Меню

Стабилизация тока тиристорных регуляторов

Тиристорные стабилизаторы напряжения

Тиристорные стабилизаторы напряжения — это электронные полупроводниковые устройства ступенчатого принципа работы; наиболее распространенные среди российских производителей стабилизаторов.
По схожему принципу работают и симисторные стабилизаторы. Они также относятся к электронным устройствам.
В СССР начали разрабатываться в 80-х годах после появления полупроводниковых компонентов (к тому моменту уже были феррорезонансные, севоприводные и релейные модели).

Отличия тиристорных стабилизаторов от релейных

Тиристорные и релейные стабилизаторы являются 2-мя самыми популярными типами стабилизаторов на российском рынке. Они относятся к группе электронных устройств преобразования напряжения, наряду с симисторными, инверторными и феррорезонансными моделями.

Принцип работы и тиристорного и релейного стабилизатора аналогичен. Эти полупроводниковые устройства используют для коммутации обмотки трансформатора различные ключи — тиристорные или релейные. Регулировка напряжения в обоих типах происходит ступенчато, что визуально заметно по морганию ламп накаливания. Вот только переключение симисторов и тиристоров происходит бесшумно, а реле немного пощелкивает.

Какие же основные отличия в работе этих двух типов между собой? Правда ли, что тиристорные модели дороже, но надёжнее релейных?

Релейный или тиристорный стабилизатор

Реле и тиристоры: в чём отличия?

Стабилизатор тиристорного типа

    Итак, разберём основные отличия между релейными и тиристорными стабилизаторами.
  • Реле работают шумнее, щелкают при переключении контактов. Тиристоры работают бесшумно, подходят для установки в любых помещениях.
  • При переключении реле более заметны изменения в освещении, моргание ламп накаливания.
  • Реле занимают в разы больше места, чем компактные тиристоры, но не нуждаются в радиаторах охлаждения.
  • Реле менее термостойки, а тиристоры чаще применяются в морозоустойчивых стабилизаторах для работы в неотапливаемых помещениях.
  • К перегрузкам реле относятся более лояльно, чем тиристоры, критичные к перегрузкам. Поэтому тиристоры ставят с большим запасом по характеристикам, разрабатывают разные схемотехнические ухищрения, чтобы режим их работы не нарушался и они массово не выгорали. Цена из-за этого на тиристорные стабилизаторы еще больше увеличивается.
  • Реле имеют открытую коммутацию, сопровождающуюся искрением и подгоранием контактов. Во многом по этой причине тиристоры многими считаются более надёжными, имеют длительную гарантию производителя.
  • Т.к. у тиристорных моделей ключи более компактные, то их можно больше разместить в одном стабилизаторе. С увеличением количества ключей повышается точность стабилизации напряжения. Например, стабилизатор с 36-ю ступенями регулировки позволяет снизить погрешность стабилизации до 1,5% — модели Энерготех TOP 12000 и Вольт ГЕРЦ Э 36-1/40.
    Есть даже тиристорные стабилизаторы LIDER серии «SQ-DeLUXe». Они имеют целых 120 ступеней стабилизации! Это позволяет достичь максимальной точности напряжения — 220В ± 0,5%.

Надёжнее ли тиристоры?

Можно ли сказать, что тиристорный тип стабилизаторов в целом надёжнее релейного?
Да, если имеются ввиду релейные стабилизаторы китайского производства.
Многое зависит от качества непосредственно релейных и тиристорных ключей, системы их охлаждения и продуманности микропроцессорного управления.
Например, если производитель тиристорной модели сэкономил на её защите от импульсных скачков, то тиристоры может пробить высокое напряжение и они выйдут из строя.
У релейных моделей частой проблемой является подгорание релейных контактов из-за частого переключения под напряжением. Для устранения указанной проблемы один производитель модернизировал конструкцию релейного стабилизатора, добавив в неё симисторы. Получилась такая гибридная модель, симбиоз релейного и симисторного стабилизатора — Вольт Гибрид Э 9-1/40А. В результате реле не искрят при переключении, а симисторным ключам не требуются радиаторы охлаждения, т.к. задействованы они лишь на доли секунд.

Гибридный стабилизатор

Итак, нельзя однозначно утверждать, что релейные ключи менее надёжны, чем тиристорные или симисторные.
Есть релейные стабилизаторы российского производства, которые не уступают в надёжности тиристорным аналогом. Кстати, стоимость их сравнима. Например, такие модели есть у производителя стабилизаторов Стабвольт и Штиль.
Например, релейные стабилизаторы Стабвольт имеют высокую перегрузочную способность, кратковременно — до 700%. Это дает возможность работы с импульсной нагрузкой, с нагрузкой в составе которой есть двигатели с большими пусковыми токами. К такой нагрузке относятся насосы, компрессоры, различные станки и т.п.

