Меню

Таблица с двигателями постоянного тока

Таблица с двигателями постоянного тока

ГОСТ 12139-84
(СТ СЭВ 4434-83)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАШИНЫ ЭЛЕКТРИЧЕСКИЕ ВРАЩАЮЩИЕСЯ

Ряды номинальных мощностей, напряжений и частот

Electric rotary machines. Ranges of rated output, voltages and frequencies

Дата введения 1986-01-01

ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 29 октября 1984 г. N 3735

Настоящий стандарт распространяется на вращающиеся электрические машины с номинальными мощностями до 10000 кВт, напряжением до 10500 В и частотой до 18000 Гц.

Стандарт в части номинальных мощностей не распространяется на генераторы для летательных аппаратов, в части номинальных напряжений и частот — на машины, предназначенные для применения в бортовых системах средств наземного и воздушного транспорта и специального назначения.

Стандарт полностью соответствует требованиям СТ СЭВ 4434-83, Публикациям МЭК 72 (1971 г.), 72А (1970 г.) в части рядов номинальных мощностей. В стандарте учтены требования Публикаций МЭК 38 (1975 г.) и 196 (1965 г.).

1. НОМИНАЛЬНЫЕ МОЩНОСТИ

1.1. Номинальные мощности электрических машин должны соответствовать значениям, указанным в табл.1 в соответствии с ГОСТ 8032-56.

Для модификаций электрических машин допускается применение мощностей, выбранных из ряда R20 или R40.

1.2. Номинальные мощности синхронных двигателей, начиная с 1 кВт, указывают при коэффициенте мощности 0,9 (при опережающем токе).

1.3. Для генераторов электроагрегатов и электростанций устанавливают дополнительный ряд мощностей: 0,5; 1,0; 2,0; 8,0; 16,0; 60,0; 100,0 кВт.

1.4. Номинальные мощности электрических машин должны соответствовать их работе при номинальных значениях напряжения, частоты переменного тока, коэффициента мощности, а также условий и режимов работы, установленных в стандартах или отраслевой нормативно-технической документации.

1.5. Для рольганговых, краново-металлургических и тяговых двигателей, двигателей погруженных насосов и электробуров, а также для электрических машин, характеризуемых не мощностью, а током или входным и выходным сопротивлениями, приведенный в стандарте ряд является рекомендуемым.

1.6. По согласованию с потребителем номинальные выходные мощности электромашинных усилителей и однокорпусных преобразователей могут отличаться от значений, приведенных в табл.1.

Источник

Классификация и характеристики электродвигателей

Электродвигатель – устройство для преобразования электроэнергии во вращательное движение вращающейся части электрической машины. Преобразование энергии в двигателях происходит за счет взаимодействия магнитных полей обмоток статора и ротора. Эти электрические машины широко используются во всех отраслях промышленности, в качестве привода электротранспорта и инструментов, в системах автоматизации, бытовой техники и так далее.

Существует множество видов электродвигателей, различающихся по принципу действия, конструкции, исполнению и другим признакам. Рассмотрим основные типы этих электрических машин.

По принципу действия различают магнитоэлектрические и гистерезисные электрические машины. Несмотря на простоту конструкции, высокий пусковой момент, последние не получили широкого распространения. Эти электродвигатели имеют высокую цену, низкий коэффициент мощности, ограничивающие их применение. Подавляющее большинство выпускаемых электродвигателей – магнитоэлектрические.

По типу напряжения питания различают:

  • Электродвигатели постоянного тока.
  • Двигатели переменного тока.
  • Универсальные электрические машины.

По конструкции различают электродвигатели с горизонтально и вертикально расположенным валом. Кроме того, электрические машины классифицируют по назначению, климатическому исполнению, степени защиты от попадания влаги и посторонних предметов, мощности и другим параметрам.

Классы электродвигателей:

  • Постоянного тока
    • Бесщеточные ЕС (электронно-коммутируемые)
    • Со щетками
      • С последовательным возбуждением
      • С параллельным возбуждением
      • Со смешанным возбуждением
      • С постоянными магнитами
  • Переменного тока
    • Универсальные
    • Синхронные
    • Индукционные
      • Однофазные
      • Трехфазные

Таблица классификации электронных двигателей:

Электродвигатели постоянного тока

Двигатели постоянного тока широко применяются в качестве привода электротранспорта, промышленного оборудования, а также микропривода исполнительных механизмов. Такие электрические машины обладают следующими преимуществами:

  • Возможность регулировки частоты вращения путем изменения напряжения в обмотке возбуждения. При этом крутящий момент на валу ДПТ (двигатели постоянного тока) остается неизменным.
  • Высокий к.п.д. (коэффициент полезного действия) у машин постоянного тока несколько выше, чем у самых распространенных асинхронных двигателей переменного тока. При неполной нагрузке на валу к.п.д. ДПТ выше на 10-15%.
  • Возможность изготовления ДПТ небольших габаритов. Практически все используемые микроприводы рассчитаны на постоянный ток.
  • Простота схем управления. Для пуска, реверса и регулирования скорости и момента не требуется сложного электронного оборудования и большого количества аппаратов для коммутации.
  • Возможность работы в режиме генератора. Электродвигатели такого типа можно использовать в качестве источников постоянного тока.
  • Высокий пусковой момент. ДПТ используют в составе электроприводов кранов, тяговых и грузоподъемных механизмов, где требуется запуск под значительной нагрузкой.

ДПТ различают по способу возбуждения, они бывают:

  • С постоянными магнитами. Такие двигатели отличаются малыми габаритами. Основная область их применения – микроприводы.
  • С электромагнитным возбуждением.

Электрические машины с электромагнитами такого типа получили самое широкое распространение. Их классифицируют по способу подключения обмотки статора:

  • Двигатели с параллельным возбуждением. Обмотки якоря и статора в электрической машине такого типа соединены параллельно. Такие электрические машины не требуют дополнительного источника питания для обмотки возбуждения, скорость вращения ротора практически не зависит от нагрузки. Их используют для привода металлорежущих станков и другого оборудования.
  • Электродвигатели с последовательно включенной обмоткой статора. ДПТ этого типа имеют значительный пусковой момент. Их применяют в качестве привода электротранспорта и промышленных установок с необходимостью пуска под нагрузкой.
  • Двигатели с независимым возбуждением. Для питания обмотки статора таких электромашин используется независимый источник постоянного тока. ДПТ такого типа отличаются широким диапазоном регулирования скоростей.
  • Электрические машины со смешанным возбуждением. Электромагнит возбуждения в таких двигателях поделен на 2 части. Одна из них включена параллельно, вторая последовательно обмотке якоря. Электрические машины такого типа используются в механизмах и оборудовании, где необходим высокий пусковой момент, а также переменная и постоянная скорость при переменном моменте.

Электродвигатели переменного тока

Электрические машины такого типа широко используют для приводов всех типов технологического оборудования, электроинструментов, автоматических регуляторов. По наличию разности между скоростью вращения магнитного поля статора и частотой вращения ротора различают синхронные и асинхронные двигатели.

Асинхронные электродвигатели

Благодаря дешевизне и простоте конструкции электрические машины такого типа получили самое широкое распространение. Их принципиальное отличие – наличие так называемого скольжения. Это разность между частотой вращения магнитного поля неподвижной части электрической машины и скоростью вращение ротора. Напряжение на вращающейся части индуцируется за счет переменного магнитного поля обмоток статора двигателя. Вращение вызывает взаимодействие поля электромагнитов неподвижной части и магнитного поля ротора, возникающего под влиянием наведенных в нем вихревых токов. По особенностям обмоток статора выделяют:

  • Однофазные двигатели переменного тока. Двигатели такого типа требуют для пуска наличия внешнего фазосдвигающего элемента. Это может быть пусковой конденсатор или индуктивное устройство. Область применения однофазных двигателей – маломощные приводы.
  • Двухфазные электрические машины. Такие двигатели имеют 2 обмотки со смещенными относительно друг друга фазами. Их также используют для бытовых устройств и оборудования, имеющего небольшую мощность.
  • Трех- и многофазные электродвигатели. Наиболее распространенный тип асинхронных машин. Электрические двигатели такого типа имеют от 3-х и более обмоток статора, сдвинутых по фазе на определенный угол.
Читайте также:  Схемы подключения 3х фазного тока

По конструкции ротора асинхронные электрические машины делят на двигатели с короткозамкнутым и фазным ротором.

Обмотка ротора электрических машин первого типа представляет собой несколько неизолированных стержней, выполненных из сплавов меди или алюминия, замкнутых с двух сторон кольцами (конструкция “беличья клетка”). Асинхронные двигатели такого типа обладают следующими преимуществами:

  • Достаточно простая схема пуска. Такие электрические машины можно подключать непосредственно к электрической сети через аппараты коммутации.
  • Допустимость кратковременных перегрузок.
  • Возможность изготавливать электрические машины высокой мощности. Двигатель такого типа не содержит скользящих контактов, препятствующих наращиванию мощности.
  • Относительно простое ТО и ремонт. Асинхронные электромашины имеют несложную конструкцию.
  • Невысокая цена. Двигатели асинхронного типа стоят дешевле синхронных машин и ДПТ.

