Меню

Устройство электроснабжения постоянным током

Освещение на постоянном токе — «хорошо забытое старое»?

Известный экспериментатор и предприниматель Томас Эдисон в XIX веке предложил систему электроснабжения на постоянном токе. К началу XX века на смену ей пришли электрические сети на переменном токе, которые предложили Никола Тесла и Джордж Вестингауз. Переменный ток повсеместно вытеснил постоянный, но, как известно, наука и техника развиваются по спирали. И уже в XXI веке предлагается делать в офисах и производственных цехах отдельную проводку для светодиодного освещения, по которой потечет постоянный ток.

Главная причина, по которой постоянный ток не выдержал конкуренции — малая дальность передачи электроэнергии. Из-за невозможности использования трансформаторов напряжение в линии электропередачи приблизительно соответствовало напряжению в розетке. Применительно к реалиям США конца XIX века — это напряжение было около 110 В. В итоге электростанция не могла размещаться далее 1,5 км от потребителя. Это было значительным недостатком в XX веке, но сейчас ситуация изменилась.

Для выработки электроэнергии все чаще используются альтернативные источники: солнце, ветер и некоторые другие. Общей особенностью таких источников является нестабильность количества вырабатываемой энергии в данный момент, что требует использовать аккумуляторы. Кроме этого, сейчас предлагается и такое решение — накапливать электроэнергию, получаемую из сети, в аккумуляторах в те промежутки времени суток, когда она стоит дешево, а потом отдавать ее в часы, когда тарифы высокие.

Для накопления энергии повсеместно применяются аккумуляторы, использующие преобразование электрической энергии в химическую и обратно. Эти аккумуляторы дают постоянный ток. При этом многие приборы, потребляющие электроэнергию, изначально устроены таким образом, что питаются от постоянного тока (например, компьютеры), а чтобы они могли питаться от переменного тока, приходится добавлять в конструкцию дополнительно блоки питания. Тогда зачем нужны преобразования постоянного тока в переменный и обратно, если можно непосредственно с аккумулятора подавать постоянный ток потребителю? Значительно упростится конструкция многих устройств, подключаемых к электросети, а также централизованную систему бесперебойного питания. К тому же, не будет потерь в проводке, связанных с излучением электромагнитного поля проводником, через который проходит переменный ток. Исходя из этого, в тех случаях, когда внутренняя сеть использует альтернативные источники энергии, а также систему бесперебойного питания, в ней предпочтительно передавать постоянный ток.

Но не все так просто, как может показаться. Огромное количество приборов изначально спроектировано на питание переменным током и на постоянный ток их так просто не переделать. В первую очередь, речь идет об устройствах, в которых установлены моторы. Но даже электрочайник, рассчитанный на переменный ток, нельзя питать от постоянного, хотя там, казалось бы, только резистивная нагрузка. При размыкании контактов в цепи переменного тока гашение дуги происходит быстрее, чем в цепи постоянного. Термореле, которое размыкает цепь при кипении, рассчитано на переменный ток и большая длительность дуги на постоянном токе выведет его из строя.

Производить технику широкого применения под новый стандарт питания постоянным током слишком расточительно, если учесть, что доля альтернативных источников в общем объеме производимой в мире электроэнергии пока не превышает 3%. Поэтому на момент написания статьи основной отраслью, где наблюдается массовый переход на внутренние электрические сети постоянного тока, являются гигантские центры обработки данных. В них сервера питаются от постоянного напряжения 380 В. Данное значение напряжения позволяет использовать серийно выпускаемые кабели для 230 В переменного тока [1]. Тем не менее, электропитание ЦОД — довольно узкий сегмент рынка.

Другим применением внутренних сетей на постоянном токе, которое, по прогнозам ряда авторитетных ученых действительно может стать массовым, является освещение. Естественно, светодиодное, так как светодиод по своему принципу работы может питаться только от постоянного тока. Необходимость преобразования переменного тока в постоянный является одной из причин, почему светодиодные светильники до сих пор стоят значительно дороже аналогов с традиционными источниками света.

Существующие примеры питания ламп от постоянного тока

Накопленный светотехникой опыт еще с первых ламп Томаса Эдисона показывает, что питание традиционных источников света от постоянного тока не меняет их технические характеристики или же ведет к ухудшению параметров. В то же время, питание ламп на основе светодиодов постоянным током улучшает качество их работы.

Существует множество легенд, согласно которым при питании лампы накаливания от постоянного тока, она служит дольше. Или, наоборот, питание от переменного тока продлевает срок службы лампы по сравнению с постоянным. Но, на самом деле, питание лампы накаливания что от постоянного тока, что от переменного тока частотой 50 или 60 Гц, не влияет само по себе на срок службы.

При питании люминесцентных ламп от постоянного тока возникает так называемый «трамвайный эффект», выражающийся в потемнении в процессе эксплуатации одного из концов трубки. Даже если лампа закрыта молочным рассеивателем, такой работающий светильник выглядит некрасиво. С этим эффектом борются, периодически вынимая лампу из светильника и вставляя обратно ее с другой полярностью. Название «трамвайный эффект» связано с тем, что его впервые обнаружили при переводе освещения в салонах трамваев с ламп накаливания на люминесцентные. Электрооборудование трамвая работает от постоянного тока, соответственно, от постоянного тока решили питать и лампы, освещающие салон. В современных транспортных средствах используются люминесцентные лампы, питающиеся через ЭПРА переменным током с частотой порядка единиц или десятков кГц.

Светодиодные лампы-ретрофиты типоразмера MR16 выпускаются с питанием от напряжения 12 В. Данные лампы поддерживают питание какпеременным, таки постоянным током. Каждая модель лампы совместима с трансформаторами для галогенных ламп из определенного списка. При замене галогенных ламп MR16 совместимость светодиодных ламп, подходящих по светотехническим параметрам и цене, с уже установленными трансформаторами, зачастую отсутствует. Поэтому вместо трансформатора устанавливают блок питания, дающий напряжение 12 В постоянного тока. Так же рекомендуется поступать и в случае, когда изначально устанавливаются светодиодные лампы MR16. Практика показывает, что питание светодиодных ламп MR16 от постоянного тока обеспечивает более стабильную работу и более высокий КПД по сравнению с питанием от переменного тока. Питание от постоянного тока позволяет также полностью избавиться от пульсаций светового потока.