Симисторные ключи

Отличие тиристорных стабилизаторов от симисторных

    Тиристорные и симисторные модели стабилизаторов во многом схожи, в некоторых случаях их даже обобщают, называя оба варианта «тиристорными». Однако есть некоторые различия между ними. Рассмотрим их подробнее.
  • основное отличие симисторных стабилизаторов — способность пропускать ток в обоих направлениях (как 2 тиристора с общим управлением, подключённые встречно-параллельно). Симистор — симметричный тиристор (или триак — от англ. TRIAC — triode for alternating current).
  • симисторы занимают больше места (примерно в 4 раза), поэтому конструкция симисторных стабилизаторов более габаритная
  • симисторы менее устойчивы к резким всплескам входного тока, перегрузкам (например, при стартовых токах электромоторов в индуктивной нагрузке). Для снижения риска выхода из строя электронных ключей нужно делать соответствующий запас по мощности при покупке симисторной модели (хотя бы на треть от номинальной мощности нагрузки). Схема тиристора и симистора
  • симисторы нагреваются сильнее тиристоров, больше нуждаются в радиаторах охлаждения
  • симисторные стабилизаторы имеют более сложное микропроцессорное управление. При плохой работе вентилятора охлаждения или чрезмерных импульсах напряжения контроллер может выйти из строя, а его прошивка «слететь».
  • симисторы из-за своих особенностей обычно применяются в стабилизаторах небольшой мощности — до 10 кВт

Схема тиристорного стабилизатораСхема симисторного стабилизатора

Производители тиристорных стабилизаторов

На нашем рынке в основном присутствуют российские производители тиристорных стабилизаторов напряжения. Реже встречаются украинские (из Донецка и Одессы) и китайские аппараты.
Средняя цена стабилизатора на 10 кВт составляет 35-45 тыс. руб. Более высокой стоимостью отличаются многоступенчатые тиристорные аппараты, рассчитанные на работу с высокоточной техникой.

    Некоторые производители тиристорных и симисторных стабилизаторов:
  • Вольт Инжиниринг — модели до 40А включительно — на симисторах, от 50А — на тиристорах
  • Энерготех — модели до 12 кВА включительно — на симисторах, от 15 кВА — на тиристорах
  • Лидер — все стабилизаторы выпускаются на тиристорах
  • Бастион — от 5 до 20 кВА — симисторные (9 и 16 ступеней регулировки)

Краткие выводы

Теперь давайте обобщим вышесказанное.
В целом, тиристорные стабилизаторы российского производства обладают хорошим соотношением цены и надёжности в работе. Например, сравним их с инверторными моделями, цены на которые больше всего соответствуют тиристорным. Практически на все модели инверторных стабилизаторов устанавливается гарантийный срок 2 года. Т.е. производитель сомневается, что его стабилизатор прослужит без поломок даже 3-5 лет. Оно и понятно. Технология достаточно новая, опыта эксплуатации таких устройств недостаточно.
На аппараты же тиристорного типа обычно даётся 5-ти летняя гарантия, как подтверждение их высокой надёжности.
Наибольшей популярностью пользуются тиристорные модели мощностью от 10 кВт. Одна из причин — меньшая разница в цене (в сравнении с маломощными аппаратами) с китайскими релейными аналогами при несравнимо более высоком качестве и характеристиках.
Тиристорные модели имеют самый широкий ассортимент. Если напряжение проседает несильно и нет высокоточной техники, то достаточно будет 9-12-ти ступенчатой модели.
Необходимо, чтобы стабилизатор работал от 100-120 вольт? Есть подходящие 16-ти ступенчатые модели. Нужно обеспечить качественным напряжением высокоточную технику? К вашим услугам 36-ти ступенчатые модели повышенной точности.
Такая вот универсальность, желание многих потребителей купить один раз надёжный стабилизатор и забыть о нём на долгие годы и определяет стремительно растущую популярность тиристорных аппаратов.

Тиристорный стабилизатор

Если вам необходима подробная консультация по выбору стабилизатора напряжения, то можете позвонить по телефону (495) 972-00-90 и получить ответы на интересующие вопросы.

Источник

О современных тиристорных регуляторах

Регулирование мощности требуется в различных технологических процессах, главным образом для поддержания заданного температурного режима с помощью электронагревателей или печей.

Тиристорные схемы получили широкое распространение еще в 70-е годы прошлого века благодаря своей надежности и высокому КПД. Эти качества в сочетании с невысокой ценой делают тиристорный регулятор тока оптимальным решением для задач регулирования в современных системах промышленной автоматизации.

Тиристорный регулятор (далее по тексту — ТР) способен регулировать мощность в нагрузке двумя методами:

1) фазовый метод, при котором каждый полупериод сетевого напряжения силовые тиристоры отпираются с временной задержкой Тз. Форма выходного напряжения проиллюстрирована на рисунке 1. Серым цветом заштрихована область, соответствующая наличию напряжения на нагрузке. Чем больше временная задержка отпирания Тз, тем меньше напряжение на выходе.

Регулирование мощности

Рисунок 1. Фазовый метод регулирования

Преимущества метода:

  • непрерывность регулирования позволяет поддерживать температуру объекта с высокой точностью, что особенно важно для объектов регулирования с малой тепловой инерцией, для которых недопустимы даже незначительные перерывы в подаче напряжения, поскольку это ведет к колебаниям температуры, приводящим к браку технологического процесса;
  • возможность осуществления плавного пуска для исключения больших пусковых токов. Это очень важное свойство, поскольку распространенным случаем является пониженное сопротивление нагревательного элемента в холодном состоянии. Классический пример — лампа накаливания, через которую в момент включения протекают пусковой ток в 10 раз больше номинального, что приводит к ее преждевременному износу. Применение плавного пуска путем подачи пониженного напряжения и постепенное его увеличение по мере роста сопротивления нагревательного элемента многократно продлевает его срок службы.

