Меню

Уравнение выражает зависимость силы тока от времени в колебательном контуре каково соотношение между

Уравнение выражает зависимость силы тока от времени в колебательном контуре каково соотношение между

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 15. На рисунке приведена зависимость силы тока от времени в колебательном контуре при свободных электромагнитных колебаниях. Какой станет частота свободных колебаний в контуре, если катушку в этом контуре заменить на другую катушку, индуктивность которой в 4 раза меньше?

Период колебаний в колебательном контуре можно найти по формуле Томпсона , где L – индуктивность катушки; C – емкость конденсатора. Соответственно, частота колебаний, равна

Из рисунка видно, что начальный период колебаний равен T=4 мкс (время одного полного колебания). Если индуктивность уменьшить в 4 раза, то есть, L/4, получим период, равный:

и частота колебаний будет равна:

что составляет 500 кГц.

Ответ: 500.

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • Вариант 1
  • Вариант 1. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 2
  • Вариант 2. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 3
  • Вариант 3. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 4
  • Вариант 4. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 5
  • Вариант 5. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 6
  • Вариант 6. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 7
  • Вариант 7. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 8
  • Вариант 8. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 9
  • Вариант 9. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 10
  • Вариант 10. Подготовка к ЕГЭ 2019 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 11 (совпадает с ЕГЭ 2018 вариант 1)
  • Вариант 1. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 12 (совпадает с ЕГЭ 2018 вариант 2)
  • Вариант 2. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 13 (совпадает с ЕГЭ 2018 вариант 3)
  • Вариант 3. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 14 (совпадает с ЕГЭ 2018 вариант 4)
  • Вариант 4. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 15 (совпадает с ЕГЭ 2018 вариант 5)
  • Вариант 5. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 16 (совпадает с ЕГЭ 2018 вариант 6)
  • Вариант 6. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 17 (совпадает с ЕГЭ 2018 вариант 7)
  • Вариант 7. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 18 (совпадает с ЕГЭ 2018 вариант 8)
  • Вариант 8. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 19 (совпадает с ЕГЭ 2018 вариант 9)
  • Вариант 9. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 20 (совпадает с ЕГЭ 2018 вариант 10)
  • Вариант 10. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 21 (совпадает с ЕГЭ 2017 вариант 11)
  • Вариант 11. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 22 (совпадает с ЕГЭ 2017 вариант 12)
  • Вариант 12. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 23 (совпадает с ЕГЭ 2017 вариант 13)
  • Вариант 13. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 24 (совпадает с ЕГЭ 2017 вариант 14)
  • Вариант 14. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 25 (совпадает с ЕГЭ 2017 вариант 15)
  • Вариант 15. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 26 (совпадает с ЕГЭ 2017 вариант 16)
  • Вариант 16. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 27 (совпадает с ЕГЭ 2017 вариант 21)
  • Вариант 21. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 28 (совпадает с ЕГЭ 2017 вариант 22)
  • Вариант 22. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 29 (совпадает с ЕГЭ 2017 вариант 23)
  • Вариант 23. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 30 (совпадает с ЕГЭ 2017 вариант 24)
  • Вариант 24. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

Тест. Переменный электрический ток

Avatar

Список вопросов теста

Вопрос 1

Какой ток называется переменным?

Варианты ответов
  • Ток, у которого периодически изменяется только численное значение
  • Ток, у которого периодически изменяются величина и направление
  • Ток, у которого изменяется только направление
  • Ток, у которого изменяется амплитуда колебаний
Вопрос 2

В цепь включена индуктивность L = 1 Гн. Максимальное напряжение Um = 314 В. Частота тока v = 50 Гц. Каково амплитудное значение тока в цепи?

Варианты ответов
  • 1 А
  • 2,24 А
  • 2 А
  • 22,4 А
Вопрос 3

Что происходит при включении конденсатора в цепь переменного тока на его обкладках с колебаниями напряжения?

Варианты ответов
  • Отстают по фазе от силы тока на п/2
  • Опережают по фазе силу тока на п/2
  • Совпадают по фазе с колебаниями силы тока
  • Опережают по фазе силу тока на 2п
Вопрос 4

Заряд q на пластинах конденсатора колебательного контура изменялся с течением времени в соответствии с уравнением q = 0.00005cos10000пt. Какое из уравнений выражает зависимость силы тока от времени?

Варианты ответов
  • i = 0.1пcos10000пt
  • i = 0.1пcos(10000пt+п/2)
  • i = 0.00005sin(wt+п/2)
  • i = 0.1пcos(10000пt+п)
Вопрос 5

Уравнение колебаний в контуре q = 0.00005cos10000пt.Какова собственная частота колебаний v в контуре?

