Меню

Ток в рамке под действием магнитного поля

Действие магнитного поля на рамку с током

Разделы: Физика

Цели урока:

  • Обобщить знания и оценить свои умения применять правило левой руки.
  • Познакомиться с принципом действия электродвигателей и электроизмерительных измерительных приборов, усвоить их характерные особенности.

Основное содержание урока

I. Проверка домашнего задания.

– Какая сила называется силой Ампера?

– Сформулируйте правило, позволяющее определить направление силы Ампера. И т.д.

(тест графический) работа в парах, проверка.

II. Кроссворд

  1. Датский ученый, открывший действие электрического тока на магнитную стрелку. Эрстед
  2. Нидерландский физик, именем которого названа сила, действующая в магнитном поле на движущийся заряд. Лоренц
  3. Минерал, состоящий из FeO и Fe2O3. Магнетит
  4. Электронно-лучевая трубка, используемая в телевизорах. Кинескоп
  5. Приемно-передающий буквопечатающий аппарат с клавиатурой, как у пишущей машинки. Телетайп
  6. Французский ученый, открывший магнитное взаимодействие токов. Ампер
  7. Проволочная катушка с железным сердечником внутри. Электромагнит
  8. Проволочная катушка с током. Соленоид
  9. Прибор для измерения напряжения. Вольтметр
  10. Материал металлического стержня. Диамагнетик
  11. Источник тока. Генератор
  12. Прибор для ориентации на местности. Компас
  13. Минерал, способный притягивать к себе железные предметы. Магнит
  14. Американский изобретатель, придумавший специальную телеграфную азбуку. Морзе
  15. Единица напряжения. Вольт
  16. ь

Ключевое слов электродвигатель.

Электродвигатель машина, преобразующая электрическую энергию в механическую работу.

III. Новый материал.

Эксперимент: подключим к источнику тока проволочную рамку прямоугольной формы.

Поместим слева и справа от неё магниты, замкнём цепь.

– Что это означает?

– Это означает, что магнитное поле оказывает на рамку с током вращающее действие.

– Как вы думаете, чем объясняется вращение рамки?

– Вращение рамки с током в магнитном поле объясняется действием на неё сил Ампера.

Эти силы действуют как на левую, так и на правую сторону рамки, но в противоположных направлениях.

Под действием этих сил и происходит вращение.

Д. – учебный фильм

(Сообщение о Борисе Семеновиче Якоби – Российский физик и изобретатель)

Д. – учебный фильм

Выводы:

  1. Магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.
  2. Направление движения проводника зависит от направления тока в нем и от направления магнитного поля.
  3. Изменение направления тока в рамке заставляет её непрерывно вращаться.
  4. Работа электрического двигателя основана на взаимодействии магнитных полей.

– Какое преимущество электрических двигателей от тепловых двигателей?

Сообщение: В отличии от тепловых двигателей электрические двигатели не выделяют в процессе работы вредных газов, дыма и пара и, следовательно, не загрязняют окружающую среду. КПД мощных электродвигателей может достигать 98%.

– А где же применяются электрические двигатели?

Сообщение: Электрические двигатели находят широкое применение в технике, особенно на таких видах транспорта, как электровозы, троллейбусы и трамваи. С помощью специального электродвигателя постоянного тока (стартера) производится запуск двигателя внутреннего сгорания в автомобилях.

Учитель:

Приложение

Вращение рамки с током в магнитном поле используется и в таких электроизмерительных приборах, как амперметр и вольтметр.

Устройство одного из них показано на рисунке.

Между полюсами постоянного магнита 1 располагается легкая рамка 2, на которую намотана катушка из нескольких витков провода. Внутри рамки находится неподвижный железный сердечник 3.

Ток в катушку поступает по металлическим пружинкам 4.

При отсутствии тока пружинки удерживают рамку в таком положении, что соединенная с ней стрелка 5 указывает на нулевое деление шкалы.

При включении прибора в цепь по катушке начинает идти ток, и под действием магнитного поля рамка со стрелкой поворачивается.