Недостатки метода:

  • внесение сильных импульсных помех в сеть и радиоэфир. Помехи создаются при коммутационных выбросах, возникающих при переключении тиристоров, и скачкообразном нарастании тока в нагрузке. Помехи могут влиять на работу чувствительной радиоэлектронной аппаратуры;
  • внесение в сеть нелинейных искажений. Форму тока при регулировании фазовым методом часто называют «рубленой синусоидой». Кривая тока помимо основной гармоники содержит высшие гармонические составляющие, которые вызывают искажения кривой напряжения. В ряде случаев искажения бывают настолько сильными, что форма сетевого напряжения лишь отдаленно напоминает синусоиду;
  • потребление из сети реактивного тока даже при чисто активной нагрузке и, как следствие, понижение коэффициента мощности сети.

Импульсные помехи и нелинейные искажения можно свести к минимуму путем дополнительной установки сетевых фильтров. Как правило, такие фильтры состоят из двух частей: индуктивной, сглаживающей кривую тока, и емкостной, подавляющей высокочастотные помехи. В зависимости от требований по снижению уровня помех и нелинейных искажений, стоимость сетевых фильтров может варьироваться в широких пределах: от 20% до 100% и более стоимости самого тиристорного регулятора. Впрочем, довольно часто сетевые фильтры не устанавливаются вообще, поскольку, во-первых многие нагрузки имеют индуктивную составляющую (например, при питании нагревателей через развязывающий трансформатор), а во-вторых искажения и помехи частично подавляются собственной индуктивностью сети. Индуктивное сопротивление сети обусловлено индуктивностью вторичной обмотки трансформаторной подстанции, собственной индуктивности проводов и кабелей и индуктивностью петли «фаза-ноль».

2) метод пропуска числа периодов, при котором тиристоры включены и выключены в течение некоторого целого числа периодов (рис.2). Другие распространенные названия этого метода — числовой или волновой.

Регулирование мощности

Рисунок 2. Метод регулирования пропуском периодов

Преимущества метода:

  • не вносятся импульсные помехи в сеть. Поскольку включение тиристоров происходит в момент перехода сетевого напряжения через ноль, ток в нагрузке нарастает плавно, не вызывая электромагнитных помех.
  • не вносятся в сеть нелинейные искажения, поскольку нагрузка питается синусоидальным напряжением;
  • нет потребления реактивного тока при чисто активной нагрузке.

Недостатки метода:

  • дискретность регулирования не дает возможность поддерживать температуру с высокой точностью;
  • не годится для регулирования уровня освещенности;
  • при определенных условиях возможно появление в сети субгармоник, то есть гармоник, частоты которых меньше частоты сети.

Российскими и иностранными фирмами выпускаются одно- и трехфазные модификации тиристорных регуляторов. Однофазный тиристорный регулятор может коммутировать на нагрузку как фазное, так и межфазное напряжение сети (см. рис.3).

Читайте также:  Как выбрать величину сварочного тока

Регулирование мощности

Рисунок 3. Подключение нагрузки к однофазному ТР

Нагрузка к выходу трехфазного тиристорного регулятора подключается по одной из четырех схем:«звезда» с рабочим нулем (рис 4), «звезда» (рис. 5), «треугольник» (рис. 6), разомкнутый «треугольник»(рис. 7).

Регулирование мощности
Рисунок 4. Подключение нагрузки к ТР по схеме «звезда» с рабочей нейтралью Регулирование мощности
Рисунок 5. Подключение нагрузки к ТР по схеме «звезда» Регулирование мощности
Рисунок 6. Подключение нагрузки к ТР по схеме «треугольник» Регулирование мощности
Рисунок 7. Подключение нагрузки к ТР по схеме разомкнутый «треугольник»

Распространенным случаем является так называемое многозонное регулирование, когда сопротивления нагрузки разнесены пространственно и возникает задача раздельного регулирования мощности в каждом из сопротивлений. Здесь возможны варианты: либо использование нескольких однофазных регуляторов, либо применение тиристорного регулятора с функцией раздельного регулирования напряжения по каждой фазе. Отметим, что далеко не все тиристорные регуляторы поддерживают эту функцию. Раздельное регулирование возможно лишь при подключении нагрузки по схемам «звезда» с рабочей нейтралью или разомкнутый «треугольник».

При подключении нагрузки по схемам «звезда» или «треугольник» возможно лишь совместное управление фазами, поскольку в этом случае изменение напряжения на одном из сопротивлений нагрузки приводит к изменению напряжения на двух других сопротивлениях.

Системы управления современных тиристорных регуляторов строятся на основе микропроцессорной техники и представляют потребителю широкий набор сервисных функций. Рассмотрим наиболее важные из них.

А) Электронная защита от короткого замыкания

Цифровой сигнальный процессор системы управления осуществляет непрерывное аналого-цифровое преобразование и дальнейшую цифровую обработку сигналов, поступающих с датчиков тока. В качестве датчиков тока чаще используются трансформаторы тока или датчики на основе магниточувствительного элемента Холла; реже используются измерительные шунты, поскольку при их использовании усложняется система управления в связи с необходимостью обеспечения гальванической развязки измерительного сигнала с шунта от силовой сети. В случае регистрации многократного возрастания тока система управления блокирует выдачу управляющих импульсов на тиристоры, выдает предупредительное сообщение и запрещает подачу напряжения на нагрузку до устранения неисправности.