Варианты ответов
  • 5000 Гц
  • 0,000005п Гц
  • 10000п Гц
  • 10000 Гц
Вопрос 6

Уравнение i = 0.0001пcos(wt+п/2) выражает зависимость силы тока от времени в колебательном контуре. Чему будет равна энергия на конденсаторе и в катушке индуктивности, если ток в цепи равен 0.0001 А?

Варианты ответов
  • В конденсаторе энергия максимальна, в катушке равна нулю
  • В конденсаторе энергия равна нулю, в катушке максимальна
  • В конденсаторе и катушке энергия распределена поровну
  • В конденсаторе энергия минимальна, в катушке максимальна
Вопрос 7

За счёт чего поддерживается ток в колебательном контуре, когда появляющаяся на конденсаторе разность потенциалов препятствует его протеканию?

Варианты ответов
  • За счёт энергии магнитного поля катушки
  • За счёт увеличения заряда на конденсаторе
  • За счёт уменьшения энергии магнитного поля катушки
  • За счет источника тока
Вопрос 8

Через какую долю периода после замыкания заряженного конденсатора на катушку индуктивности энергия в контуре распределится между конденсатором и катушкой поровну?

Варианты ответов
  • 1/2 T
  • 1/4 T
  • 1/8 T
  • 1/16 Т
Вопрос 9

Электроплитку можно питать постоянным и переменным током. Будет ли разница в накале спирали, если напряжение, измеренное вольтметром для обоих токов, одинаково?

Варианты ответов
  • Будет
  • Не будет
  • В зависимости от мощности электроплитки
  • Это зависит от частоты тока сети
Вопрос 10

Неоновая лампа включена в цепь переменного тока частотой 50Гц. Какова частота вспышки неоновой лампы?

Источник

Контрольная работа по физике Электромагнитные колебания и волны 11 класс

Контрольная работа по физике Электромагнитные колебания и волны для учащихся 11 класса с ответами. Контрольная работа включает 5 вариантов, в каждом варианте по 8 заданий.

1 вариант

A1. В уравнении гармонического колебания q = qmcos(ωt + φ) величина, стоящая под знаком косинуса, называется

1) фазой
2) начальной фазой
3) амплитудой заряда
4) циклической частотой

Читайте также:  Индукционный ток в лампе

А2. На рисунке показан график зависимости силы тока в ме­таллическом проводнике от времени. Определите частоту колебаний тока.

Контрольная работа по физике Электромагнитные колебания и волны 1 вариант задание А2

1) 8 Гц
2) 0,125 Гц
3) 6 Гц
4) 4 Гц

А3. Как изменится период собственных электромагнитных колебаний в контуре, если ключ К перевести из положения 1 в положение 2?

Контрольная работа по физике Электромагнитные колебания и волны 1 вариант задание А3

1) Уменьшится в 2 раза
2) Увеличится в 2 раза
3) Уменьшится в 4 раза
4) Увеличится в 4 раза

А4. По участку цепи с сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. В некото­рый момент времени действующее значение напряжения на этом участке уменьшили в 2 раза, а его сопротивление уменьшили в 4 раза. При этом мощность тока

1) уменьшится в 4 раза
2) уменьшится в 8 раз
3) не изменится
4) увеличится в 2 раза

А5. Сила тока в первичной обмотке трансформатора 0,5 А, напряжение на её концах 220 В. Сила тока во вторичной обмотке 11 А, напряжение на её концах 9,5 В. Опреде­лите КПД трансформатора.

1) 105 %
2) 95 %
3) 85 %
4) 80 %

В1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с 1 2 3 4 5 6 7 8 9
q, 10 -6 Кл 2 1,42 -1,42 -2 -1,42 1,42 2 1,42

Вычислите ёмкость конденсатора в контуре, если индук­тивность катушки равна 32 мГн. Ответ выразите в пико­фарадах и округлите до десятых.

В2. Колебательный контур радиопередатчика содержит кон­денсатор ёмкостью 0,1 нФ и катушку индуктивностью 1 мкГн. На какой длине волны работает радиопередат­чик? Скорость распространения электромагнитных волн с = 3 · 10 8 м/с. Ответ округлите до целых.

C1. Определите период электромагнитных колебаний в коле­бательном контуре, если амплитуда силы тока равна Im, а амплитуда электрического заряда на пластинах кон­денсатора qm.

2 вариант

A1. В уравнении гармонического колебания i = Imcos(ωt + φ) величина ω называется

1) фазой
2) начальной фазой
3) амплитудой силы тока
4) циклической частотой

А2. На рисунке показан график зависимости силы тока в ме­таллическом проводнике от времени. Определите ампли­туду колебаний тока.

Контрольная работа по физике Электромагнитные колебания и волны 2 вариант задание А2

1) 0,4 А
2) 0,2 А
3) 0,25 А
4) 4 А

А3. Как изменится частота собственных электромагнитных колебаний в кон­туре, если ключ К перевести из положения 1 в положение 2?