Их вращение продолжается до тех пор, пока момент сил упругости со стороны пружинок не уравновесит момент сил Ампера, действующих со стороны магнитного поля.

Чем больше сила тока в цепи, тем больше будет момент сил Ампера и потому на больший угол повернется стрелка, перемещаясь по шкале прибора.

IV. Кратковременная лабораторная работа №6: «Изучение модели электродвигателя»

Цель: изучить модель электродвигателя, выяснить с помощью каких сил вращается электродвигатель.

Вывод: ответить на вопрос

Под действием, каких сил начинает вращаться электрический двигатель?

V. Закрепление материала:

Что называют электродвигателем?

– На чем основан принцип действия такого двигателя?

Задачи из Д/ф.

VI. Домашнее задание:

Параграф 27, вопросы стр. 71.

Привести собственный проект выполнения лабораторной работы.

Источник

Опыт Эрстеда. Магнитное поле тока. Взаимодействие магнитов. Действие магнитного поля на проводник с током

1. Опыт Эрстеда заключается в следующем. На столе располагают магнитную стрелку, которая ориентируется с севера на юг в магнитном поле Земли, и параллельно ей сверху проводник, соединённый с источником тока (см. рис. 81). При замыкании цепи стрелка повернётся на 90° и встанет перпендикулярно проводнику.

При размыкании цепи стрелка вернётся в первоначальное положение. Если изменить направление тока на противоположное, то стрелка повернётся в обратную сторону. Опыт Эрстеда доказывает, что вокруг проводника, по которому течёт электрический ток, существует магнитное поле, которое действует на магнитную стрелку.

Опыт Эрстеда показал существование взаимосвязи между электрическими и магнитными явлениями.

Об этой взаимосвязи свидетельствует и опыт, известный как опыт Ампера. Если по двум длинным параллельно расположенным проводникам пропустить электрический ток в одном направлении, то они притянутся друг к другу; если направление тока будет противоположным, то проводники оттолкнутся друг от друга. Это происходит потому, что вокруг одного проводника возникает магнитное поле, которое действует на другой проводник с током. Если ток будет протекать только по одному проводнику, то проводники не будут взаимодействовать.

Таким образом, вокруг движущихся электрических зарядов или вокруг проводника с током существует магнитное поле. Магнитное поле действует на движущиеся заряды. На неподвижные заряды магнитное поле не действует.

Силовой характеристикой магнитного поля является величина, называемая магнитной индукцией. Обозначается магнитная индукция буквой ​ \( B \) ​. Магнитная индукция является векторной величиной, т.е. имеет определённое направление. Это наглядно проявляется в опыте со взаимодействием параллельных проводников с током. Направление вектора магнитной индукции совпадает с направлением северного полюса магнитной стрелки в данной точке поля.

2. Обнаружить магнитное поле вокруг проводника с током можно с помощью либо магнитных стрелок, либо железных опилок, которые в магнитном поле намагничиваются и становятся магнитными стрелками. На рисунке 87 изображён проводник, пропущенный через лист картона, на который насыпаны железные опилки. При прохождении по проводнику электрического тока опилки располагаются вокруг него по концентрическим окружностям.

Читайте также:  Сила тока всех приборов

Линии, вдоль которых располагаются в магнитном поле магнитные стрелки или железные опилки, называют линиями магнитной индукции. Направление, которое указывает северный полюс магнитной стрелки, принято за направление линий магнитной индукции. Вектор магнитной индукции направлен по касательной к линии магнитной индукции в каждой точке поля.

Как следует из результатов опыта Эрстеда и опыта по взаимодействию параллельных проводников с током, направление линий вектора магнитной индукции (и линий магнитной индукции) зависит от направления тока в проводнике. Направление линий магнитной индукции можно определить с помощью правила буравчика. Для линейного проводника оно следующее: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитной индукции.

3. Если пропустить электрический ток по катушке, то опилки расположатся, как показано на рисунке 88.