Некоторые модели тиристорных регуляторов не имеют электронной защиты и защищены от токов короткого замыкания специальными быстродействующими предохранителями. Такая защита имеет преимущество в простоте и вполне допустима, однако на практике существует проблема в том, что для импортных моделей тиристорных регуляторов требуются оригинальные «фирменные» предохранители, которые стоят недешево (20-50$), а срок их поставки может составлять до трех месяцев. Причем заменить отечественными предохранителями их не удается: во-первых, их быстродействие существенно ниже импортных, а во-вторых, они просто не подходят по посадочным местам. Поэтому зачастую на практике можно встретиться со случаем, когда у находящегося в эксплуатации импортного тиристорного регулятора в колодку предохранителя вставлен гвоздь, болт, шпилька или другой элемент строительного крепежа. Кроме того, применение электронной защиты на основе датчиков тока выгодно еще тем, что система управления в этом случае, как правило, отображает токи нагрузки на дисплее, а это очень удобно для наблюдения за технологическим процессом.

Б) Защита от потери фазы

Отсутствие одной из фаз в сети может вызвать «перекос» токов в сопротивлениях нагрузки, что в ряде случаев недопустимо. Система управления осуществляет постоянное слежение за наличием напряжения сети и немедленного отреагирует по запрограммированному алгоритму в случае потери фазы, „слипания“ фаз или выходе качественных параметров напряжения на недопустимо низкий уровень.

В) Защита от перегрева

В случае если тиристорный регулятор установлен в плохо вентилируемом месте, при длительной перегрузке или если затруднен отвод выделяющегося тепла (например, при отказе вентиляторов обдува) радиатор охлаждения может нагреться до высокой температуры 90..100 С. Дальнейшее нарастание температуры может привести к выходу тиристоров из строя и даже возгоранию. Для предотвращения этого на радиатор устанавливается датчик температуры, по сигналу с которого система управления обесточивает нагрузку.

Г) Контроль исправности тиристоров

Лучшие модели тиристорных регуляторов напряжения осуществляют диагностику исправности тиристоров. Эта функция очень важна не только по той причине, что позволяет вовремя обнаружить неисправное устройство, но и потому, что иногда она предотвращает еще большую аварию. Например, если нагрузка подключена через трансформатор, то при внутреннем обрыве или коротком замыкании одного из тиристоров происходит подача на трансформатор напряжения, имеющего постоянную составляющую, и как следствие, резко увеличивается ток намагничивания трансформатора, ведущий к интенсивному нагреву и выходу трансформатора из строя. Поэтому быстро обнаруженная неисправность тиристорного регулятора может предотвратить порчу дорогостоящего оборудования.

Д) Защита от несимметрии выходных токов

Несимметрия токов трехфазной нагрузки более 10-20% может быть обусловлена сильным дисбалансом сопротивлений и напряжений фаз, но чаще — повреждениями в нагрузке, обрывом нагрузочных проводов или неверным подключением нагрузки. Поэтому срабатывание этой защиты вовремя проинформирует оператора о возникшей аварийной ситуации.

Важным аспектом, влияющим на надежность устройства, является тип используемых вентиляторов охлаждения и способ управления ими. Вентиляторы подразделяются:

  • по скорости вращения на низко-, средне- и высокоскоростные;
  • по типу подшипника — подшипник скольжения и подшипник качения.

Наилучший вариант — высокоскоростной вентилятор с подшипником качения. Такой вентилятор обеспечивает максимальную скорость воздушных потоков, проходящих через ребра радиатора охлаждения, а его подшипник качения обеспечивает длительный ресурс эксплуатации (в 2-3 раза выше чем подшипник скольжения). Лучшим способом управления вентилятора нужно признать метод управления по датчику температуры, установленному на радиаторе; например, включение вентилятора производится при температуре радиатора 55 С, а отключение — при 45 С. Такой способ увеличивает ресурс вентилятора в 1,5-2 раза, поскольку вентилятор отключается при невысокой температуре окружающей среды или малой нагрузке.

Другим важным компонентом, влияющим на надежность тиристорного регулятора, является токоограничивающий реактор, применение которого позволяет продлить срок службы тиристоров в 1,5-2,5 раза. Реактор представляет собой катушку индуктивности, которая снижает скорость нарастания тока через тиристоры при их включении. Так же токоограничивающий реактор снижает уровень электромагнитных помех. Чаще всего реактор не входит в стандартный комплект поставки; большинство производителей поставляет его как дополнительный аксессуар.

Лучшие модели тиристорных регуляторов мощности обладают возможностью работать в режиме ограничения или стабилизации тока. Назначение режима ограничения тока – не допустить превышения тока нагрузки сверх запрограммированной заранее величины. При этом в память микропроцессора вводится значение максимального выходного тока; система управления корректирует управляющее воздействие на тиристоры таким образом, чтобы ток нагрузки не превысил значение этой уставки. Использование этого режима позволяет точно ограничивать пусковые токи, избегая перегрузок и срабатывания защит. Так же ограничение выходного тока может быть полезно и по условиям технологического процесса. Дальнейшим развитием этого режима является режим стабилизации тока, при котором ток стабилизируется на заданном уровне и поддерживается вне зависимости от изменения напряжения сети и сопротивления нагрузки.

Как правило, управление тиристорным регулятором может осуществляться местно (кнопками, тумблерами, переменным резистором с панели управления) или дистанционно с помощью стандартных аналоговых интерфейсов 0-10 В, 0-20 мА, 4-20 мА, совместимых с любыми промышленными контроллерами.