Контрольная работа по физике Электромагнитные колебания и волны 2 вариант задание А3

1) Уменьшится в 4 раза
2) Увеличится в 4 раза
3) Уменьшится в 2 раза
4) Увеличится в 2 раза

А4. По участку цепи с сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. В некото­рый момент времени действующее значение напряжения на этом участке увеличили в 2 раза, а сопротивление участка уменьшили в 4 раза. При этом мощность тока

1) не изменилась
2) возросла в 16 раз
3) возросла в 4 раза
4) уменьшилась в 2 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 110 В, сила тока в ней 0,1 А. Напряжение на кон­цах вторичной обмотки 220 В, сила тока в ней 0,04 А. Чему равен КПД трансформатора?

1) 120 %
2) 93 %
3) 80 %
4) 67 %

B1. Напряжение на конденсаторе в цепи переменного тока меняется с циклической частотой ω = 4000 с -1 . Амплиту­да колебаний напряжения и силы тока равны соответст­венно Um = 200 В и Im = 4 А. Найдите ёмкость конденса­тора.

В2. Найдите минимальную длину волны, которую может принять приёмник, если ёмкость конденсатора в его ко­лебательном контуре можно плавно изменять от 200 пФ до 1800 пФ, а индуктивность катушки постоянна и равна 60 мкГн. Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В процессе колебаний в идеальном колебательном конту­ре в момент времени t заряд конденсатора q = 4 · 10 -9 Кл, а сила электрического тока в катушке равна I = 3 мА. Период колебаний Т = 6,28 · 10 -6 с. Найдите амплитуду колебаний заряда.

3 вариант

А1. В уравнении гармонического колебания u = Umsin(ωt + φ) величина φ называется

1) фазой
2) начальной фазой
3) амплитудой напряжения
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Контрольная работа по физике Электромагнитные колебания и волны 3 вариант задание А2

Амплитуда колебаний тока равна

1) 20 А
2) 10 А
3) 0,25 А
4) 4 А

А3. В наборе радиодеталей для изготовления простого коле­бательного контура имеются две катушки с индуктивно­стями L1 = 1 мкГн и L2 = 2 мкГн, а также два конденса­тора, ёмкости которых С1 = 3 пФ и С2 = 4 пФ. При каком выборе двух элементов из этого набора частота собственных колебаний контура будет наибольшей?

А4. По участку цепи сопротивлением R течёт переменный ток, меняющийся по гармоническому закону. Как изме­нится мощность переменного тока на этом участке цепи, если действующее значение напряжения на нём умень­шить в 2 раза, а его сопротивление в 4 раза увеличить?

1) Уменьшится в 16 раз
2) Уменьшится в 4 раза
3) Увеличится в 4 раза
4) Увеличится в 2 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 127 В, сила тока в ней 1 А. Напряжение на концах вторичной обмотки 12,7 В, сила тока в ней 8 А. Чему равен КПД трансформатора?

1) 100 %
2) 90 %
3) 80 %
4) 70 %

B1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с 2 4 6 8 10 12 14 16 18
q, 10 -6 Кл 2,13 3 2,13 -2,13 -3 -2,13 2,13

Вычислите индуктивность катушки, если ёмкость кон­денсатора в контуре равна 100 пФ. Ответ выразите в миллигенри и округлите до целых.

В2. Найдите максимальную длину волны, которую может принять приёмник, если ёмкость конденсатора в его ко­лебательном контуре можно плавно изменять от 200 пФ до 1800 пФ, а индуктивность катушки постоянна и равна 60 мкГн. Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре амплитуда колеба­ний силы тока в катушке индуктивности равна 10 мА, а амплитуда колебаний заряда конденсатора равна 5 нКл. В момент времени t заряд конденсатора равен 3 нКл. Найдите силу тока в катушке в этот момент.

4 вариант

A1. В уравнении гармонического колебания u = Umsin(ωt + φ) величина Um называется

1) фазой
2) начальной фазой
3) амплитудой напряжения
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Контрольная работа по физике Электромагнитные колебания и волны 4 вариант задание А2

Частота колебаний тока равна

1) 0,12 Гц
2) 0,25 Гц
3) 0,5 Гц
4) 4 Гц

А3. На рисунке приведён график зависимости силы тока от времени в колебательном контуре при свободных колеба­ниях. Катушку в этом контуре заменили на другую ка­тушку, индуктивность которой в 4 раза меньше. Каким будет период колебаний контура?

Контрольная работа по физике Электромагнитные колебания и волны 4 вариант задание А3

1) 1 мкс
2) 2 мкс
3) 4 мкс
4) 8 мкс

А4. По участку цепи с некоторым сопротивлением R течёт переменный ток, меняющийся по гармоническому зако­ну. Как изменится мощность переменного тока на этом участке цепи, если действующее значение силы тока на нём увеличить в 2 раза, а его сопротивление в 2 раза уменьшить?