Картина линий магнитной индукции свидетельствует о том, что катушка с током становится магнитом. Если катушку с током подвесить, то она повернётся южным полюсом на юг, а северным — на север (рис. 89).

Следовательно, катушка с током имеет два полюса: северный и южный. Определить полюса, которые появляются на её концах можно, если известно направление электрического тока в катушке. Для этого пользуются правилом буравчика: если направление вращения ручки буравчика совпадает с направлением тока в катушке, то направление поступательного движения буравчика совпадает с направлением линий магнитной индукции внутри катушки (рис. 90).

4. Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S. Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Положив на постоянный магнит лист бумаги или картона и насыпав на него железные опилки, можно получить картину его магнитного поля (рис. 91). Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита.

Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

5. Магнитное поле действует на проводник с током. Доказать это можно с помощью эксперимента (рис. 92).

Если в поле подковообразного магнита поместить проводник длиной ​ \( l \) ​, подвешенный на тонких проводах, соединить его с источником тока, то при разомкнутой цепи проводник останется неподвижным. Если замкнуть цепь, то по проводнику пойдёт электрический ток, и проводник отклонится в магнитном поле от своего первоначального положения. При изменении направления тока проводник отклонится в противоположную сторону. Таким образом, на проводник с током, помещённый в магнитное поле, действует сила, которую называют силой Ампера.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника ​ \( l \) ​ и силе тока ​ \( I \) ​ в проводнике: ​ \( F\sim Il \) ​. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции ​ \( B \) ​. Соответственно, ​ \( F=BIl \) ​.

Сила, действующая на проводник с током, помещённый в магнитное поле, равна произведению модуля вектора магнитной индукции, силы тока и длины той части проводника, которая находится в магнитном поле.

В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записыватся в том случае, если линии магнитной индукции перпендикулярны проводнику с током.

Формула силы Ампера, позволяет раскрыть смысл понятия вектора магнитной индукции. Из выражения для силы Ампера следует: ​ \( B=\frac \) ​, т.е. магнитной индукцией называется физическая величина, равная отношению силы, действующей на проводник с током в магнитном поле, к силе тока и длине проводника, находящейся в магнитном поле.

Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции ​ \( [В] = [F]/[I][l] \) ​. ​ \( [B] \) ​ = 1 Н/(1 А · 1 м) — 1 Н/(А · м) = 1 Тл. За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1 Н при силе тока в проводнике 1 А.

Направление силы Ампера определяют, пользуясь правилом левой руки: если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре пальца направлены по направлению тока в проводнике, то отогнутый на 90° большой палец покажет направление силы, действующей на проводник (рис. 93).

6. Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся (рис. 94), потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ​ \( ab \) ​, противоположна силе, действующей на сторону ​ \( cd \) ​.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке показано, как установилась магнитная стрелка между полюсами двух одинаковых магнитов. Укажите полюса магнитов, обращённые к стрелке.

Читайте также:  Как удаляют людей током

1) 1 — S, 2 — N
2) 1 — А, 2 — N
3) 1 — S, 2 — S
4) 1 — N, 2 — S

2. Па рисунке представлена картина линий магнитного поля от двух полосовых магнитов, полученная с помощью магнитной стрелки и железных опилок. Каким полюсам полосовых магнитов соответствуют области 1 и 2?

1) 1 — северному полюсу; 2 — южному
2) 1 — южному; 2 — северному полюсу
3) и 1, и 2 — северному полюсу
4) и 1, и 2 — южному полюсу

3. При прохождении электрического тока по проводнику магнитная стрелка, находящаяся рядом, расположена перпендикулярно проводнику. При изменении направления тока на противоположное. Стрелка

1) повернётся на 90°
2) повернётся на 180°
3) повернётся на 90° или на 180° в зависимости от значения силы тока
4) не изменит свое положение

4. Проводник, по которому протекает электрический ток, расположен перпендикулярно плоскости чертежа (см. рисунок). Расположение какой из магнитных стрелок, взаимодействующих с магнитным полем проводника с током, показано правильно?