Некоторые производители тиристорных регуляторов по согласованию с заказчиками комплектуют свои устройства ПИД-регуляторами температуры, сигнал с выхода которого задает выходное напряжение тиристорного регулятора. Это позволяет создать полноценную автоматическую систему управления температурой объекта с замкнутой обратной связью по температуре, для чего необходимо установить на объекте датчик температуры и подключить его к измерительному входу ПИД-регулятора. С помощью ПИД-регулятора можно задать желаемую температуру, темп нагрева и охлаждения, настроить срабатывание аварийной сигнализации при выходе температуры из допустимого диапазона. Управление ПИД-регулятором осуществляется кнопками с панели управления или удаленно по интерфейсному кабелю с персонального компьютера. В последнем случае становится возможным создание полноценной SCADA-системы с визуализацией технологического процесса и отображении на мнемосхеме контролируемых величин.

Источник

Тиристорные регуляторы мощности

Тиристорные регуляторы мощностиТиристорные регуляторы мощности являются одной из самых распространенных радиолюбительских конструкций, и в этом нет ничего удивительного. Ведь всем, кто когда-нибудь пользовался обычным 25 — 40 ваттным паяльником, способность его к перегреванию даже очень известна. Паяльник начинает дымить и шипеть, потом, достаточно скоро, облуженное жало выгорает, становится черным. Паять таким паяльником уже совсем невозможно.

И вот тут на помощь и приходит регулятор мощности, с помощью которого можно достаточно точно выставить температуру для пайки. Ориентироваться следует на то, чтобы при касании паяльником куска канифоли она дымила ну, так, средне, без шипения и брызг, не очень энергично. Ориентироваться следует на то, чтобы пайка получалась контурной, блестящей.

Конечно, современные паяльные станции оснащены паяльниками с термостабилизацией, цифровой индикацией и регулировкой температуры нагрева, но они слишком дороги по сравнению с обычным паяльником. Поэтому, при незначительных объемах паяльных работ, вполне можно обойтись обычным паяльником с тиристорным регулятором мощности. При этом качество пайки, может быть не сразу, получится отличным, — достигается практикой.

Другая область применения тиристорных регуляторов это управление яркостью светильников. Такие регуляторы продаются в магазинах электротоваров в виде обычных настенных выключателей с крутящейся ручкой. Но вот тут-то покупателя и подстерегает засада: современные энергосберегающие лампы (часто в литературе их называют компактные люминесцентные лампы (КЛЛ)) просто не хотят работать с такими регуляторами.

Такой же непредсказуемый вариант получится и в случае регулирования яркости светодиодных ламп. Ну, не предназначены они для такой работы и все тут: выпрямительный мост с электролитическим конденсатором, расположенный внутри КЛЛ, просто не даст работать тиристору. Поэтому регулируемый «ночник» с таким регулятором можно создать только с использованием лампы накаливания.

Однако, здесь следует вспомнить про электронные трансформаторы, предназначенные для питания галогенных ламп, а в радиолюбительских конструкциях в самых разных целях. В этих трансформаторах после выпрямительного моста почему-то, видимо в целях экономии, или просто для уменьшения габаритов, не устанавливается электролитический конденсатор. Именно эта «экономия» позволяет регулировать яркость ламп с помощью тиристорных регуляторов.

Если напрячь фантазию, то можно найти еще немало областей, где требуется применение тиристорных регуляторов. Одна из таких областей это регулирование оборотов электроинструмента: дрелей, болгарок, шуроповертов, перфораторов и т.д. и т.п. Естественно, что тиристорные регуляторы находятся внутри инструментов, работающих от сети переменного тока. Смотрите — Виды и устройство регуляторов оборотов коллекторных двигателей .

Весь такой регулятор встроен в кнопку управления и представляет собой небольших размеров коробочку, вставляемую в рукоятку дрели. Степень нажатия на кнопку определяет частоту вращения патрона. В случае выхода из строя меняется вся коробочка сразу: при всей кажущейся простоте конструкции такой регулятор абсолютно не пригоден для ремонта.

В случае инструментов, работающих на постоянном токе от аккумуляторов, регулирование мощности производится с помощью транзисторов MOSFET методом широтно-импульсной модуляции. Частота ШИМ достигает нескольких килогерц, поэтому сквозь корпус шуроповерта можно услышать писк высокой частоты. Это пищат обмотки двигателя.

Но в этой статье будут рассмотрены только тиристорные регуляторы мощности. Поэтому, прежде, чем рассматривать схемы регуляторов, следует вспомнить, как же работает тиристор.

Чтобы не усложнять рассказ, не будем рассматривать тиристор в виде его четырехслойной p-n-p-n структуры, рисовать вольтамперную характеристику, а просто на словах опишем, как же он, тиристор, работает. Для начала в цепи постоянного тока, хотя в этих цепях тиристоры почти не применяются. Ведь выключить тиристор, работающий на постоянном токе достаточно сложно. Все равно, что коня на скаку остановить.

Читайте также:  Принцип действия источника тока физика

И все же большие токи и высокие напряжения тиристоров привлекают разработчиков различной, как правило, достаточно мощной аппаратуры постоянного тока. Для выключения тиристоров приходится идти на различные усложнения схем, ухищрения, но в целом результаты получаются положительными.