1) Не изменится
2) Увеличится в 2 раза
3) Уменьшится в 2 раза
4) Увеличится в 4 раза

А5. Напряжение на концах первичной обмотки трансформа­тора 220 В, сила тока в ней 1 А. Напряжение на концах вторичной обмотки 22 В. Какой была бы сила тока во вторичной обмотке при коэффициенте полезного дейст­вия трансформатора 100 %?

1) 0,1 А
2) 1 А
3) 10 А
4) 100 А

B1. Индуктивность катушки равна 0,125 Гн. Уравнение ко­лебаний силы тока в ней имеет вид: i = 0,4cos(2 · 10 3 t), где все величины выражены в СИ. Определите амплиту­ду напряжения на катушке.

В2. Колебательный контур радиоприёмника содержит кон­денсатор, ёмкость которого 10 нФ. Какой должна быть индуктивность контура, чтобы обеспечить приём волны длиной 300 м? Скорость распространения электромаг­нитных волн с = 3 · 10 8 м/с.

C1. В идеальном колебательном контуре в катушке индук­тивности амплитуда колебаний силы тока Im = 5 мА, а амплитуда колебаний заряда конденсатора qm = 2,5 нКл. В момент времени t сила тока в катушке i = 3 мА. Най­дите заряд конденсатора в этот момент.

5 вариант

A1. В уравнении гармонического колебания q = qmcos(ωt + φ) величина, стоящая перед знаком косинуса, называется

1) фазой
2) начальной фазой
3) амплитудой заряда
4) циклической частотой

А2. На рисунке представлена зависимость силы тока в ме­таллическом проводнике от времени.

Контрольная работа по физике Электромагнитные колебания и волны 5 вариант задание А2

Период колебаний тока равен

1) 2 мс
2) 4 мс
3) 6 мс
4) 10 мс

А3. На рисунке приведён график зависимости силы тока от времени в колебательном контуре при свободных колебаниях.

Контрольная работа по физике Электромагнитные колебания и волны 5 вариант задание А3

Если ёмкость конденсатора увеличить в 4 раза, то период собственных колебаний контура станет равным

1) 2 мкс
2) 4 мкс
3) 8 мкс
4) 16 мкс

А4. По участку цепи с некоторым сопротивлением R течёт пе­ременный ток, меняющийся по гармоническому закону. В некоторый момент времени действующее значение силы тока на участке цепи увеличивается в 2 раза, а сопротив­ление уменьшается в 4 раза. При этом мощность тока

1) увеличится в 4 раза
2) увеличится в 2 раза
3) уменьшится в 2 раза
4) не изменится

А5. КПД трансформатора 90 %. Напряжение на концах пер­вичной обмотки 220 В, на концах вторичной 22 В. Сила тока во вторичной обмотке 9 А. Какова сила тока в пер­вичной обмотке трансформатора?

1) 0,1 А
2) 0,45 А
3) 0,9 А
4) 1 А

B1. В таблице показано, как изменялся заряд конденсатора в колебательном контуре с течением времени.

t, 10 -6 с 1 2 3 4 5 6 7 8 9
q, 10 -6 Кл 2 1,42 -1,42 -2 -1,42 1,42 2 1,42

Вычислите индуктивность катушки, если ёмкость кон­денсатора в контуре равна 50 пФ. Ответ выразите в мил­лигенри и округлите до целых.

В2. Электрический колебательный контур радиоприёмника содержит катушку индуктивности 10 мГн и два парал­лельно соединенных конденсатора, ёмкости которых равны 360 пФ и 40 пФ. На какую длину волны настроен контур? Скорость распространения электромагнитных волн с = 3 · 10 8 м/с.

Читайте также:  Приборы для увеличения электрического тока

C1. В идеальном колебательном контуре амплитуда колеба­ний силы электрического тока в катушке индуктивности Im = 5 мА, а амплитуда напряжения на конденсаторе Um = 2 В. В момент времени t сила тока в катушке i = 3 мА. Найдите напряжение на конденсаторе в этот момент.

Ответы на контрольную работу по физике Электромагнитные колебания и волны 11 класс
1 вариант
1-1
2-2
3-1
4-3
5-2
6. 50,7 пФ
7. 18,84 м
8. T = 2πqm/Im
2 вариант
1-4
2-2
3-3
4-2
5-3
6. 5 мкФ
7. 206,4 м
8. 5 нКл
3 вариант
1-2
2-2
3-3
4-1
5-3
6. 65 мГн
7. 619,1 м
8. 8 мА
4 вариант
1-3
2-2
3-2
4-2
5-3
6. 100 В
7. 2,54 мкГн
8. 2 нКл
5 вариант
1-3
2-2
3-3
4-4
5-4
6. 32 мГн
7. 3768 м
8. 1,6 В

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/18.8

§18. Переменный электрический ток

18.8 Колебательный контур.