5. Из проводника сделали кольцо и по нему пустили электрический ток. Ток направлен против часовой стрелки (см. рисунок). Как направлен вектор магнитной индукции в центре кольца?

1) вправо
2) влево
3) на нас из-за плоскости чертежа
4) от нас за плоскость чертежа

6. По катушке идёт электрический ток, направление которого показано на рисунке. При этом на концах железного сердечника катушки

1) образуются магнитные полюса — на конце 1 — северный полюс, на конце 2 — южный
2) образуются магнитные полюса — на конце 1 — южный полюс, на конце 2 — северный
3) скапливаются электрические заряды: на конце 1 — отрицательный заряд, на конце 2 — положительный
4) скапливаются электрические заряды: на конце 1 — положительный заряд, на конце 2 — отрицательный

7. Два параллельно расположенных проводника подключили параллельно к источнику тока.

Направление электрического тока и взаимодействие проводников верно изображены на рисунке

8. В однородном магнитном поле на проводник с током, расположенный перпендикулярно плоскости чертежа (см. рисунок), действует сила, направленная

1) вправо →
2) влево ←
3) вверх ↑
4) вниз ↓

9. Сила, действующая на проводник с током, который находится в магнитном поле между полюсами магнита направлена

1) вверх ↑
2) вниз ↓
3) направо →
4) налево ←

10. На рисунке изображён проводник с током, помещённый в магнитное поле. Стрелка указывает направление тока в проводнике. Вектор магнитной индукции направлен перпендикулярно плоскости рисунка к нам. Как направлена сила, действующая на проводник с током?

1) вверх ↑
2) вправо →
3) вниз ↓
4) влево ←

11. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Вокруг неподвижных зарядов существует магнитное поле.
2) Вокруг неподвижных зарядов существует электростатическое поле.
3) Если разрезать магнит на две части, то у одной части будет только северный полюс, а у другой — только южный.
4) Магнитное поле существует вокруг движущихся зарядов.
5) Магнитная стрелка, находящаяся около проводника с током, всегда поворачивается вокруг своей оси.

12. Электрическая схема содержит источник тока, проводник АВ, ключ и реостат. Проводник АВ помещён между полюсами постоянного магнита (см. рисунок).

Используя рисунок, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При перемещении ползунка реостата влево сила Ампера, действующая на проводник АВ, увеличится.
2) При замкнутом ключе проводник будет выталкиваться из области магнита вправо.
3) При замкнутом ключе электрический ток в проводнике имеет направление от точки В к точке А.
4) Магнитные линии поля постоянного магнита в области расположения проводника АВ направлены вертикально вниз.
5) Электрический ток, протекающий в проводнике АВ, создаёт однородное магнитное поле.

Часть 2

13. Участок проводника длиной 0,1 м находится в магнитном поле индукцией 50 мТл. Сила тока, протекающего по проводнику, 10 А. Какую работу совершает сила ампера при перемещении проводника на 8 см в направлении своего действия? Проводник расположен перпендикулярно линиям магнитной индукции.

Источник

Физика

Рамка с током (рис. 9.16) обладает магнитным моментом .Рис. 9.16

Модуль магнитного момента контура с током равен произведению силы тока в контуре на площадь, ограниченную этим контуром, —

где I — сила тока в контуре; S — площадь, ограниченная этим контуром.

Направление вектора магнитного момента P → m связано с направлением тока правилом правого винта : поступательное движение правого винта совпадает с направлением магнитного момента при вращении рукоятки винта по направлению тока в контуре.

В Международной системе единиц магнитный момент контура с током измеряется в амперах, умноженных на квадратные метры (1 А ⋅ м 2 ).

Магнитное поле оказывает ориентирующее действие на помещенную в него рамку с током, т.е. в магнитном поле на рамку с током действует механический вращающий момент .

Величина механического вращающего момента , действующего на рамку с током, помещенную в магнитное поле, равна произведению

где P m — модуль магнитного момента рамки с током, P m = IS ; I — сила тока в рамке; S — площадь рамки; B — модуль вектора магнитной индукции поля; α — угол между векторами P → m и B → .