Снижение потерь в системе электроснабжения

Структурные схемы организации электропитания светодиодных светильников на переменном и постоянном токе в типичном офисном здании показаны на рис. 1.

Как видно на рисунке, в системе на переменном токе потери в проводах составляют 3%, а на постоянном — всего 1%, что обусловлено законами физики. Снижение потерь в блоке питания с 5% до 2% связано скорее с экономическими факторами, так как на группу светильников уже выгодно использовать более дорогой блок питания с повышенным КПД. Итого за счет перехода с переменного тока на постоянный теоретически можно получить снижение потерь на 5%.

Профессор Эбберхард Ваффеншмидт из Кельнского университета прикладных исследований совместно с Philips Research создали систему электроснабжения, питающую 54 светодиодных ламп мощностью 37 Вт каждая от солнечной батареи, а при отсутствии в достаточном количестве солнечного света — брать электроэнергию из распределительной сети [1]. Система работала на постоянном токе 380 В.

Испытания показали, что снижение энергопотребления по сравнению с аналогичной системой энергоснабжения составило всего 2,24%. По мнению автора данной статьи, столь скромный результат был достигнут во многом потому, что использовались лампы для переменного тока, драйвера которых были доработаны для питания от постоянного тока, а не лампы, изначально спроектированные под постоянный ток. Но даже у такой системы есть как минимум два преимущества. Во-первых, это очередная возможность сделать себе PR компании, заботящейся об экологии, так как мысль о том, что использование постоянного тока в электрических сетях позволяет экономить энергию, уже проникла в умы продвинутых экологических активистов [2]. Во-вторых, при питании постоянным током значительно упрощается конструкция как питающей подстанции, так и светодиодных светильников.

Упрощение конструкции оборудования

Постоянный ток, поступающий от солнечных батарей и аккумуляторов, должен быть приведен к напряжению нужной величины (этим занимаются так называемые DC — DC преобразователи), а затем преобразован в переменный. Преобразование в переменный ток выполняется, так называемыми, инверторами. В отличие от бытовых инверторов (например, в индивидуальных ИБП для настольных компьютеров), дающих лишь приближение к синусоидальному напряжению, профессиональные модели, обслуживающие целое здание или даже комплекс строений, должны давать «чистую» синусоиду, иначе возникнут проблемы с электромагнитной совместимостью оборудования и много других проблем. Соответственно, профессиональные инверторы — дорогостоящие агрегаты, исключение которых из схемы энергоснабжения при использовании постоянного тока позволит снизить общую стоимость системы, а заодно и повысить энергоэффективность за счет удаления как минимум одной ступени преобразования. Например, профессиональный инвертор, способный длительное время выдерживать нагрузку до 12 кВт стоит порядка 100 000 руб. (здесь и далее цены приводятся по состоянию на сентябрь 2015 г.) На самом деле, при переходе на постоянный ток удаляется и другая ступень преобразования, а, именно, выпрямитель в светодиодном светильнике.

В том случае, если светодиодный светильник работает в помещении, где постоянно находятся люди, тем более, где они выполняют работу, требующую сколь-нибудь значительного зрительного напряжения, надо не только выпрямить переменный ток, но и сгладить пульсации. Для этого используются электролитические конденсаторы большой емкости — дорогостоящие и при этом весьма капризные устройства. Как правило, основной причиной выхода из строя светильников является преждевременный отказ драйвера, который происходит, когда светодиоды еще не полностью выработали свой ресурс.

Зачастую этот отказ связан со сглаживающими конденсаторами. Причем электролитические конденсаторы имеют неприятную особенность деградировать от времени, даже если светильник не работает, а лежит на складе.

Встраиваемый светодиодный светильник для потолков типа «Армстронг» можно в среднем купить по цене от 1200 руб. (совсем дешевые низкокачественные модели рассматривать не будем) Причем в модели за 1200 руб. вполне могут использоваться «фирменные» светодиоды, такие же, как и в более дорогих моделях. Разница между дешевыми и дорогими светильниками заключается главным образом в уровне пульсации и надежности драйвера. При питании от постоянного тока конструкция драйвера становится более простой и надежной, в ней не присутствуют сглаживающие конденсаторы. Поэтому светильник за 1200 руб. будет работать практически так же хорошо, как и за 2200 руб. (столько стоит светильник с надежным драйвером без пульсации от известного российского бренда) Мало того, за счет уменьшения числа деталей вполне реально дополнительно снизить цену на качественный светильник.

В итоге, переход на постоянный ток позволит снизить цены на светодиодные светильники примерно в 2 раза и добиться срока службы всего светильника, равного сроку службы установленных в нем светодиодов, то есть 50 000 ч. Весьма значительный выигрыш!

Читайте также:  Индукционный ток в кольцевом проводнике

Технология РоЕ

Тем не менее, прокладывать отдельную проводку для питания светодиодных светильников выгодно лишь тогда, когда здание строится заново, либо в нем проводится капитальный ремонт. Избежать необходимости прокладывать отдельную проводку можно, используя технологию питания через Ethernet (англ. Power over Ethernet, сокращенно РоЕ).

По кабелям локальных компьютерных сетей Ethernet передается не только цифровая информация, но и электропитание для сетевых устройств. Напряжение питания 48 В постоянного тока. В сетях Ethernet Cat5 и выше используется стандарт РоЕ plus (IEEE 802.3at-2009), допускающий подключать к сети нагрузку мощностью до 25,5 Вт на одно устройство. На самом деле, по кабелю Ethernet физически можно передавать питание с мощностью до 60 Вт, но так как это не соответствует нормам IEEE802.3at-2009, возможны проблемы с совместимостью.