18.8.1 Свободные колебания в контуре.

Img Slob-10-18-262.jpg

Рассмотренные в предыдущих разделах цепи переменного тока наводят на мысль, что пара элементов – конденсатор и катушка индуктивности образуют своеобразную колебательную систему. Сейчас мы покажем, что это действительно так, в цепи состоящей только из этих элементов (рис. 262) возможны даже свободные колебания, то есть без внешнего источника ЭДС. Поэтому цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром.

Img Slob-10-18-263.jpg

Пусть конденсатор зарядили до заряда q и затем подключили к нему катушку индуктивности. Такую процедуру легко осуществить с помощью цепи, схема которой показана на рис. 263: сначала ключ К замыкают в положении 1, при этом конденсатор заряжается до напряжения, равного ЭДС источника, после чего ключ перебрасывают в положения 2, после чего начинается разрядка конденсатора через катушку.

Для определения зависимости заряда конденсатора от времени q(t) применим закон Ома, согласно которому напряжение на конденсаторе \(

U_C = \frac\) равно ЭДС самоиндукции, возникающей в катушке \(

\varepsilon_ = -L \frac<\Delta I> <\Delta t>= LI’\) (здесь, «штрих» означает производную по времени). Таким образом, оказывается справедливым уравнение

В этом уравнении содержится две неизвестных функции – зависимости от времени заряда q(t) и силы тока I(t), поэтому его решить нельзя. Однако сила тока является производной от заряда конденсатора q′(t) = I(t), поэтому производная от силы тока является второй производной от заряда

С учетом этого соотношения, перепишем уравнение (1) в виде

Поразительно, но это уравнение полностью совпадает с хорошо изученным нами уравнением гармонических колебаний (вторая производная от неизвестной функции пропорциональна самой этой функции с отрицательным коэффициентом пропорциональности \(x» = -\omega^2_0 x\))! Следовательно, решением этого уравнения будет гармоническая функция

q = A \cos (\omega_0 t + \varphi)\) (4)

с круговой частотой

Эта формула определяет собственную частоту колебательного контура. Соответственно период колебаний заряда конденсатора (и силы тока в контуре) равен

T = 2 \pi \sqrt\) . (6)

Полученное выражение для периода колебаний называется формулой Дж. Томпсона.

Как обычно, для определения произвольных параметров A, φ в общем решении (4) необходимо задать начальные условия – заряд и силу тока в начальный момент времени. В частности, для рассмотренного примера цепи рис. 263, начальные условия имеют вид: при t = 0 q = q, I = 0, поэтому зависимость заряда конденсатора от времени будет описываться функцией

q = q_0 \cos \omega_0 t\) , (7)

а сила тока изменяется со временем по закону

I = — \omega_0 q_0 \sin \omega_0 t\) . (8)

Img Slob-10-18-264.jpg

Следует отметить, что приведенное рассмотрение колебательного контура является приближенным – любой реальный контур обладает активным сопротивлением (соединительных проводов и обмотки катушки). Поэтому в уравнении (1) следует учесть падение напряжения на этом активном сопротивлении, поэтому это уравнение приобретет вид

который с учетом связи между зарядом и силой тока, преобразуется к форме

Это уравнение нам также знакомо – это уравнение затухающих колебаний \(x» = -\omega^2_0 x — \beta x’\), причем коэффициент затухания, как и следовало ожидать, пропорционален активному сопротивлению цепи \(

Процессы, происходящие в колебательном контуре, могут быть также описаны и с помощью закона сохранения энергии. Если пренебречь активным сопротивлением контура, то сумма энергий электрического поля конденсатора и магнитного поля катушки остается постоянной, что выражается уравнением

которое также является уравнением гармонических колебаний с частотой, определяемой формулой (5). По свое форме это уравнение также совпадает уравнениями, следующими из закона сохранения энергии при механических колебаниях. Так как, уравнения, описывающие колебания электрического заряда конденсатора, аналогичны уравнениям, описывающим механические колебания, то можно провести аналогию между процессами, протекающими в колебательном контуре, и процессами в любой механической системе.

Img Slob-10-18-265.jpg

На рис. 265 такая аналогия проведена для колебаний математического маятника. В этом случае аналогами являются «заряд конденсатора q(t) – угол отклонения маятника φ(t)» и «сила тока I(t) = q′(t) – скорость движения маятника V(t)».

