой усилителей схожая беда. Да, транзисторы эффективнее и лучше радиоламп. При конструировании аппаратуры можно получить сверхнизкий уровень гармоник и других характеристик усилителя (выходное сопротивление, скорость нарастания выходного сигнала, максимальная частота и прочие), но с какими последствиями? Дело не в количестве компонентов, SOT-23 или интегральные решения занимают мизерное место, по сравнению с одной единственной радиолампой. Проблема кроется в подходе – в борьбе за «красивые цифры» часто забывают о главном — качестве звучания.

    Довольно показательно отношение разных фирм к схемотехнике усилителей – японские модели обладают лучшими техническими характеристиками, чем европейские разработки, но звучат хуже. Данное мнение было высказано авторитетным источником, но довольно давно, поэтому ссылки привести не могу. Впрочем, я с ним согласен, мои аргументы изложены в этой статье. Радиолампы – атавизм, которому пора уходить. Просто надо использовать нормальные схемные решения, учитывать всё нюансы и проблемы, а не гнаться за красивыми цифрами. Согласны вы с этим или нет, выбор за вами. Пожалуйста, сделайте его осмысленно.

    Источник