Технологию РоЕ можно использовать для питания светодиодных светильников постоянным током в офисных зданиях. Главная проблема заключается в том, что для типичного офисного светильника, устанавливаемого в потолки типа «Армстронг», световой поток должен быть не менее 3000 лм, значит, чтобы светильник без проблем подключался к стандартной компьютерной сети, его полная светоотдача должна быть не менее 120 лм/Вт.

Пока столь высокая светоотдача всего устройства возможна лишь для дорогих светильников, ценой более 3000 руб. Поэтому выигрыш можно получить лишь в «умных» системах управления освещением, когда к каждому светильнику и так подходят провода компьютерной сети и не нужно тратиться на прокладку кабелей электропитания. Именно такой принцип реализован в светильнике компании Philips «Световые решения» с питанием по технологии РоЕ, представленном в 2014 году.

Выбор напряжения для питания светильников постоянным током

Чем ниже напряжение, тем, при равной толщине проводов, выше потери при передаче электроэнергии. Это наглядно показано на диаграмме рис. 2.

Как видно из диаграммы, наиболее перспективным является использование для питания светодиодного освещения 380 В постоянного тока. Помимо меньших потерь, обеспечивается совместимость с электрооборудованием крупных ЦОД. Возможность принятия данного стандарта зависит и от того, насколько стандарт электропитания, изначально разработанный для ЦОД, приживется для серверов, устанавливаемых в офисах. Если для офисных серверов будут предусматривать отдельную электропроводку, ничто не мешает питать от нее еще и светильники. Единственная проблема — пока что светодиодные светильники на 380 В постоянного тока серийно не производятся.

Другой сценарий развития событий, который автор данной статьи считает вполне реалистичным, предусматривает создания стандарта электропитания «де-факто», как произошло с интерфейсом USB, который теперь чаще используется для зарядки и питания мобильных устройств, нежели для передачи данных. Точно так же стандартом для питания светодиодных светильников де-факто может стать напряжение 48 В постоянного тока, так как оно используется в технологии РоЕ plus. Недостатками являются необходимость использования дорогостоящих проводов с низким сопротивлением, а также невысокая дальность передачи электроэнергии — не более 100 м от питающей подстанции. Но развитие систем «умного» освещения делает указанные недостатки менее значимыми.

Литература:

  1. Waffenschmidt Е. Direct Current (DC) Supply Grids for LED Lighting // LED Professional N48, Mar/Apr 2015.
  2. Sinopoli J. Using DC power to save energy — and end the waroncurrents // http://www.greenbiz.com/news/2012/11/15/using-dc-power-save-energy-end-war-currents.

Источник: Алексей Васильев, материал опубликован в журнале «Электротехнический рынок», №№5-6 (65-66), 2015

Источник

Всё об источниках питания постоянного тока

Всё об источниках питания постоянного тока

Прежде, чем разбираться с вырабатывающими источниками, необходимо понять, что такое постоянный ток. Это поток электронов, движущийся всё время в одном направлении без изменения напряжения, частоты и силы. Переменный ток прочно вытеснил этот тип, но не всегда возможно использование вращения фаз. Например, некоторые электрические приборы по умолчанию созданы на базе полярной схемы. Их питание, в основном, происходит через преобразователь, собранный на трансформаторе. Источники постоянного тока позволяют подключать различные приборы, включая линии низковольтного освещения, различное высокоточное оборудование. На их основе до сих пор работают автомобильные электрические цепи, сеть питания в поездах и самолётах.

Постоянный и переменный ток

Какими бывают источники постоянного тока

Большинство людей сильно путается в понятиях в данной сфере. Блок постоянного тока не может считаться источником, потому что он не вырабатывает электроэнергию, а лишь преобразовывает её до определенных значений и показателей. В данный момент имеется всего 4 способа получения электрической энергии с постоянным напряжением от источника выработки или хранения к потребителю:

    Механические преобразователи. Они конвертируют энергию вращения роторных частей генераторов в электричество. К частным случаям можно отнести ручную динамо машину или подобные устройства, устанавливаемые на велосипедах. Механические источники требуют бесперебойной генерации, что может обеспечить только стабильно дующий ветер или текущая вода. Косвенно к ним можно отнести ветряки и гидроэлектростанции.

Принцип действия генератора постоянного тока

Тепловые источники энергии. Единственным рентабельным в данный момент элементом является так называемая термопара. На её базе работают так называемые вулканические электростанции в Исландии. Власти этой страны пробурили породы до магмы, а затем погрузили туда термопары. Здесь работает термоэлектрический эффект, позволяющий вырабатывать электроэнергию при помощи разности температур. Если правильно всё рассчитать, то КПД может достигать 90%. Больше получить не выйдет из-за потерь энергии, затрачиваемых на разгон атомов вещества при нагреве. Термическая электродвижущая сила стремительно растёт при увеличении перепада. Термопары практически не имеют срока годности, что позволяет отвод тепла от промышленных источников непосредственно для генерации и запасания электроэнергии.

Геотермальная электростанция в Исландии

  • Световые источники постоянного тока.
  • Химические источники постоянного тока.
  • Как обеспечить бесперебойную поставку электроэнергии

    Чтобы решить данную задачу необходимо использование альтернативного источника. Преобразование от централизованного снабжения может проводиться постоянно через блок питания или трансформатор. Эта проблема актуальна не для частных домов и квартир, а для промышленного, исследовательского и медицинского оборудования. Например, при каждой больнице скорой и неотложной помощи обязательно имеется собственная автономная подстанция, способная генерировать токи, преобразовывая их в разнообразные показатели силы и напряжения. При наличии особой группы потребителей, устанавливается резервный источник электроэнергии — электрогенератор. Реализация системы бесперебойного электроснабжения состоит в установке устройств, которые будут обеспечивать незаметный (плавный) переход с основного на резервный источник и обратно. При этом качество подаваемой электроэнергии не должно изменяться. Для этого в систему устанавливают источник бесперебойного питания или ИБП. Это приспособление позволит в период отключения электроэнергии выполнить качественный переход на линию резервного питания.