Пользуясь этой аналогией, качественно опишем процесс колебаний заряда и электрического тока в контуре. В начальный момент времени конденсатор заряжен, сила электрического тока равна нулю, вся энергия заключена в энергии электрического поля конденсатора (что аналогично максимальному отклонения маятника от положения равновесия). Затем конденсатор начинает разряжаться, сила тока возрастает, при этом в катушке возникает ЭДС самоиндукции, которая препятствует возрастанию тока; энергия конденсатора уменьшается, переходя в энергию магнитного поля катушки (аналогия – маятник движется к нижней точки с возрастанием скорости движения). Когда заряд на конденсаторе становится равным нулю, сила тока достигает максимального значения, при этом вся энергия превращается в энергию магнитного поля (маятник достиг нижней точки, скорость его максимальна). Затем магнитное поле начинает убывать, при этом ЭДС самоиндукции поддерживает ток в прежнем направлении, при этом конденсатор начинает заряжаться, причем знаки зарядов на обкладках конденсатора противоположны начальному распределению (аналог – маятник движется к противоположному начальному максимальному отклонению). Затем ток в цепи прекращается, при этом заряд конденсатора становится опять максимальным, но противоположным по знаку (маятник достиг максимального отклонения), после чего процесс повторятся в противоположном направлении.

18.8.2 Вынужденные колебания в контуре.

Как уже было сказано, в реальном колебательном контуре колебания будут затухающими [1] из-за неизбежного выделения теплоты на активном сопротивлении (которым мы пренебрегли). Поэтому для поддержания незатухающих колебаний в контуре необходим внешний источник энергии, иными словами нам необходимо рассмотреть вынужденные колебания. Один из возможных вариантов осуществления таких колебаний мы уже рассмотрели при изучении темы «Резонанс напряжений», где мы фактически изучили колебания в контуре, внутрь которого включен источник переменной ЭДС, который может считаться аналогом внешней вынуждающей силы.

Чтобы явным образом показать, что явление резонанса напряжений можно рассматривать как вынужденные колебания, перепишем использованное уравнение закона Ома

\varepsilon(t) = U_R(t) + U_C(t) + U_L(t)\) .

Для чего подставим в него явные выражения для напряжений на элементах цепи \(

U_L = -\varepsilon_ = LI’ = Lq»\) и ЭДС источника \(\varepsilon = U_0 \cos \omega t\):

Lq» + \frac + Rq’ = U_0 \cos \omega t\)

и перепишем его в виде

q» = -\frac<1> q — \frac q’ + \frac \cos \omega t\) ,

который полностью совпадает с уравнением вынужденных колебаний \(x» = -\omega^2_0 x — \beta x’ + f_0 \cos \omega t\).

Img Slob-10-18-266.jpg

Рассмотрим теперь возможность возникновения вынужденных колебаний в контуре, когда источник переменной ЭДС находится вне контура [2] , как показано на рис. 266. Расчет данной цепи проведем, используя метод векторных диаграмм (которая также представлена на рис. 266). В данном случае нас, прежде всего, будет интересовать сила тока в колебательном контуре.

Так как конденсатор и катушка индуктивности соединены параллельно, то мгновенные напряжения (UC, UL) на этих элементах одинаковы. Обозначим это напряжение U1. Построение диаграммы следует начинать с построения вектора, изображающего колебания этого напряжения. Далее построим векторы, изображающие колебания сил токов через конденсатор IC и катушку индуктивности IL — эти векторы перпендикулярны вектору напряжения U1 и противоположны друг другу. Как обычно, колебания токов через конденсатор и через катушку индуктивности происходят в противофазе. Колебательный контур соединен последовательно с резистором, поэтому сумма токов IC и IL (конечно, их мгновенных значений) равна силе тока через резистор IR. Вектор изображающий напряжение на резисторе UR, сонаправлен с вектором суммарного тока. Наконец сумма векторов напряжения на резисторе UR и напряжения на контуре U1 равна ЭДС источника.

Построенная векторная диаграмма позволяет рассчитать амплитудные значения токов и напряжений на элементах данной цепи. Выразим традиционным образом амплитудные значения сил токов через конденсатор и катушку через амплитуду напряжения на контуре

Амплитуда силы тока через резистор (и через источник) определяется из векторной диаграммы и равна

I_ = (I_ — I_) = U_ <10>\left( \omega C — \frac<1> <\omega L>\right)\) . (2)

Теперь можно записать выражение для амплитуды напряжения на резисторе

U_ = I_R = U_ <10>\left( \omega C — \frac<1> <\omega L>\right) R\) . (3)

Далее, глядя на диаграмму напряжений, запишем теорему Пифагора для вектора ЭДС источника ⎟ ⎟

U^2_0 = U^2_ + U^2_ <10>= U^2_ <10>\left( 1 + \left( \omega C — \frac<1> <\omega L>\right)^2 R^2 \right) = U^2_ <10>R^2 \left( \frac<1> + \left( \omega C — \frac<1> <\omega L>\right)^2 \right)\) , (4)

здесь U — амплитуда ЭДС источника.