Электрические машины с короткозамкнутым ротором имеют свои недостатки:

  • Предельная скорость вращения составляет не более 3000 об/мин при входе в синхронный режим.
  • Технически сложная реализация регулирования частоты вращения.
  • Высокие пусковые токи при прямом запуске.

Электродвигатели с фазным ротором частично лишены недостатков, присущих машинам с ротором конструкции “беличья клетка”. Вращающаяся часть электрической машины такого типа имеет обмотки, соединенные в схему “звезда”. Напряжение подводится к обмотке через 3 контактных кольца, закрепленных на роторе и изолированных от него.

Такие электродвигатели обладают следующими достоинствами:

  • Возможность ограничивать пусковые токи при помощи резистора, включенного в цепь электромагнитов ротора.
  • Больший, чем у электромашин с короткозамкнутым ротором, пусковой момент.
  • Возможность регулировки скорости.

Недостатками таких двигателей являются относительно большие габариты и масса, высокая цена, более сложный ремонт и сервисное обслуживание.

Синхронные двигатели переменного тока

Как и в асинхронных электродвигателях, вращение ротора в синхронных машинах достигается взаимодействием полей ротора и статора. Скорость вращения ротора таких электрических машин равна частоте магнитного поля, создаваемого обмотками статора.

Обмотка неподвижной части двигателя рассчитана на питание от трехфазного напряжения. К электромагнитам ротора подключается постоянное напряжение. Различают явнополюсные и неявнополюсные обмотки. В синхронных двигателях малой мощности используют постоянные магниты.

Запуск и разгон синхронной машины осуществляется в асинхронном режиме. Для этого на роторе двигателя имеется обмотка конструкции “беличья клетка”. Постоянное напряжение подается на электромагниты только после разгона до номинальной частоты асинхронного режима. Синхронные двигатели имеют следующие особенности:

  • Постоянная скорость вращения при переменной нагрузке.
  • Высокий к.п.д. и коэффициент мощности.
  • Небольшая реактивная составляющая.
  • Допустимость перегрузки.

К недостаткам синхронных электродвигателей относятся:

  • Высокая цена, относительно сложная конструкция.
  • Сложный пуск.
  • Необходимость в источнике постоянного напряжения.
  • Сложность регулировки скорости вращения и момента на валу.

Все недостатки электрических машин переменного тока можно исправить установкой устройства плавного пуска или частотного преобразователя. Обоснование выбора того или иного устройства обусловлено экономической целесообразностью и требуемыми характеристиками электропривода.

Универсальные двигатели

В отдельную группу выделяют универсальные электродвигатели, которые могут работать от сети переменного тока и от источников постоянного напряжения. Они используются в электроинструментах, бытовой технике, а также других маломощных устройствах. Конструкция такой электрической машины принципиально не отличатся от двигателя постоянного тока. Главное отличие – конструкция магнитной системы и обмоток ротора. Магнитная система состоит из изолированных друг от друга секций для снижения магнитных потерь. Обмотка ротора такой машины поделена на 2 части. При питании от переменного тока напряжение подается только на ее половину. Это делается в целях снижения радиопомех, улучшения условий коммутации.

К преимуществам таких машин относятся:

  • Высокая скорость вращения. Универсальные электродвигатели развивают скорость до 10 000 об/мин и более.
  • Питание от переменного и постоянного напряжения. Двигатели такого типа широко применяют для электроинструментов, имеющих дополнительные аккумуляторные батареи.
  • Возможность регулирования скорости без использования дополнительных устройств.

Однако, такие электромашины имеют свои недостатки:

  • Ограниченная мощность.
  • Необходимость обслуживания коллекторного узла.
  • Тяжелые условия коммутации при питании от переменного напряжения из-за наличия трансформаторной связи между обмотками.
  • Электромагнитные помехи при подключении к сети переменного тока.

Каждый тип двигателя имеет свои достоинства и недостатки. Выбор электрической машины для привода любого оборудования делается исходя из условий эксплуатации, требуемой частоты вращения, экономической целесообразности, типа нагрузки и других параметров.

Источник

Таблица с двигателями постоянного тока

электроизмерения
проектирование
электромонтаж

Электролаборатория

Эти люди доверяют нам

  • Facebook
  • ВКонтакте
  • 24. Машины постоянного тока

    К, Т — производятся в сроки, устанавливаемые системой ППP.