    Источник

    Sukhoi Superjet 100

    Реальность против домыслов

    • править
    • печать
    • карта
    • рейтинг
    • форум
    • Главная страница
    • Новости проекта
    • Translation wanted
    • Последние изменения
    • Последние сообщения
    • Рейтинги
      • Лучшее недели
      • Лучшее месяца
      • Новостей
      • Статей
      • Отзывов
      • Фотографий
      • Самые обсуждаемые
    • Дерево сайта
    • Все страницы
    • Облако тегов
    • Новости авиации
    • Translate

    Разделы

    • Реестр
    • Эксплуатация
    • Производство
    • История
    • Самолёт
    • Испытания
    • Обучение
    • Биографии
    • Отзывы пилотов
    • Пассажиры
    • Заказчики
    • Мифы СМИ
      • «Не русский самолет»
      • «Камней наглотает»
      • «Стоит $7 млрд»
      • «Убили Ту-334»
      • «Разрушили все КБ»
      • Катастрофа в Индонезии
      • Чёрный маркетинг
      • Разборы статей
      • Полный список мифов
    • Конкуренты
    • Блогеры
    • Пресса
    • Фотографии
    • Инфографика
    • Видеотека
    • Форум
    • Полезные ссылки
    • ВКонтакте->
    • Facebook->
    • Google+>
    • MC-21->
    • Registry
    • English

    Помощь

    • Пригласить друга
    • Гостевая книга
    • Как добавить статью
    • Синтаксис
    • О сайте
    • Правила
    • Письмо администрации
    • страницы сироты
    • Добавить новую страницу

    Случайные

    Система электроснабжения предназначена для питания потребителей электроэнергией переменным трехфазным током напряжением 115/200 В, частоты 400 Гц и постоянным током с напряжением 28 В. Система электроснабжения переменным током является основной и состоит из двух независимых подсистем по правому и левому борту. Каждый двигатель приводит в действие свой привод-генератор, который обеспечивает штатную подачу электропитания переменного тока (AC). Вспомогательная силовая установка (APU) приводит в действие третий генератор переменного тока, образуя вспомогательный источник электропитания. В систему электроснабжения переменным током также входит аварийная система электропитания, источником которой является генератор ветродвигателя (RAT) и статический преобразователь (INV), предназначенный для преобразования постоянного тока напряжением 28 V в переменный ток напряжением 115 V и частотой 400 Hz.

    Система электроснабжения постоянным током является вторичной, основными источниками в ней являются выпрямительные устройства (TRU), преобразующие переменный ток (AC) в постоянный ток (DC), аварийным источником являются аккумуляторные батареи. Во время нахождения самолёта на земле члены экипажа включают аккумуляторные батареи и/или наземный источник питания. После запуска двигателя или ВСУ, генераторы подключаются автоматически. В полёте электрическая система работает в автоматическом режиме.

    Конструкция самолета используется как нормальный минус или нейтраль для цепей нагрузки.

    Оборудование управления и защиты системы электроснабжения (СЭС) устанавливается в носовом приборном отсеке, техническом отсеке за нишей шасси, хвостовом отсеке. Оборудование каждого канала генерирования электроэнергии СЭС физически изолировано от оборудования других каналов, где это возможно.

    Прокладка жгутов, кабелей, соответствующих резервированным каналам, производится отдельными трассами. Прокладка жгутов системы дистанционного управления производится с учетом трёхкратного резервирования. Прокладка силовых проводов производится отдельными трассами с учётом резервирования источников 1-й категории.

    Управление и контроль работы СЭС осуществляется:

    • с пульта управления системы электроснабжения на потолочном пульте в кабине экипажа;
    • с пульта наземного обслуживания;
    • с пульта управления нагрузками;
    • ручка (рукоятка) выпуска RAT.
    • по мнемокадру ELEC, который показывает текущее состояние системы, включая работающие и отказавшие источники электропитания, связи между источниками и шинами питания

    приёмников и т.д.;

    • при помощи аварийно-сигнальных сообщений;
    • при помощи ламп-кнопок на пульте управления СЭС на потолочном пульте в кабине экипажа;
    • по дисплею на пульте управления нагрузками.

    Основная система электроснабжения

    Характеристики основной системы электроснабжения переменного тока: 115/200 В, 400 Гц, трехфазная, тип соединения — «звезда». Нейтральная шина выведена на корпус самолёта. Основная система электроснабжения включает в себя:

    • систему привод-генераторов (IDG), установленных на маршевых силовых установках;
    • блоки управления генераторами (GCU);
    • блоки трансформаторов тока (CTA), установленные на распределительных устройствах.

    Вспомогательная система электроснабжения переменным током включает в себя:

    • генератор ВСУ, установленный на двигателе ВСУ;
    • блок управления генератором ВСУ и наземным питанием (GAPCU);
    • блок трансформаторов тока канала генератора ВСУ.

    Управление системой распределения переменного тока осуществляется в автоматическом режиме блоками регулирования защиты и управления генераторами GCU, GAPCU, GCU RAT на основе состояния системы электроснабжения, а также с помощью автоматов защиты при наземном техническом обслуживании.

    На коробке приводов каждого из двигателей установлен интегральный привод-генератор, вырабатывающий переменный трехфазный ток напряжением 115/200 В, постоянной частоты 400 Гц, номинальная выходная мощность привод-генератора 40 кВА. Привод-генератор представляет собой единый агрегат, состоящий из гидромеханического привода постоянных оборотов и бесщёточного генератора тока, размещённых в общем корпусе и имеющих общую систему смазки и охлаждения. Генератор ВСУ по конструкции и электрическим характеристикам идентичен генераторам, устанавливаемым на двигателях. ВСУ, работая с постоянной скоростью вращения, приводит в действие генератор
    непосредственно, без отдельного привода постоянных оборотов. Каждый интегральный привод-генератор (IDG) оснащён системой обнаружения снижения давления масла и перегрева, сигналы от которой поступают в кабину экипажа на индикацию. Каждый агрегат IDG имеет устройство расцепления. Каждое устройство расцепления управляется переключателем в кабине экипажа. Перевод устройства расцепления в исходное состояние зацепления осуществляется вручную только при условиях нахождения самолёта на
    земле и при выключенном двигателе. При повышении температуры смазки выше 213°C тепловой предохранительный выключатель автоматически отключает IDG от коробки привода агрегатов.