Из этого уравнения легко определить напряжение на резисторе

Наконец, с помощью формул (1), (2), (3), запишем выражения для сил токов в рассматриваемой цепи

Проанализируем зависимость этих величин от частоты источника ЭДС. Во всех формулах под корнем имеется два положительных слагаемых, причем только второе зависит от частоты. При частоте

Читайте также:  При последовательном соединении сила тока складывается а напряжение

равной собственной частоте колебательного контура второе слагаемое под корнем обращается в ноль, поэтому можно ожидать, что вблизи этой частоты силы токов через конденсатор и катушку достигают максимального значения. Понятно, что максимумы функций IL0(ω) и IC0(ω) несколько смещены от частоты ω, потому, что частота источника ω присутствует и вне корня. Однако, если первое слагаемое под корнем (\(\frac<1>\)), мало, то сдвиг максимума от значения ω = ω будет незначительным. Отметим, также, что при \(

\omega = \omega_0 = \frac<1><\sqrt>\) амплитуды токов через конденсатор и катушку оказываются равными. Действительно, в этом случае

Img Slob-10-18-267.jpg

Но самое неожиданное, что при ω = ω сила тока через резистор обращается в нуль! Соответственно, напряжение на колебательном контуре становится равным ЭДС источника, что также следует и из полученных формул для токов в контуре. Схематические графики зависимостей [3] амплитуд токов от частоты источника показаны на рис.267. Понятно, что при ω → 0 и ω → ∞ сопротивление контура стремится к нуля и в этом случае сила тока через резистор стремится к своему предельному значению \(

Таким образом, мы показали, что в рассмотренной цепи при частоте источника стремящейся к собственной частоте контура амплитуда силы тока в контуре резко возрастает, наблюдается явление резонанса, следовательно, колебательный контур можно использовать для выделения колебаний требуемой частоты. Интересно, отметить, что острота пика возрастает с ростом сопротивления резистора, находящегося вне контура.

В заключение данного раздела, обсудим, почему при ω = ω сила тока во внешней для контура цепи обращается в нуль. Колебания токов через конденсатор IC и через катушку индуктивности происходят в противофазе IL, а в случае ω = ω амплитуды этих токов сравниваются, в результате чего формально и получается нулевое значение для суммарного тока. Фактически в этом случае электрический ток циркулирует в колебательном контуре, не выходя из него. Подчеркнем, что наш анализ проведен для установившегося режима колебаний – в переходном режиме ток через резистор (и через источник идет) обеспечивая контур энергией. Когда колебания установятся, подкачка энергии становится излишней, так как мы пренебрегли потерями энергии в контуре. Обратите внимание, что при ω = ω сила тока в контуре не зависит сопротивления внешнего резистора, а полностью определяется параметрами контура.

Вспомните, что вынужденные колебания механических систем обладают тем же свойством – при точном резонансе и при отсутствии сил сопротивления работа внешней силы также обращается в нуль.

Если же рассмотреть реальный контур, обладающий активным сопротивлением, то между током в контуре и напряжением на нем разность фаз будет отлична от нуля, поэтому энергия источника будет поступать в контур, компенсируя потери. В этом случае также будет отличен от нуля и ток во внешней цепи.

Источник



Решение задач по теме «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ

Презентация к уроку

Назад Вперёд

Цели урока:

  • Образовательные: обобщение и систематизация знаний по теме, проверка знаний, умений, навыков. В целях повышения интереса к теме работу вести с помощью опорных конспектов.
  • Воспитательные: воспитание мировоззренческого понятия (причинно-следственных связей в окружающем мире), развитие у школьников коммуникативной культуры.
  • Развивающие: развитие самостоятельности мышления и интеллекта, умение формулировать выводы по изученному материалу, развитие логического мышления, развитие грамотной устной речи, содержащей физическую терминологию.

Тип урока:систематизация и обобщение знаний.

Техническая поддержка урока:

  • Демонстрации:
  • Плакаты.
  • Показ слайдов с помощью информационно – компьютерных технологий.
  • Дидактический материал:
  • Опорные конспекты с подробными записями на столах.
  • Оформление доски:
  • Плакат с кратким содержанием опорных конспектов (ОК);
  • Плакат – рисунок с изображением колебательного контура;
  • Плакат – график зависимости колебаний заряда конденсатора, напряжения между обкладками конденсатора, силы тока в катушке от времени, электрической энергии конденсатора, магнитной энергии катушки от времени.

План урока:

1. Этап повторения пройденного материала. Проверка домашнего задания.
Четыре группы задач по теме:

  • Электромагнитные колебания.
  • Колебательный контур.
  • Свободные колебания. Свободные колебания – затухающие колебания
  • Характеристика колебаний.

2. Этап применения теории к решению задач.
3. Закрепление. Самостоятельная работа.
4. Подведение итогов.

Учитель: Темой урока является «Решение задач по теме: «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ»

К доске вызываются 3 ученика для проверки домашнего задания.

– Задания по этой теме можно разделить на четыре группы.

