Меню

Трансформатор тока в трансформаторной подстанции для чего

Измерительный трансформатор тока

Трансформатором тока(ТН, TV) – называют электротехническое устройство, изменяющее величину выходного значения электротока в процессе передачи с первичной на вторичную обмотку. В результате пропуска через трансформатор, электрический ток передаётся из одной системы в другую, пропорционально изменяясь, в зависимости от поставленной задачи.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

  1. Особенности конструкции и принцип работы
  2. Виды трансформаторов тока
  3. Расшифровка маркировки
  4. Технические параметры
  5. Схемы подключения трансформаторов тока
  6. Силового оборудования
  7. Вторичные цепи
  8. Популярные виды и стоимость трансформаторов
  9. Возможные неисправности

Особенности конструкции и принцип работы

Принцип работы трансформаторов тока основан на использовании закона электромагнитной индукции.

Прибор состоит из следующих элементов:

Принцип работы трансформатора

  • первичной и вторичной обмоток;
  • замкнутого сердечника (магнитопровода).

Принцип работы трансформатора

Обмотки накручены вокруг сердечника, изолированно от него и друг от друга. Иногда первичная обмотка может заменяться медной или алюминиевой шиной. Трансформация величины электрического тока происходит за счёт разницы количества витков первичной и вторичной обмоток. В большинстве случаев устройство предназначено для снижения показателя тока, поэтому вторичная обмотка выполняется с меньшим количеством витков, нежели первичная.

Электроток подаётся на первичную обмотку при последовательном подключении. В результате на катушке формируется магнитный поток и наводится электродвижущая сила, вызывающая возникновение тока на выходной катушке.

К выходной обмотке подключают потребляющий прибор, в зависимости от целей, для которых используется устройство.

Некоторые устройства выполняются с несколькими выходными катушками, что позволяет путём переключения изменять величину трансформации электрического тока. В целях безопасности, для обеспечения защиты при пробое изоляции, выходной контур заземляется.

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.

Учитывая характер условий эксплуатации, различают трансформаторы:

    для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;

Три трансформатора тока для 3-х фаз(А, B? C)

Три трансформатора тока для 3-х фаз(А, B? C)
внутренние – применяемые внутри помещений;

ТТ для установки внутри помещений

ТТ для установки внутри помещений
встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).

встроенный-та

Встроенные ТТ

В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.

исполнение первичных обмоток

С учётом способа установки их подразделяют на следующие типы:

  • проходной;
  • опорный.

опорный и проходной та

По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Расшифровка маркировки

Расшифровка маркировки трансформаторов тока

Расшифровка маркировки трансформаторов тока

Технические параметры

Трансформаторы тока характеризуются следующими индивидуальными параметрами:

Формула по вычислению коэффициента трансформации

  1. Номинальным током – позволяющим аппарату функционировать длительное время, не перегреваясь;
  2. Номинальным напряжением – значение должно обеспечивать нормальную работу трансформатора. Именно этот показатель влияет на качество изоляции между обмотками, одна из которых находится под высоким напряжением, а другая заземлена.
  3. Коэффициентом трансформации; Формула по вычислению коэффициента трансформации

Значения

  • U1 и U2 – напряжение в первичной и вторичной обмотки,
  • N1 и N2 – количество витков в первичной и вторичной обмотке,
  • I1 и I2 – ток в первичной и вторичной обмотки(обычно ток во вторичной обмотке равен 1А или 5А).
  • Погрешностью значения электротока – вызывается намагничиванием;
  • Номинальной нагрузкой, определяющей нормальную работу прибора;
  • Номинальной предельной кратностью – максимально допустимое значение отношения первичного значения электротока к номинальному;
  • Предельной кратностью вторичного тока – соотношение наибольшего тока вторичной обмотки к его номинальной величине.
  • Значения которыми могут обладать ТТ

    При выборе устройства необходимо учитывать значение указанных и других характеристик.

    Схемы подключения трансформаторов тока

    Силового оборудования

    Схема подключения для 110 кВ и выше:

    подключение тт на 110 кВ

    Схема подключения для 6-10 кВ в ячейках КРУ:

    подключение тт на 10 кв

    Вторичные цепи

    Схема включение трансформатора тока в полную звезду:

    1

    Схема включение трансформатора тока в неполную звезду(З а счет распределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети):

    4

    Схема включение трансформатора тока в неполную звезду(для контроля линейного тока с помощью реле):

    3

    Схема включение трансформатора тока в полную звезду с подключением обмотки реле к фильтру нулевой последовательности(ФТНП):

    2

    Популярные виды и стоимость трансформаторов

    Бытового потребителя больше интересуют токовые трансформаторы, используемые для подключения электросчётчиков. В продаже предлагаются приборы типов:

    • ТТИ;
    • ТТН;
    • ТОП;
    • ТОЛ и другие.