Направление механического вращающего момента M → определяется правилом правого винта.

В Международной системе единиц механический вращающий момент, действующий на контур с током в магнитном поле, измеряется в ньютонах, умноженных на метр, или в джоулях (1 Н ⋅ м = 1 Дж).

Величина механического вращающего момента зависит от взаимной ориентации рамки и поля, т.е. от взаимного расположения в пространстве векторов P → m и B → :

  • если плоскость рамки перпендикулярна полю, т.е. векторы магнитной индукции и магнитного момента взаимно параллельны ( P → m || B → ), то механический вращающий момент на рамку с током не действует :
  • если плоскость рамки параллельна полю, т.е. векторы магнитной индукции и магнитного момента взаимно-перпендикулярны ( P → m ⊥ B → ), то механический вращающий момент, действующий на рамку с током, имеет максимальное значение :

где B — модуль вектора магнитной индукции поля; I — сила тока в рамке; S — площадь рамки.

Равновесие рамки с током в магнитном поле имеет место в том случае, когда плоскость рамки перпендикулярна полю, т.е. векторы магнитной индукции и магнитного момента параллельны ( P → m | | B → ). В этом случае механический вращающий момент на рамку с током не действует: M = 0.

Читайте также:  Как сделать чтобы пальцы били током

Равновесие рамки с током в магнитном поле является:

  • устойчивым , если угол α между векторами магнитной индукции поля B → и магнитного момента рамки P → m равен нулю (рис. 9.17): α = 0;Рис. 9.17
  • неустойчивым , если угол α между векторами магнитной индукции поля B → и магнитного момента рамки P → m равен 180° (рис. 9.18): α = 180°.Рис. 9.18

Пример 9. Замкнутый проводящий контур имеет форму квадрата. По контуру протекает электрический ток. Контур растягивают таким образом, что сторона квадрата увеличивается в 1,50 раза, а сила тока в нем остается неизменной. Во сколько раз возрастает при этом числовое значение магнитного момента контура?

Решение. Величина магнитного момента контура с током определяется произведением силы тока и площади, ограниченной этим контуром:

  • в первом случае (до деформации контура)

где I — сила тока в контуре; S 1 — площадь квадрата, ограниченная контуром, до растяжения, S 1 = a 2 ; a — сторона квадрата до деформации контура;

  • во втором случае (после деформации контура)

где S 2 — площадь, ограниченная контуром, после растяжения, S 2 = b 2 ; b — сторона квадрата после деформации контура.

Искомой величиной является отношение

P 2 P 1 = I S 2 I S 1 = S 2 S 1 = b 2 a 2 = ( b a ) 2 .

По условию задачи

следовательно, записанное отношение составляет

P 2 P 1 = ( 1,5 a a ) 2 = 2,25 .

Величина магнитного момента контура с током при заданной деформации возрастет в 2,25 раза.

Источник



Рамка с током в магнитном поле.

СИЛА АМПЕРА. ЗАКОН АМПЕРА.

Сила Ампера. Закон Ампера.

Как уже говорилось, на проводник с током, помещённый в магнитное поле, действует сила, названная силой Ампера в честь выдающегося французского учёного Ампера, изучавшего это явление.

Ампер установил, что модуль силы, действующей на прямолинейный проводник с током в магнитном поле, равен произведению магнитной индукции поля В, силы тока в проводнике I, длины проводника и синуса угла между направлениями тока и вектора магнитной индукции sinα.

Направление силы Ампера определяется по правилу левой руки.

Если ладонь левой руки расположить так, чтобы перпендикулярная к проводнику составляющая вектора магнитной индукции поля входила в ладонь, а четыре вытянутых пальца указывали направление тока, то отогнутый на 90 0 большой палец укажет направление силы Ампера.

Взаимодействие двух параллельных проводников с током.

Зная закон Ампера, можно объяснить и рассчитать силу притяжения или отталкивания двух параллельных проводников с током.