Четыре группы задач по теме:

1. Задачи с использованием общих законов гармонических колебаний.
2. Задачи о свободных колебаниях конкретных колебательных систем.
3. Задачи о вынужденных колебаниях.
4. Задачи о волнах различной природы.

– Мы остановимся на решении задач 1 и 2 групп.

Урок начнем с повторения необходимых понятий для данной группы задач.

Электромагнитные колебания – это периодические и почти периодические изменения заряда, силы тока и напряжения.

Колебательный контур – цепь, состоящая из соединительных проводов, катушки индуктивности и конденсатора.

Свободные колебания – это колебания, происходящие в системе благодаря начальному запасу энергии с частотой, определяемой параметрами самой системы: L, C.

Скорость распространения электромагнитных колебаний равна скорости света: С = 3 . 10 8 (м/с)

Основные характеристики колебаний

Амплитуда (силы тока, заряда, напряжения) – максимальное значение (силы тока, заряда, напряжения): Im, Qm, Um
Мгновенные значения (силы тока, заряда, напряжения) – i, q, u

Схема колебательного контура

Учитель: Что представляют электромагнитные колебания в контуре?

Электромагнитные колебания представляют периодический переход электрической энергии конденсатора в магнитную энергию катушки и наоборот согласно закону сохранения энергии.

Задача №1 (д/з)

Колебательный контур содержит конденсатор емкостью 800 пФ и катушку индуктивности индуктивностью 2 мкГн. Каков период собственных колебаний контура?

Задача № 2 (д/з)

Колебательный контур состоит из конденсатора емкостью С и катушки индуктивности индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если электроемкость конденсатора и индуктивность катушки увеличить в 3р.

Задача № 3 (д/з)

Амплитуда силы тока при свободных колебаниях в колебательном контуре 100 мА. Какова амплитуда напряжения на конденсаторе колебательного контура, если емкость этого конденсатора 1 мкФ, а индуктивность катушки 1 Гн? Активным сопротивлением пренебречь.

Схема электромагнитных колебаний

Ученик 1 наглядно описывает процессы в колебательном контуре.

Ученик 2 комментирует электромагнитные колебания в контуре, используя графическую зависимость заряда, напряжения. Силы тока, электрической энергии конденсатора, магнитной энергии катушки индуктивности от времени.

Уравнения, описывающие колебательные процессы в контуре:

Обращаем внимание, что колебания силы тока в цепи опережают колебания напряжения между обкладками конденсатора на π/2.
Описывая изменения заряда, напряжения и силы тока по гармоническому закону, необходимо учитывать связь между функциями синуса и косинуса.

Задача № 1.

По графику зависимости силы тока от времени в колебательном контуре определите, какие преобразования энергии происходят в колебательном контуре в интервале времени от 1мкс до 2мкс?

1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.

Задача № 2.

По графику зависимости силы тока от времени в колебательном контуре определите:

а) Сколько раз энергия катушки достигает максимального значения в течение первых 6 мкс после начала отсчета?
б) Сколько раз энергия конденсатора достигает максимального значения в течение первых 6 мкс после начала отсчета?
в) Определите по графику амплитудное значение силы тока, период, циклическую частоту, линейную частоту и напишите уравнение зависимости силы тока от времени.

Задача № 3 (д/з)

Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите, какое преобразование энергии происходит в интервале времени от 0 до 2 мкс?

1. Энергия магнитного поля катушки увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора преобразуется в энергию магнитного поля катушки.

Задача № 4 (д/з)

Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите: сколько раз энергия конденсатора достигает максимального значения в период от нуля до 2мкс? Сколько раз энергия катушки достигает наибольшего значения от нуля до 2 мкс? По графику определите амплитуду колебаний напряжений, период колебаний, циклическую частоту, линейную частоту. Напишите уравнение зависимости напряжения от времени.

К доске вызываются 2 ученика

Задача № 5, 6

Задача № 7

Заряд на обкладках конденсатора колебательного контура изменяется по закону
q = 3·10 –7 cos800πt. Индуктивность контура 2Гн. Пренебрегая активным сопротивлением, найдите электроемкость конденсатора и максимальное значение энергии электрического поля конденсатора и магнитного поля катушки индуктивности.

Задача № 8

В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменяется заряд конденсатора в колебательном контуре с течением времени.

t, 10 –6 (C) 1 2 3 4 5 6 7 8 9
q, 10 –9 (Кл) 2 1,5 –1,5 –2 –1,5 1,5 2 1,5

1. Напишите уравнение зависимости заряда от времени. Найдите амплитуду колебаний заряда, период, циклическую частоту, линейную частоту.

2. Какова энергия магнитного поля катушки в момент времени t = 5 мкс, если емкость конденсатора 50 пФ.

Домашнее задание. Напишите уравнение зависимости силы тока от времени. Найдите амплитуду колебаний силы тока. Постройте графическую зависимость силы тока от времени.

Источник