    Читайте также:  Сообщение использование теплового действия электрического тока

    Каждый генератор оснащен блоком GCU, который обеспечивает управление, защиту и возбуждение приводов – генераторов. Блок GCU также выполняет функцию защиты для оборудования в канале цепи генерации электрического тока. Блок GCU обеспечивает следующие виды защит:

    • от повышения напряжения в любой из фаз,
    • от понижения напряжения в любой из фаз,
    • от повышения частоты,
    • от повышения частоты программным обеспечением,
    • от понижения частоты,
    • от превышения значения силы тока,
    • от неправильного порядка чередования фаз,
    • от всех видов короткого замыкания (замыкания внутри генератора или фидера, замыкания подвозбудителя и т.д.),
    • от понижения скорости вращения входного вала привод-генератора,
    • от разрыва фаз,
    • от отказа сервоклапана,
    • от сбоев процессора блока управления генератора,
    • от отказа трансформатора тока генератора,
    • от отказа линейного контактора генератора.

    Блок GAPCU выполняет функции управления, защиты и возбуждения генераторов ВСУ (APU), управления подключением наземного источника питания, а также защиты и переключение между шинами электропитания. Блок GAPCU контролирует параметры внешнего источника питания, включая индикацию напряжения, частоты и силы тока. Блок GAPCU обеспечивает следующие виды защит:

    • от повышения напряжения в любой из фаз,
    • от понижения напряжения в любой из фаз,
    • от повышения частоты,
    • от понижения частоты,
    • от повышения частоты программным обеспечением,
    • от превышения значения силы тока,
    • от неправильного порядка чередования фаз,
    • от некачественного электропитания наземного источника,
    • от всех видов короткого замыкания (замыкания внутри генератора или фидера, замыкания подвозбудителя и т.д.),
    • от разрыва фаз,
    • от сбоев процессора блока управления генератора,
    • от отказа трансформатора тока генератора,
    • от отказа линейных контакторов.

    Аварийная система переменного тока, получая питание от генератора ветродвигателя (RAT), обеспечивает трехфазным напряжением 115/200 В, 400 Гц приёмники первой категории. До выхода генератора ветродвигателя на рабочий режим (в течение не более 10 секунд после выпуска), аварийным источником переменного тока является однофазный статический преобразователь, преобразующий постоянный ток от аккумуляторных батарей в переменный.

    Система электроснабжения представляет собой многоуровневую систему с резервированием, включает в себя два распределительных устройства (левое и правое), работающих раздельно. В режиме нормальной эксплуатации генераторы работают раздельно – каждый для соответствующего канала переменного тока. При отказе одного генератора происходит автоматическая перекоммутация, и к шине отказавшего привод-генератора подключается работающий генератор. Для обеспечения питания электрооборудования первой и второй категории достаточно одного канала.

    Генератор переменного тока ВСУ может подсоединяться или к одному из каналов генерирования электроэнергии или к правому и левому каналу одновременно. После включения одного из основных генераторов на маршевой силовой установке, соответствующий канал электропитания подсоединяется к включённому генератору, а другой канал продолжает
    работать от генератора ВСУ или внешнего источника (до запуска основного генератора данного канала.

    Количественное ограничение электрических потребителей питания от шин переменного тока имеет место при полёте с одним работающим генератором, при полёте на RAT и при полёте на аккумуляторных батареях.

    Система электроснабжения постоянным током

    Электроснабжение постоянного тока (DC) осуществляется от трёх (охлаждаемых) выпрямительных устройств (TRU) (от левого, правого и резервного блоков TRU) , вырабатывающих постоянный ток до 300 А, напряжением 28 В.

    На самолёте установлены четыре никель-кадмиевые аккумуляторные батареи ёмкостью 27Ач и номинальным напряжением 24В. Зарядка батарей производится от шин постоянного тока. Переключатели управления батареями расположены в кабине экипажа. В штатных режимах работы СЭС аккумуляторы находятся в режиме зарядки, и их энергия не используется. При этом обеспечивается нормальное энергоснабжение всех бортовых потребителей электроэнергии. Каждый из аккумуляторов может быть отключен от шины постоянного тока. Все аккумуляторы используются для электроснабжения систем самолёта в аварийном режиме работы при возникновении отказов или отключении источников питания основной системы постоянного тока и обеспечивают питанием в течение 30 минут наиболее необходимых для завершения полета приёмников.

    Электропитание постоянного тока напряжением 28 В подаёся ко всем бортовым электронным системам от двух основных (левого и правого TRU) TRU1 и TRU2. Резервное TRU3 находится в «горячем» резерве. При отказе одного из основных выпрямителей (левого или правого) TRU3 включается в работу вместо вышедшего из строя выпрямителя автоматически. При отказе любых двух выпрямителей TRU линии питания постоянного тока перекоммутируются автоматически, при этом все потребители третьей категории отсоединяются. В этом случае все линии питания подключаются к работоспособному выпрямительному устройству.

    Аккумуляторы подключаются к выпрямительным устройствам параллельно и оснащены встроенными датчиками, обеспечивающими предупредительную сигнализацию о повышении температуры для ручного отключения аккумулятора членами экипажа.

    Система распределения постоянного тока включает в себя четыре распределительных устройства и двенадцать блоков выключателей-предохранителей. Каждый блок выключателей-предохранителей (LMU) обеспечивает независимое включение, выключение и защиту от перегрузки до 20 каналов в цепях электропитания постоянного тока. Для визуального контроля состояния каждого канала на лицевой панели LMU находится 20 светодиодов.

    Управление системой распределения постоянного тока осуществляется:

    • в полёте в автоматическом режиме;
    • на земле во время техобслуживания и предполётной подготовки самолета с пульта управления нагрузками, а также с помощью отключения автоматов защиты.