Обозначение тиристора на принципиальных схемах показано на рисунке 1.

ТиристорТиристор на схемах

Рисунок 1. Тиристор

Нетрудно заметить, что по своему обозначению на схемах, тиристор очень похож на обычный диод. Если разобраться, то он, тиристор, тоже обладает односторонней проводимостью, а следовательно, может выпрямлять переменный ток. Вот только делать это он будет лишь в том случае, когда на управляющий электрод подано относительно катода положительное напряжение, как показано на рисунке 2. По старой терминологии тиристор иногда называли управляемым диодом. Покуда не подан управляющий импульс, тиристор закрыт в любом направлении.

Подключение тиристора

Как включить светодиод

Здесь все очень просто. К источнику постоянного напряжения 9В (можно использовать батарейку «Крона») через тиристор Vsx подключен светодиод HL1 с ограничительным резистором R3. С помощью кнопки SB1 напряжение с делителя R1, R2 может быть подано на управляющий электрод тиристора, и тогда тиристор откроется, светодиод начинает светиться.

Если теперь отпустить кнопку, перестать ее удерживать в нажатом состоянии, то светодиод должен продолжать светиться. Такое кратковременное нажатие на кнопку можно назвать импульсным. Повторное и даже многократное нажатие этой кнопки ничего не изменит: светодиод не погаснет, но и не станет светить ярче или тусклее.

Нажали – отпустили, а тиристор остался в открытом состоянии. Причем, это состояние является устойчивым: тиристор будет открыт до тех пор, пока из этого состояния его не выведут внешние воздействия. Такое поведение схемы говорит об исправном состоянии тиристора, его пригодности для работы в разрабатываемом или ремонтируемом устройстве.

Маленькое замечание

Но из этого правила часто случаются исключения: кнопку нажали, светодиод зажегся, а когда кнопку отпустили, то погас, как, ни в чем не бывало. И в чем же тут подвох, что сделали не так? Может кнопку нажимали недостаточно долго или не очень фанатично? Нет, все было сделано достаточно добросовестно. Просто ток через светодиод оказался меньше, чем ток удержания тиристора.

Чтобы описанный опыт прошел удачно, надо просто заменить светодиод лампой накаливания, тогда ток станет больше, либо подобрать тиристор с меньшим током удержания. Этот параметр у тиристоров имеет значительный разброс, иногда даже приходится тиристор для конкретной схемы подбирать. Причем одной марки, с одной буквой и из одной коробки. Несколько лучше с этим током у импортных тиристоров, которым в последнее время отдается предпочтение: и купить проще, и параметры лучше.

Как закрыть тиристор

Никакие сигналы, поданные на управляющий электрод, закрыть тиристор и погасить светодиод не смогут: управляющий электрод может только включить тиристор. Существуют, конечно, запираемые тиристоры, но их назначение несколько иное, чем банальные регуляторы мощности или простые выключатели. Обычный тиристор можно выключить лишь только прервав ток через участок анод – катод.

Сделать это можно, как минимум, тремя способами. Во-первых, тупо отключить всю схему от батарейки. Вспоминаем рисунок 2. Естественно, что светодиод погаснет. Но при повторном подключении он сам по себе не включится, поскольку тиристор остался в закрытом состоянии. Это состояние также является устойчивым. И вывести его из этого состояния, Зажечь свет, поможет только нажатие кнопки SB1.

Второй способ прервать ток через тиристор это просто взять и замкнуть выводы катода и анода проволочной перемычкой. При этом весь ток нагрузки, в нашем случае это всего — лишь светодиод, потечет через перемычку, а ток через тиристор будет равен нулю. После того, как перемычка будет убрана, тиристор закроется, и светодиод погаснет. При опытах с подобными схемами в качестве перемычки чаще всего используется пинцет.

Предположим, что вместо светодиода в этой схеме будет достаточно мощная нагревательная спираль с большой тепловой инерцией. Тогда получается практически готовый регулятор мощности. Если коммутировать тиристор таким образом, что на 5 секунд спираль включена и столько же времени выключена, то в спирали выделяется 50-ти процентная мощность. Если же за время этого десятисекундного цикла включение производится лишь на 1 секунду, то совершенно очевидно, что спираль выделит только 10% тепла от своей мощности.

Примерно с такими временными циклами, измеряемыми в секундах, работает регулировка мощности в микроволновой печи. Просто с помощью реле включается и выключается ВЧ излучение. Тиристорные регуляторы работают на частоте питающей сети, где время измеряется уже миллисекундами.

Третий способ выключения тиристора

Состоит в том, чтобы до нуля уменьшить напряжение питания нагрузки, а то и вовсе изменить полярность питающего напряжения на противоположную. Именно такая ситуация получается при питании тиристорных схем переменным синусоидальным током.

При переходе синусоиды через нуль, она меняет знак на противоположный, поэтому ток через тиристор становится меньше тока удержания, а затем и вовсе равным нулю. Таким образом, проблема выключения тиристора решается как бы сама собой.

Тиристорные регуляторы мощности. Фазовое регулирование

Итак, дело осталось за малым. Чтобы получилось фазовое регулирование, надо просто в определенное время подать управляющий импульс. Другими словами импульс должен иметь определенную фазу: чем ближе он будет расположен к концу полупериода переменного напряжения, тем меньшая амплитуда напряжения окажется на нагрузке. Фазовый способ регулирования показан на рисунке 3.