Каждый из проводников создаёт вокруг себя магнитное поле, которое оказывает действие на соседний проводник. Величина магнитной индукции на расстоянии d от проводника, т.е. в месте расположения соседнего проводника, равна

Рассмотрим два случая – токи текут в одном направлении (случай а) и токи текут в противоположных направлениях (случай б). На рисунке видно, что от направления токов зависит направление вектора магнитной индукции, определяемое по правилу правой руки. Сила Ампера, действующая на каждый из проводников длиной , соответственно равна

Сила называется силой взаимодействия параллельных проводников с током.

Применяя правило левой руки к каждому из проводников, находим для них направление сил Ампера. Как видно из рисунка, направление сил Ампера таково, что при протекании токов в одном направлении проводники притягиваются, а при протекании токов в противоположных направлениях они отталкиваются.

3.Определение единицы измерения силы тока – 1 ампера.

Определение единицы измерения силы тока – 1 ампера – основано на взаимодействии двух параллельных проводников с током.

1 ампер – это такая сила постоянного тока, протекающего по двум прямолинейным, параллельным, бесконечным и очень тонким проводникам, находящимся в вакууме на расстоянии 1 м друг от друга, при которой сила их взаимодействия равна 2 10 -7 Н на каждый метр длины проводников.

Рамка с током в магнитном поле.

Свободная рамка с током, находящаяся в магнитном поле, всегда устанавливается определённым образом, т.е. магнитное поле оказывает на рамку с током ориентирующее действие.

Чтобы охарактеризовать положение рамки с током в магнитном поле, вводится понятие нормали к рамке.

Нормаль к рамке с током – это единичный вектор, перпендикулярный плоскости рамки и образующий с направлением тока правовинтовую систему.

Рамка с током устанавливается в магнитном поле всегда так, чтобы направление её нормали совпадало с направлением вектора магнитной индукции. Такое поведение рамки объясняется действием силы Ампера на стороны рамки.

Расположим рамку между полюсами магнита так, как показано на рисунке.

На горизонтальные стороны рамки сила Ампера не действует, а сила, действующая на вертикальные, зависит от угла, который образуют нормаль рамки и вектор магнитной индукции.

Исследуем несколько положений рамки. Удобнее всего это сделать, если смотреть на рамку сверху. Длина горизонтальной стороны – а, вертикальной – b.

Угол между нормалью и вектором магнитной индукции 90 0 . Силы Ампера, действующие на вертикальные стороны, перпендикулярны плоскости рамки и образуют пару сил, создающих вращающий момент относительно вертикальной оси рамки.

,

где S – площадь рамки.

Рамка поворачивается вокруг вертикальной оси против часовой стрелки.

Между нормалью и вектором магнитной индукции угол α 0 . Возникающие силы Ампера имеют то же самое значение по модулю, но направлены под углом α к плоскости рамки. Если разложить силы Ампера на две составляющие – в плоскости рамки и перпендикулярно к ней, то видно, что составляющие сил Ампера, лежащие в плоскости, равны по модулю и направлены в противоположные стороны. Следовательно, они привели бы к деформации рамки, если бы не были скомпенсированы упругими силами рамки. Перпендикулярные составляющие создают вращающий момент.

Рамка продолжает поворачиваться вокруг вертикальной оси.

Угол между нормалью и вектором магнитной индукции 0 0 . Силы Ампера, действующие на вертикальные стороны, имеют прежнее значение по модулю, но лежат в плоскости рамки и направлены в противоположные стороны. Создать вращающий момент эти силы не могут, они могут только деформировать рамку.

Таким образом, если направления нормали к рамке и вектора магнитной индукции совпадают, то рамка остаётся в состоянии покоя.

Максимальный вращающий момент возникает при взаимно перпендикулярном расположении этих двух векторов.

Произведение силы тока в рамке на её площадь является модулем векторной величины, которая называется магнитным моментом рамки Pm. Направлен этот вектор по нормали к рамке.

Источник