    Внешний источник

    Подключение бортовой электросети самолёта к электрической аэродромной установке осуществляется через штепсельный разъём аэродромного питания, который расположен в носовой части фюзеляжа слева от передней опоры шасси. На пульте управления электрической системы (в кабине экипажа) и на сервисном пульте наземного обслуживания (снаружи самолета) находится переключатель внешнего источника питания со световой индикацией. Индикация AVAIL означает механическое подключение штепселя наземного источника питания к самолету, индикация ON, в кабине экипажа, означает подключение шин самолёта к наземному источнику электропитания.

    %D1%80%D0%BE%D0%B7%D0%B5%D1%82%D0%BA%D0%B0.jpg

    Блок управления генератором ВСУ и наземным питанием (GAPCU) обеспечивает управление и защиту оборудования и проводки самолета при подключённом источнике внешнего питания. Блок GAPCU автоматически отключает источник внешнего питания при отказе системы или при отклонении качества питания от заданного, таким образом обеспечивается защита электрооборудования, подсоединённого к шине. Наземный источник питания может быть подключён как ко всем шинам системы электроснабжения, так и отдельно к шинам наземного обслуживания. Запуск ВСУ выполняется от аккумуляторных батарей №3 и №4, и TRUЗ. При отсутствии наземного источника электропитания и в случае, если аккумуляторные батареи заряжены, возможен запуск ВСУ только от аккумуляторных батарей.

    electric1.PNG electric2.PNG

    03 Jul 2012 08:33 (опубликовано: Monya Katz)

    Если вам понравилась статья, не забудьте поставить «+»

    Источник

    

    ЭЛЕКТРОСНАБЖЕНИЕ ЖЕЛЕЗНЫХ ДОРОГ

    Общие принципы электроснабжения железных дорог

    Железные дороги центральной части России

    Железнодорожный транспорт на электрической тяге является наиболее производительным, экономичным и экологически безопасным. Поэтому с середины XX века и по настоящее время ведется активная работа по переводу железнодорожных магистралей на электрическую тягу. В настоящее время более 50 % железных дорог России являются электрифицированными. Кроме того, даже неэлектрифицированные участки железных дорог испытывают потребность в электрической энергии: она используется для целей обеспечения функционирования систем сигнализации, централизации, связи, освещения, работы вычислительной техники и т.д.

    Электрическая энергия в России вырабатывается электростанциями, являющимися предприятиями энергетической отрасли. Железнодорожный транспорт потребляет около 7% электроэнергии, производимой в нашей стране. Она расходуется на обеспечение тяги поездов и питание нетяговых потребителей, к которым относятся железнодорожные станции с их инфраструктурой, устройства локомотивного, вагонного и путевого хозяйства, а также устройтсва регулирования движения поездов. К системе электроснабжения железной дороги могут быть подключены расположенные вблизи нее небольшие предприятия и населенные пункты.

    Согласно п. 1 Приложения № 4 к ПТЭ на железнодорожном транспорте должно быть обеспечено надежное электроснабжение электрического подвижного состава, устройств СЦБ, связи и вычислительной техники как потребителей электрической энергии I категории, а также других потребителей в соответствии с установленной для них категорией.

    Система электроснабжения железных дорог состоит из внешней сети (электростанции, трансформаторные подстанции, линии электропередачи) и внутренних сетей (тяговая сеть, линии электроснабжения устройств СЦБ и связи, осветительная сеть и др.).

    На электростанциях вырабатывается трехфазный переменный электрический ток напряжением 6. 21 кВ частотой 50 Гц. Для передачи электрической энергии к потребителям напряжение на трансформаторных подстанциях повышают до 250…750 кВ и передают на большие расстояния с помщью высоковольтных воздушных линий электропередачи (ЛЭП). Вблизи мест потребления электроэнергии напряжение понижают до 110 кВ с помощью понижающих подстанций и подают в районные сети, к которым наряду с другими потребителями подключены тяговые подстанции электрифицированных железных дорог и комплектные трансформаторные подстанции, питающие нетяговые потребители, ток которым поступает по высоковольтно-сигнальным линиям электропередачи напряжением 6. 10 кВ.

    Назначение и виды тяговых сетей

    Схема электроснабжения железной дороги постоянного тока

    Тяговая сеть предназначена для обеспечения электрической энергией электрического подвижного состава. Она состоит из контактных и рельсовых проводов, представляющих собой соответственно питающую и отсасывающую линии. Участки тяговой сети делят на секции (секционируют) и подсоединяют к соседним тяговым подстанциям. Это позволяет более равномерно загружать подстанции и контактную сеть, что в целом способствует снижению потерь электроэнергии в тяговой сети.

    На железных дорогах России используют две системы тягового тока: постоянного и однофазного переменного.

    Правилами технической эксплуатации регламентированы номинальные уровни напряжения на токоприемниках электрического подвижного состава: 3 кВ — при постоянном токе и 25 кВ — при переменном. При этом определены допустимые с точки зрения обеспечения стабильности движения пределы изменения величины напряжения: при постоянном токе от 2,7 до 4 кВ, при переменном — от 21 до 29 кВ (п.2 Приложения № 4 к ПТЭ).

    На железных дорогах, электрифицированных на постоянном токе, тяговые подстанции выполняют две функции: понижают напряжение подводимого трехфазного тока с помощью тяговых трансформаторов и преобразуют его в постоянный с помощью выпрямителей. От тяговой подстанции электричество через защитный быстродействующий выключатель подается в контактную сеть по питающей линии — фидеру, а из рельсов возвращается обратно на тяговую подстанцию по отсасывающей линии.

    Основными недостатками системы электроснабжения постоянного тока являются его постоянная полярность, относительно низкое напряжение в контактном проводе и утечки тока из-за отсутствия возможности обеспечить полную электроизоляцию верхнего строения пути от нижнего («блуждающие токи»). Рельсы, служащие проводниками тока одной полярности, и земляное полотно представляют собой систему, в которой возможна электрохимическая реакция, приводящая к коррозии металла. В результате снижается срок службы рельсов и металлических конструкций, расположенных возле железнодорожного полотна. Для снижения этого эффекта применяют специальные защитные устройства — катодные станции и анодные заземлители.