Фазовое регулирование

Рисунок 3. Фазовое регулирование

В верхнем фрагменте картинки управляющий импульс подается почти в самом начале полупериода синусоиды, фаза управляющего сигнала близка к нулю. На рисунке это время t1, поэтому тиристор открывается почти в начале полупериода, а в нагрузке выделяется мощность близкая к максимальной (если бы в цепи не было тиристоров, мощность была бы максимальной).

Сами управляющие сигналы на этом рисунке не показаны. В идеальном варианте они представляют собой короткие положительные относительно катода импульсы, поданные в определенной фазе на управляющий электрод. В простейших схемах это может быть линейно нарастающее напряжение, получаемое при заряде конденсатора. Об этом будет рассказано несколько ниже.

На среднем графике управляющий импульс подается в средине полупериода, что соответствует фазовому углу Π/2 или моменту времени t2, поэтому в нагрузке выделяется лишь половина максимальной мощности.

На нижнем графике открывающие импульсы подаются очень близко к окончанию полупериода, тиристор открывается почти перед тем, как ему предстоит закрыться, по графику это время обозначено как t3, соответственно мощность в нагрузке выделяется незначительная.

Схемы включения тиристоров

После краткого рассмотрения принципа работы тиристоров, наверное, можно привести несколько схем регуляторов мощности. Нового здесь ничего не изобретено, все можно найти в сети Интернет или в старых радиотехнических журналах. Просто в статье приводится краткий обзор и описание работы схем тиристорных регуляторов. При описании работы схем будет обращаться внимание на то, каким образом используются тиристоры, какие существуют схемы включения тиристоров.

Как было сказано в самом начале статьи, тиристор выпрямляет переменное напряжение как обычный диод. Получается однополупериодное выпрямление. Когда-то именно так, через диод, включались лампы накаливания на лестничных клетках: света совсем чуть, в глазах рябит, но зато лампы перегорают очень редко. То же самое получится, если светорегулятор выполнить на одном тиристоре, только появляется еще возможность регулирования уже и так незначительной яркости.

Поэтому регуляторы мощности управляют обоими полупериодами сетевого напряжения. Для этого применяется встречно – параллельное включение тиристоров, симисторы или включение тиристора в диагональ выпрямительного моста.

Для наглядности этого утверждения далее будут рассмотрены несколько схем тиристорных регуляторов мощности. Иногда их называют регуляторами напряжения, и какое название вернее, решить трудно, ведь вместе с регулированием напряжения регулируется и мощность.

Простейший тиристорный регулятор

Он предназначен для регулирования мощности паяльника. Его схема показана на рисунке 4.

Схема простейшего тиристорного регулятора мощности

Рисунок 4. Схема простейшего тиристорного регулятора мощности

Регулировать мощность паяльника, начиная от нуля, нет никакого смысла. Поэтому можно ограничиться регулированием только одного полупериода сетевого напряжения, в данном случае положительного. Отрицательный полупериод проходит без изменений через диод VD1 сразу на паяльник, что обеспечивает его половинную мощность.

Положительный полупериод проходит через тиристор VS1, позволяющий осуществлять регулирование. Цепь управления тиристором предельно проста. Это резисторы R1, R2 и конденсатор C1. Конденсатор заряжается по цепи: верхний провод схемы, R1, R2 и конденсатор C1, нагрузка, нижний провод схемы.

К плюсовому выводу конденсатора подключен управляющий электрод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, последний открывается, пропуская в нагрузку положительный полупериод напряжения, вернее его часть. Конденсатор C1 при этом, естественно, разряжается, тем самым подготавливаясь к следующему циклу.

Скорость заряда конденсатора регулируется с помощью переменного резистора R1. Чем быстрее конденсатор зарядится до напряжения открывания тиристора, тем раньше тиристор откроется, тем большая часть положительного полупериода напряжения поступит в нагрузку.

Схема простая, надежная, для паяльника вполне подходит, хотя регулирует лишь один полупериод сетевого напряжения. Очень похожая схема показана на рисунке 5.

Тиристорный регулятор мощности

Рисунок 5. Тиристорный регулятор мощности

Она несколько сложней предыдущей, но позволяет осуществлять регулировку более плавно и точно, благодаря тому, что схема формирования управляющих импульсов собрана на двухбазовом транзисторе КТ117. Этот транзистор предназначен для создания генераторов импульсов. Больше, кажется, ни на что другое не способен. Подобная схема используется во многих регуляторах мощности, а также в импульсных блоках питания в качестве формирователя запускающего импульса.

Как только напряжение на конденсаторе C1 достигает порога срабатывания транзистора, последний открывается и на выводе Б1 появляется положительный импульс, открывающий тиристор VS1. Резистором R1 можно регулировать скорость заряда конденсатора.

Чем быстрее зарядится конденсатор, тем раньше появится открывающий импульс, тем большее напряжение поступит в нагрузку. Вторая полуволна сетевого напряжения проходит в нагрузку через диод VD3 без изменений. Для питания схемы формирователя управляющих импульсов используется выпрямитель VD2, R5, стабилитрон VD1.

Тут можно спросить, а когда же откроется транзистор, каков же порог срабатывания? Открывание транзистора происходит в тот момент, когда напряжение на его эмиттере Э превысит напряжение на базе Б1. Базы Б1 и Б2 не равноценны, если их поменять местами, то генератор не заработает.