    Цена зависит от разновидности, конструкции, характеристик и напряжений на котором будет использоваться ТН:

    • 0,66 кВ от 300 – 5000,
    • 6-10 кВ 10000 – 45000,
    • 35 кВ – около 50 000р,
    • 110 кВ и выше – нужно уточнять у производителя.

    Возможные неисправности

    Указанные устройства чаще всего выходят из строя в результате повреждения изоляции, вызванного перегревом, непредусмотренным механическим воздействием или ошибкой при сборке.

    Чтобы проверить состояние прибора, измеряют сопротивление межвитковой изоляции. Если она меньше установленного значения, оборудование нуждается в замене или ремонте.

    Также для диагностики используются специальные приборы – тепловизоры, позволяющие проверить состояние всей действующей схемы. Наиболее сложные диагностические процедуры производятся в лабораторных условиях. Своевременная диагностика позволяет исключить аварийные ситуации и обеспечить нормальную работу устройств.

    Источник

    Трансформаторы тока назначение и принцип действия

    Для измерения величин с большими значениями применяются трансформаторы тока. С этой целью выполняется последовательное включение первичной обмотки устройства в цепь с переменным током, значение которого необходимо измерить. Вторичная обмотка подключается к измерительным приборам. Между токами в первичной и вторичной обмотке существует определенная пропорция. Все трансформаторы этого типа отличаются высокой точностью. В их конструкцию входит две и более вторичных обмоток, к которым подключаются защитные устройства, измерительные средства и приборы учета.

    1. Что такое трансформатор тока?
    2. Назначение трансформаторов
    3. Принцип работы
    4. Классификация трансформаторов тока
    5. Параметры и характеристики
    6. Номинальный ток
    7. Номинальное напряжение
    8. Коэффициент трансформации
    9. Токовая погрешность
    10. Номинальная нагрузка
    11. Номинальная предельная кратность
    12. Максимальная кратность вторичного тока
    13. Возможные неисправности трансформаторов тока
    Читайте также:  Постоянный ток генераторы постоянного тока устройство

    Что такое трансформатор тока?

    К трансформаторам тока относятся устройства, в которых вторичный ток, применяемый для измерений, находится в пропорциональном соотношении с первичным током, поступающим из электрической сети.

    Трансформаторы тока назначение и принцип действия

    Включение в цепь первичной обмотки осуществляется последовательно с токопроводом. Подключение вторичной обмотки выполняется на какую-либо нагрузку в виде измерительных приборов и различных реле. Между токами обеих обмоток возникает пропорциональная зависимость, соответствующая количеству витков. В трансформаторных устройствах высокого напряжения выполняется изоляция между обмотками из расчета на полное рабочее напряжение. Как правило производится заземление одного из концов вторичной обмотки, поэтому потенциалы обмотки и земли будут примерно одинаковыми.

    Все трансформаторы тока предназначены для выполнения двух основных функций: измерения и защиты. В некоторых устройствах обе функции могут совмещаться.

    • Измерительные трансформаторы передают полученную информацию к подключенным измерительным приборам. Они устанавливаются в цепях с высоким напряжением, в которые невозможно включить напрямую приборы для измерений. Поэтому только во вторичную обмотку трансформатора выполняется подключение амперметров, счетчиков, токовых обмоток ваттметров и прочих приборов учета. В результате, трансформатор преобразует переменный ток даже очень высокого значения, в переменный ток с показателями, наиболее приемлемыми для использования обычных измерительных приборов. Одновременно обеспечивается изоляция измерительных приборов от цепей с высоким напряжением, повышается электробезопасность обслуживающего персонала.
    • Защитные трансформаторные устройства в первую очередь передают полученную измерительную информацию на устройства управления и защиты. С помощью защитных трансформаторов, переменный ток любого значения преобразуется в переменный ток с наиболее подходящим значением, обеспечивающим питание устройств релейной защиты. Одновременно выполняется изоляция реле, к которых имеется доступ персонала, от цепей высокого напряжения.