    Из-за относительно низкого напряжения в системе постоянного тока для получения необходимой мощности тягового подвижного состава (W=UI) по тяговой сети должен протекать ток большой силы. Для этого тяговые подстанции размещают недалеко друг от друга (через каждые 10. 20 км) и увеличивают площадь сечения проводов контактной подвески, иногда применяя двойной и даже тройной контактный провод.

    Читайте также:  Основная единица измерения силы электрического тока формула

    При электрификации на переменном токе по контактной сети передается требуемая мощность при бóльшем напряжении (25 кВ) и, соответственно, меньшей силе тока по сравнению с системой постоянного тока. Тяговые подстанции в этом случае располагаются на расстоянии 50. 70 км друг от друга. Их техническое оснащение проще и дешевле, чем у тяговых подстанций постоянного тока (отсутстсвуют выпрямители). Кроме того, сечение проводов контактной сети примерно в два раза меньше, что позволяет существенно экономить дорогостящую медь. Однако конструкция локомотивов и электропоездов переменного тока сложнее, а их стоимость выше.

    Стыкование контактных сетей линий, электрифицированных на постоянном и переменном токе, осуществляют на специальных железнодорожных станциях — станциях стыкования. На таких станциях имеется электрическое оборудование — пункты группировки, позволяющие на одни и те же участки станционных путей подавать как постоянный, так и переменный ток. Работа таких устройств взаимоувязывается с работой устройств централизации и сигнализации. Устройство станций стыкования требует больших капиталовложений. Когда создание таких станций представляется нецелесообразным, применяют двухсистемные электровозы и электропоезда, работающие на обоих родах тока. При использовании такого ЭПС переход с одного рода тока на другой может происходить во время движения поезда по перегону.

    Устройство контактной сети

    Контактная сеть

    Контактная сеть — это совокупность проводов, поддерживающих конструкций и другого оборудования, обеспечивающих передачу электрической энергии от тяговых подстанций к токоприемникам электрического подвижного состава. Основным требованием к конструкции контактной сети является обеспечение надежного постоянного контакта провода с токоприемником независимо от скорости движения поездов, климатических и атмосферных условий. В контактной сети нет дублируемых элементов, поэтому ее повреждение может повлечь за собой серьезное нарушение установленного графика движения поездов.

    В соответствии с назначением электрифицированных путей используют простые и цепные воздушные контактные подвески. На второстепенных станционных и деповских путях при сравнительно небольшой скорости движения может применяться простая контактная подвеска («трамвайного» типа), представляющая собой свободно висящий натянутый провод, который закреплен с помощью изоляторов на опорах, расположенных на расстоянии 50…55 м друг от друга.

    При высоких скоростях движения провисание контактного провода должно быть минимальным. Это обеспечивается конструкцией цепной контактной подвески, в которой контактный провод между опорами прикреплен к несущему тросу с помощью часто расположенных проволочных струн. Благодаря этому расстояние между поверхностью головки рельса и контактным проводом остается практически постоянным. Для цепной подвески в отличие от простой требуется меньше опор: они располагаются на расстоянии 65. 70 м друг от друга. На скоростных участках применяют цепную двойную контактную подвеску, в которой к несущему тросу на струнах подвешивают вспомогательный провод, к которому также струнами крепят контактный провод. В горизонтальной плоскости контактный провод расположен зигзагообразно относительно оси пути с отклонением у каждой опоры на ±300 мм. Благодаря этому обеспечиваются его ветроустойчивость и равномерное изнашивание контактных пластин токоприемников. Для уменьшения провисания контактного провода при сезонном изменении температуры его оттягивают к опорам, которые называются анкерными, и через систему тросов, роликов и изоляторов к ним подвешивают грузовые компенсаторы. Наибольшая длина участка между анкерными опорами (анкерного участка) устанавливается с учетом допустимого натяжения изношенного контактного провода и на прямых участках пути достигает 800 м.

    Контактный провод изготавливают из твердотянутой электролитической меди сечением 85, 100 или 150 мм 2 . Для удобства крепления проводов с помощью зажимов используют медные фасонные провода МФ.

    Для надежной работы контактной сети и удобства обслуживания ее делят на отдельные участки — секции с помощью воздушных промежутков и нейтральных вставок, а также секционных изоляторов.

    При проходе токоприемника электроподвижного состава по воздушному промежутку он своим полозом кратковременно электрически соединяет обе секции контактной сети. Если по условиям питания секций это недопустимо, то их разделяют нейтральной вставкой, которая состоит из нескольких расположенных последовательно воздушных промежутков. Применение нейтральных вставок обязательно на линиях, электрифицированных на переменном токе, т.к. соседние секции контактной сети могут питаться от разных фаз, приходящих с электростанции, электрическое соединение которых друг с другом недопустимо. Проследовать нейтральные вставки ЭПС должен в режиме выбега и с выключенными вспомогательными машинами. Для ограждения мест секционирования контактной сети применяются специальные сигнальные знаки «токораздел», устанавливаемые на опорах контактной сети.

    Соединение или разъединение секций осуществляется посредством секционных разъединителей, размещаемых на опорах контактной сети. Управление разъединителями может осуществляться как дистанционно с помощью установленного на опоре электропривода, связанного с пультом энергодиспетчера, так и вручную с помощью ручного привода, .

    Схема оснащения контактными проводами станционных путей зависит от их назначения и типа станции. Над стрелочными переводами контактная сеть имеет так называемые воздушные стрелки, образуемые пересечением двух контактных подвесок.

    На магистральных железных дорогах применяют металлические и железобетонные опоры контактной сети. Расстояние от оси крайнего пути до внутреннего края опор на прямых участках должно быть не менее 3100 мм. В особых случаях на электрифицируемых линиях допускается сокращение указанного расстояния до 2450 мм — на станциях и до 2750 мм — на перегонах. На перегонах в основном применяют индивидуальную консольную подвеску контактного провода. На станциях (а в некоторых случаях и на перегонах) применяется групповая подвеска контактных проводов на гибких и жестких поперечинах.