    24.1. Оценка состояния обмоток

    Машины постоянного тока включаются без сушки при соблюдении следующих условий:

    — машины напряжением до 500 В, если значение сопротивления изоляции обмоток не менее приведенного в табл.32 (Приложение 3.1)

    — машины напряжением выше 500 В, если значение сопротивления изоляции обмоток не менее приведенного в табл. 32 (Приложение 3.1) и значение коэффициента абсорбции не менее 1,2

    24.2. Измерение сопротивления изоляции:

    Измеренное значение сопротивления обмоток должно быть не ниже приведенных в табл.32 (Приложение 3.1). В эксплуатации сопротивление изоляции обмоток измеряется вместе с соединенными с ними цепями и кабелями

    Сопротивление изоляции обмоток измеряется относительно корпуса при номинальном напряжении обмотки до 500 В мегаомметром на напряжение 500 В, при номинальном напряжении обмотки выше 500 В — мегаомметром на напряжение 1000 В

    Не менее 0,5 МОм

    Сопротивление изоляции бандажей измеряется относительно корпуса и удерживаемых им обмоток вместе с соединенными с ними цепями и кабелями

    24.3. Испытание изоляции повышенным напряжением промышленной частоты

    См. табл.33 (приложение 3.1). Продолжительность испытания — 1 мин

    Не производится у машин мощностью до 200 кВт на напряжение до 440 В

    24.4. Измерение сопротивления постоянному току

    См. табл.34 (Приложение 3.1)

    Измерения производятся при практически холодном состоянии машины

    24.5. Снятие характеристик холостого хода и испытание витковой изоляции

    Отклонение снятой характеристики от заводской не нормируется. При испытании витковой изоляции машин с числом полюсов более четырех среднее напряжение между соседними коллекторными пластинами не должно быть выше 24 В. Продолжительность испытания витковой изоляции — 3-5 мин

    Характеристика холостого хода снимается у генераторов постоянного тока. Подъем напряжения производится до значения, равного 130% номинального

    24.6. Измерение воздушных зазоров под полюсами

    Зазоры в диаметрально противоположных точках не должны отличаться один от другого более чем на ±10% среднего зазора

    Измерение производится у генераторов, а также у электродвигателей мощностью более 3 кВт

    24.7. Проверка работы машины на холостом ходу

    Ток холостого хода не нормируется, оценивается рабочее состояние машины

    Производится не менее 1ч

    24.8. Определение пределов регулирования частоты вращения

    Пределы регулирования должны соответствовать технологическим данным механизма

    Производится на холостом ходу и под нагрузкой у электро-двигателей с регулируемой частотой вращения

    Источник

    

    Электрический двигатель постоянного тока

    Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

    Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

    Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

    Устройство и описание ДПТ

    Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

    Самый простой ДПТ состоит из следующих основных узлов:

    Схематическое изображение простейшего ДПТ

    1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
    2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
    3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
    4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

    Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

    Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

    Статор (индуктор)

    В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

    Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

    • с независимым возбуждением обмоток;
    • соединение параллельно обмоткам якоря;
    • варианты с последовательным возбуждением катушек ротора и статора;
    • смешанное подсоединение.

    Схемы подключения наглядно видно на рисунке 2.

    Схемы подключения обмоток статора

    Рисунок 2. Схемы подключения обмоток статора ДПТ

    У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

    Ротор (якорь)

    В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

    В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

    Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

    Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

    Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

    Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

    Схема электромотора с многообмоточным якорем

    Рисунок 5. Схема электромотора с многообмоточным якорем

    Коллектор

    Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

    Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

    Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

    В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

    Принцип работы

    Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

    F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

    Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

    Принцип работы ДПТ

    Рис. 6. Принцип работы ДПТ

    Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

    Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

    Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

    Типы ДПТ

    Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

    Рассмотрим основные отличия.

    По наличию щеточно-коллекторного узла

    Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

    Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

    В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

    По виду конструкции магнитной системы статора

    В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

    О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

    Управление

    Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

    Механическая характеристика

    Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

    Примеры механических характеристик ДПТ

    Примеры механических характеристик ДПТ независимого возбуждения

    Регулировочная характеристика

    Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

    Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

    Регулировочная характеристика ДПТ

    Пример регулировочных характеристик двигателя с якорным управлением

    Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

    Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

    Области применения

    Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

    • бытовые и промышленные электроинструменты;
    • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
    • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

    Преимущества и недостатки

    К достоинствам относится:

    • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
    • Легко регулируемая частота вращения;
    • хорошие пусковые характеристики;
    • компактные размеры.

    У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

    Недостатки:

    • ограниченный ресурс коллектора и щёток;
    • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
    • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
    • дороговизна в изготовлении якорей.

    По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

    Видео в дополнение к написанному



    Источник