    Назначение трансформаторов

    Трансформаторы тока относятся к категории специальных вспомогательных приборов, используемых совместно с различными измерительными устройствами и реле в цепях переменного тока. Главной функцией таких трансформаторов является преобразование любого значения тока до величин, наиболее удобных для проведения измерений, обеспечения питания отключающих устройств и обмоток реле. За счет изоляции приборов, обслуживающий персонал оказывается надежно защищен от поражения током высокого напряжения.

    Измерительные трансформаторы тока предназначены для электрических цепей с высоким напряжением, когда отсутствует возможность прямого подключения измерительных приборов. Их основное назначение заключается в передаче полученных данных об электрическом токе на измерительные устройства, подключаемые к вторичной обмотке.

    Немаловажной функцией трансформаторов является контроль над состоянием электрического тока в цепи, к которой они подключены. Во время подключения к силовому реле, выполняются постоянные проверки сетей, наличие и состояние заземления. Когда ток достигает аварийного значения, включается защита, отключающая все используемое оборудование.

    Принцип работы

    Принцип работы трансформаторов тока основан на законе электромагнитной индукции. Напряжение из внешней сети поступает на силовую первичную обмотку с определенным количеством витков и преодолевает ее полное сопротивление. Это приводит к появлению вокруг катушки магнитного потока, улавливаемого магнитопроводом. Данный магнитный поток располагается перпендикулярно по отношению к направлению тока. За счет этого потери электрического тока в процессе преобразования будут минимальными.

    При пересечении витков вторичной обмотки, расположенных перпендикулярно, происходит активация магнитным потоком электродвижущей силы. Под влиянием ЭДС появляется ток, который вынужден преодолевать полное сопротивление катушки и выходной нагрузки. Одновременно на выходе вторичной обмотки наблюдается падение напряжения.

    Классификация трансформаторов тока

    Все трансформаторы тока можно классифицировать, в зависимости от их особенностей и технических характеристик:

    1. По назначению. Устройства могут быть измерительными, защитными или промежуточными. Последний вариант используется при включении измерительных приборов в токовые цепи релейной защиты и других аналогичных схемах. Кроме того, существуют лабораторные трансформаторы тока, отличающиеся высокой точностью и множеством коэффициентов трансформации.
    2. По типу установки. Существуют трансформаторные устройства для наружной и внутренней установки, накладные и переносные. Некоторые виды приборов могут встраиваться в машины, электрические аппараты и другое оборудование.
    3. В соответствии с конструкцией первичной обмотки. Устройства разделяются на одновитковые или стержневые, многовитковые или катушечные, а также шинные, например, ТШ-0,66.
    4. Внутренняя и наружная установка трансформаторов предполагает проходные и опорные способы монтажа этих устройств.
    5. Изоляция трансформаторов бывает сухая, с применением бакелита, фарфора, и других материалов. Кроме того, применяется обычная и конденсаторная бумажно-масляная изоляция. В некоторых конструкциях используется заливка компаундом.
    6. По количеству ступеней трансформации, устройства могут быть одно- или двухступенчатыми, то есть, каскадными.
    7. Номинальное рабочее напряжение трансформаторов может быть до 1000 В или более 1000 В.

    Источник

    Все о трансформаторах тока. Классификация, конструкция, принцип действия

    трансформатор тока

    Трансформаторами тока (ТТ) принято называть электротехнические устройства, предназначенные для трансформирования величин токов (с больших на меньшие) до требуемых значений, с целью подключения приборов измерения, устройств РЗиА. Трансформаторы тока получили широкое применение в энергетике и являются составным элементом любой электростанции или подстанции.

    Установка в силовых электроустановках трансформаторов низкой мощности позволяет также обезопасить производство работ, поскольку их использование разделяет цепи высокого / низкого напряжения, упрощает конструктивное исполнение дорогостоящих измерительных приборов, реле.

    1. Конструкция и принцип действия трансформатора тока
    2. Классификация трансформаторов тока
    3. Трансформаторы тока разных производителей
    4. Трансформаторы тока ТОЛ-НТЗ-10-01
    5. Расположение вторичных выводов:
    6. Требования к надежности
    7. Пример условного обозначения опорного трансформатора тока с литой изоляцией
    8. Опорные трансформаторы тока TОП-0,66
    9. Проходные шинные трансформаторы тока для внутренней установки BB, BBO
    Читайте также:  Испытание вторичной обмотки трансформаторов тока

    Конструкция и принцип действия трансформатора тока

    Трансформаторы тока конструктивно состоят из:

    • замкнутого магнитопровода;
    • 2-х обмоток (первичной, вторичной).