    Для защиты контактной сети от короткого замыкания между соседними тяговыми подстанциями располагают посты секционирования, оборудованные защитными выключателями. Все металлические конструкции, непосредственно взаимодействующие с элементами контактной сети или находящиеся в радиусе 5 м от них, заземляют (соединяют с рельсами). На линиях, электрифицированных на постоянном токе, применяют специальные диодные и искровые заземлители. Для защиты элементов и оборудования контактной сети от перенапряжений (например, вследствие удара молнии) на некоторых опорах устанавливают грозовые разрядники, имеющие дугогасительные рога.

    Для электрической изоляции элементов контактной сети, находящихся под напряжением (контактного провода, несущего троса, струн, фиксаторов), от заземленных элементов (опор, консолей, поперечин и пр.) применяются изоляторы. По выполняемым функциям изоляторы бывают подвесные, натяжные, фиксаторные, консольные, по конструкции — тарельчатые и стержневые, а по материалу, из которого они изготовлены — фарфоровые, стеклянные и полимерные.

    На электрифицированных железных дорогах по рельсам проходит обратный тяговый ток. Для сокращения потерь электроэнергии и обеспечения нормального режима работы устройств автоматики и телемеханики на таких линиях предусматривают следующие особенности устройства верхнего строения пути:

    • к головкам рельсов с наружной стороны колеи приваривают стыковые соединители (шунты), снижающие электрическое сопротивление рельсовых стыков;
    • рельсы изолируют от шпал с помощью резиновых прокладок в случае применения железобетонных шпал и пропиткой деревянных шпал креозотом;
    • используют щебеночный балласт, обладающий хорошими диэлектрическими свойствами, а между подошвой рельса и балластом обеспечивают зазор не менее 3 см;
    • на линиях, оборудованных автоблокировкой и электрической централизацией, применяют изолирующие стыки, а для того чтобы пропускать тяговый ток в обход них, устанавливают дроссель-трансформаторы или частотные фильтры.

    Станции стыкования переменного и постоянного тока

    Станция стыкования родов тока

    Один из способов стыкования линий, электрифицированных на разных родах тока — это секционирование контактной сети станции стыкования с переключением отдельных секций на питание от фидеров постоянного или переменного тока. Контактная сеть станций стыкования имеет группы изолированных секций: постоянного тока, переменного тока и переключаемые. В переключаемые секции подается электроэнергия через пункты группировки. Контактную сеть с одного рода тока на другой переключают специальными переключателями с моторными приводами, устанавливаемыми на пунктах группировки. К каждому пункту подведены две питающие линии: переменного и постоянного тока от тяговой подстанции постоянно-переменного тока. Фидеры соответствующего рода тока этой подстанции подключают также к контактной сети горловин станции стыкования и прилегающих перегонов.

    Для исключения возможности подачи на отдельные секции контактной сети тока, не соответствующего находящемуся там подвижному составу, а также выезда ЭПС на секции контактной сети с другой системой тока переключатели блокируют друг с другом и с устройствами электрической централизации. Управление переключателями включают в единую систему маршрутно-релейной централизации управления стрелками и сигналами станции. Дежурный по станции, собирая какой-либо маршрут, одновременно с установкой стрелок и сигналов в требуемое положение производит соответствующие переключения в контактной сети.

    Маршрутная централизация на станциях стыкования имеет систему счета заезда и выезда электроподвижного состава на участки пути переключаемых секций контактной сети, что предотвращает попадание его под напряжение другого рода тока. Для защиты оборудования устройств электроснабжения и электроподвижного состава постоянного тока при попадании на них в результате каких-либо нарушений напряжения переменного тока имеется специальная аппаратура.

    Требования к устройствам электроснабжения

    Устройства электроснабжения должны обеспечивать надежное электроснабжение:

    • электроподвижного состава для движения поездов с установленными весовыми нормами, скоростями и интервалами между ними при требуемых размерах движения;
    • устройств СЦБ, связи и вычислительной техники как потребителей электрической энергии I категории;
    • всех остальных потребителей железнодорожного транспорта в соответствии с установленной категорией.

    К устройствам электроснабжения тягового подвижного состава предъявляются описанные выше требования в отношеннии величины напряжения в тяговой сети и высоты подвески контактного провода.

    Резервные источники электроснабжения усройств СЦБ должны быть в постоянной готовности и обеспечивать бесперебойную работу устройств СЦБ и переездной сигнализации в течение не менее 8 ч при условии, что питание не отключалось в предыдущие 36 ч. Время перехода с основной системы электроснабжения на резервную или наоборот не должно превышать 1,3 с.

    Обслуживание контактной сети

    Для обеспечения надежного электроснабжения должны проводиться периодический контроль состояния сооружений и устройств электроснабжения, измерение их параметров вагонами-лабораториями, приборами диагностики и осуществляться плановые ремонтные работы.

    Устройства электроснабжения должны защищаться от токов короткого замыкания, перенапряжений и перегрузок сверх установленных норм.

    Металлические подземные сооружения (трубопроводы, кабели и т.п.), а также металлические и железобетонные конструкции, находящиеся в районе линий, электрифицированных на постоянном токе, должны быть защищены от электрической коррозии.

    В пределах искусственных сооружений расстояние от токонесущих элементов токоприемника и частей контактной сети, находящихся под напряжением, до заземленных частей сооружений и подвижного состава должно быть не менее 200 мм на линиях, электрифицированных на постоянном токе, и не менее 270 мм — на переменном токе.

    С целью безопасности обслуживающего персонала и других лиц, а также для улучшения защиты от токов короткого замыкания заземляют или оборудуют устройствами защитного отключения металлические опоры и элементы, к которым подвешена контактная сеть, а также все металлические конструкции, расположенные ближе 5 м от частей контактной сети, находящихся под напряжением.

    Источник