    Трансформаторы тока

    Орлов Анатолий Владимирович

    Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ.

    Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

    Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета.

    К этим обмоткам в обязательном порядке должна быть подключена нагрузка.

    Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

    Интересное видео о трансформаторах тока смотрите ниже:

    Погрешность ТТ определяется в зависимости от:

    • сечения магнитопровода;
    • проницаемости используемого для производства магнитопровода материала;
    • величины магнитного пути.

    Значительное возрастание сопротивления нагрузки во вторичной цепи генерирует повышенное напряжение во вторичной цепи, что приводит к пробою изоляции и, как следствие, выходу из строй трансформатора.

    Предельное значение сопротивление нагрузки указывается в справочных материалах.

    Классификация трансформаторов тока

    Трансформаторы тока принято классифицировать по следующим признакам:

    1. В зависимости от назначения их разделяют на:
      1. защитные;
      2. измерительные;
      3. промежуточные, используемые для подключения устройств измерения в токовые цепи, выравнивания токов в системах диф. защит и т. п.);
      4. лабораторные.
    2. По типу установки разделяют устройства:
      1. наружной установки (размещаемые в ОРУ);
      2. внутренней установки (размещаемые в ЗРУ);
      3. встроенные в электрические машины, коммутационные аппараты: генераторы, трансформаторы, аппараты и пр.;
      4. накладные — устанавливаемые сверху на проходные изоляторы;
      5. переносные (для лабораторных испытаний и диагностических измерений).
    3. Исходя из конструктивного исполнения первичной обмотки ТТ разделяют на:
      1. многовитковые (катушечные, с обмоткой в виде петли или восьмерки);
      2. одновитковые;
      3. шинные.
    4. По способу исполнения изоляции ТТ разбивают на устройства:
      1. с сухой изоляцией (из фарфора, литой изоляции из эпоксида, бекелита и т. п.);
      2. с бумажно-масляной либо конденсаторной бумажно-масляной изоляцией;
      3. имеющие заливку из компаунда.
    5. По количеству ступеней трансформации ТТ бывают:
      1. одноступенчатые;
      2. двухступенчатые (каскадные).
    6. Исходя из номинального напряжения различают:
      1. ТТ с номинальным напряжением — выше 1 кВ;
      2. ТТ с напряжением – до 1 кВ.

    Все о трансформаторах тока. Классификация, конструкция, принцип действия

    Ещё одно интересное видео о схемах включения трансформаторов тока:

    Трансформаторы тока разных производителей

    Рассмотрим несколько трансформаторов тока разных производителей:

    ТОЛ-НТЗ-10-01Трансформаторы тока ТОЛ-НТЗ-10-01

    Производитель ООО «Невский трансформаторный завод «Волхов», предназначены для передачи сигнала измерительной информации измерительным приборам и устройствам защиты и управления, для изолирования цепей вторичных соединений от высокого напряжения в комплектных устройствах внутренней и наружной установки (КРУ, КРУН, КСО) переменного тока на класс напряжения до 10 кВ и являются комплектующими изделиями.

    Трансформаторы изготавливаются в виде опорной конструкции, в климатических исполнениях «УХЛ» и «Т», категории размещения «2» по ГОСТ 15150-69.

    Рабочее положение трансформатора в пространстве – любое.

    Трансформаторы работают в электроустановках, подвергающихся воздействию грозовых перенапряжений и имеют:

    • класс нагревостойкости «В» по ГОСТ 8865-93;
    • уровень изоляции «а» и «б» по ГОСТ 1516.3-96.

    Варианты исполнения трансформатора: «Б» — оснащён изолирующими барьерами.

    Расположение вторичных выводов:

    • «А» — параллельно установочной поверхности;
    • «В» — перпендикулярно установочной поверхности;
    • «С» — из гибкого провода, параллельно установочной поверхности;
    • «D» — из гибкого провода, перпендикулярно установочной поверхности.

    ТОЛ-НТЗ-10-01 1

    Требования к надежности

    Для трансформаторов установлены следующие показатели надежности:

    • средняя наработка до отказа – 2´105 ч.;
    • полный срок службы – 30 лет.

    Пример условного обозначения опорного трансформатора тока с литой изоляцией

    ТОЛ-НТЗ-10-01АБ-0,5SFs5/10Р10–5/15-300/5 31,5 кА УХЛ2

    • 10 — номинальное напряжение;
    • «0» — конструктивный вариант исполнения;
    • «1» — исполнение по длине корпуса;
    • «А» — вторичные выводы расположенные параллельно установочной поверхности;
    • «Б» — изолирующие барьеры;
    • 0,5S — класс точности измерительной вторичной обмотки;
    • (Fs)5 — коэффициент безопасности приборов вторичной обмотки для измерения;
    • 10Р — класс точности защитной вторичной обмотки;
    • 10 — номинальная предельная кратность вторичной обмотки для защиты;
    • 5 — номинальная вторичная нагрузка обмотки для измерения;
    • 15 — номинальная вторичная нагрузка обмотки для защиты;
    • 300 — номинальный первичный ток;
    • 5 — номинальный вторичный ток;
    • 31,5 — односекундный ток термической стойкости;
    • «УХЛ» — климатическое исполнение;
    • 2 – категория размещения ГОСТ 15150-69 при его заказе и в документации другого изделия.

    TОП-066Опорные трансформаторы тока TОП-0,66

    Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам в установках переменного тока частоты 50 или 60 Гц с номинальным напряжением до 0,66 кВ включительно. Испытательное одноминутное напряжение промышленной частоты — 3 кВ.

    Трансформаторы класса точности 0,2; 0,5; 0,2S и 0,5S применяются в схемах учета для расчета с потребителями, класса точности 1,0 — в схемах измерения.

    Корпус трансформаторов выполнен из самозатухающих трудногорючих материалов. Трансформаторы изготавливаются в исполнении «У» или «Т» категории 3 по ГОСТ 15150, предназначены для работы в следующих условиях:

    • высота над уровнем моря не более 1000 м;
    • температура окружающей среды: при эксплуатации — от минус 45°С до плюс 50°С, при транспортировании и хранении — от минус 50°С до плюс 50°С;
    • окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и паров в концентрациях, разрушающих покрытия металлов и изоляцию;
    • рабочее положение — любое.

    TОП-066 1

    presentation

    Первичная шина трансформаторов ТОП-0,66 и ТШП-0,66 медная, покрытая оловом. Трансформаторы ТШП-0,66 могут комплектоваться медными шинами, покрытыми оловом.

    Проходные шинные трансформаторы тока для внутренней установки BB, BBO

    Изготовитель — Фирма ООО «ABB»

    Читайте также:  Количество витков вторичной обмотки трансформатора тока

    Проходные шинные трансформаторы тока BB и BBO изготовлены в корпусе из эпоксидного компаунда и предназначены для установки в РУ напряжением до 24 кВ (25 кВ).

    Трансформатор тока без первичного проводника, но с собственной первичной изоляцией может использоваться в качестве втулки.

    Трансформаторы спроектированы и изготовлены согласно следующим стандартам:

    • МЭК, VDE, ANSI, BS, ГОСТ и CSN.
    • Максимальное напряжение — 3.6 кВ — 25 кВ
    • Первичный ток — 600 A – 5000 A
    • Сухой трансформатор с изоляцией из эпоксидного компаунда для внутренней установки
    • Предназначены для измерения и защиты, могут иметь до трех вторичных обмоток
    • Исполнения с возможностью переключения коэффициента трансформации на стороне первичной или вторичной обмоток.

    Источник

    

    Принцип действия ТТ и их назначение

    В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

    Назначение трансформаторов тока: преобразование тока и разделение цепей

    Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

    • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
    • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

    Из чего состоит ТТ, принцип его работы

    Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

    Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

    Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

    принцип работы трансформатора тока

    В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

    Коэффициент трансформации идеального ТТ

    В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

    Коэффициент трансформации реального ТТ

    В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

    • создание магнитного потока в магнитопроводе
    • нагрев и перемагничивание магнитопровода
    • нагрев проводов вторичной обмотки и цепи

    К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

    В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

    Режимы работы трансформаторов тока

    У ТТ существуют два основных режима работы – установившийся и переходный.

    В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

    Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

    ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

    Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

    Существуют отличия в работе ТТ и ТН.

    • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
    • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
    • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

    Сохраните в закладки или поделитесь с друзьями

    Источник