На рисунке 6 показана схема, позволяющая регулировать оба полупериода напряжения.

Светорегулятор

Схема представляет собой светорегулятор. Сетевое напряжение выпрямляется мостом VD1-VD4, после которого пульсирующее напряжение подается на лампу EL1, тиристор VS1, а через резисторы R3, R4 на стабилитроны VD5, VD6, от которых питается схема управления. Использование в схеме выпрямительного моста позволяет осуществить регулирование положительного и отрицательного полупериодов с использованием всего одного тиристора.

Схема управления выполнена также на двухбазовом транзисторе КТ117А. Скорость заряда времязадающего конденсатора C2 изменяется резистором R6 отчего меняется фаза управляющего тиристором сигнала.

По поводу этой схемы можно сделать небольшое замечание: ток в нагрузке состоит лишь из положительных полупериодов сети, полученных после мостового выпрямителя. Если требуется в нагрузке получить положительную и отрицательную части синусоиды, достаточно, ничего не меняя в схеме, включить нагрузку сразу после предохранителя. На место нагрузки следует просто установить перемычку. Такая схема показана на рисунке 7.

Читайте также:  Как выбрать ток если есть мощность

Схема тиристорного регулятора мощности

Рисунок 7. Схема тиристорного регулятора мощности

Транзистор КТ117 изобретение советской электронной промышленности и зарубежных аналогов не имеет, но при необходимости может быть собран из двух транзисторов по схеме, показанной на рисунке 8. Вдруг кто-то возьмется собирать подобную схему, где такой транзистор взять?

Аналог КТ117

В схемах, показанных на рисунках 6 и 7, тиристор используется в сочетании с диодным мостом. Такое включение дает возможность с помощью одного тиристора управлять обоими полупериодами переменного напряжения. Но вместе с тем появляются 4 дополнительных диода, что в целом увеличивает габариты конструкции.

Источник



Тиристорный стабилизатор — плюсы и минусы устройства

Содержание статьи (ссылки кликабельны):

Использование различных электроприборов является одним из обязательных условий нашей жизни. Каждый из таких приборов предназначен для выполнения определенной функции, и осуществляя ее, упрощает и совершенствует нашу жизнь.

Однако всегда есть явление, которое создает препятствия в работе электрических приборов. Этим явлением являются перепады напряжения в линиях электропередач.

Такие перепады являются весьма неприятными для наших электроприборов, поскольку большой скачок тока в лучшем случае ухудшает качество их работы, а в худшем случае вызывает фатальные последствия для отдельных компонентов электроприборов.

Для того, чтобы такой скачок не мог повлиять на работу, а также на состояние наших электроприборов, необходимо использовать стабилизатор напряжения. Сегодня есть много видов стабилизаторов, однако наибольшей эффективностью могут похвастаться тиристорные стабилизаторы.

Эти стабилизаторы обеспечивают плавное выравнивание напряжения и по принципу работы являются похожими на релейные приборы. Главная особенность, которая отличает их от всех стабилизаторов, состоит в наличии тиристорных ключей. Эти ключи являются полупроводниками.

Внутреннее устройство

Для того чтобы понять, что представляет собой и каким образом работает этот стабилизатор, рассмотрим его устройство и опишем особенности работы его составных элементов.

Итак, сняв верхнюю крышку корпуса таких стабилизационных приборов, мы можем увидеть:

  1. Автоматический трансформатор.
  2. Электронные схемы, которые вместе образуют механизм управления.
  3. Собственно тиристорные ключи.
  4. А также различные светодиодные индикаторы.

Как работает трансформатор

Как и в большинстве стабилизаторов напряжения, так и в приборе нашего типа главным элементом является автоматический трансформатор. Именно он осуществляет процесс нормализации тока.

Схема простейшего трансформатора

Схема работы простейшего трансформатора

Для того, чтобы понять, каким образом трансформатор тиристорного стабилизатора стабилизирует ток, рассмотрим его строение. Этот главный элемент тиристорных приборов состоит из двух обмоток, а именно первичной и вторичной.

На первичную поступает входной ток. Далее этот ток проходит на вторичную обмотку и из нее попадает в любой электроприбор.

Обе обмотки представляют собой определенное количество витков проволоки. Количество витков на каждой из них может быть разным.

Рассмотрим работу обмоток на примере. Будем считать, что количество витков в обеих обмотках является равным 20. Если ток с напряжением в 200 вольт пройдет через 20 витков первичной обмотки и 20 витков вторичной обмотки, то на выходе он будет иметь такое же напряжение.

В том случае, когда он пройдет через 20 витков первой обмотки и 10 витков вторичной обмотки, напряжение на выходе будет не 200, а 100 вольт. Таким образом происходит уменьшение напряжения.

Для того, чтобы увеличить напряжение (в нашем случае 200 вольт до 220), нужно подключить еще один виток второй обмотки, т.е. ток должен проходить через 21 виток (в нашем примере это невозможно, поскольку вторая обмотка имеет только 20 витков). Таковым является общий принцип работы трансформатора.

На практике каждая обмотка имеет сотни витков. При этом максимальное количество витков во второй обмотке должно быть большим, чем количество витков в первой обмотке. Надобность этого отчетливо видна на вышеуказанном примере.

В вас может возникнуть вопрос, каким же образом можно подключать то или иное количество витков? Для того, чтобы можно было подключать определенное количество витков, производитель делает выводы от определенного витка второй обмотки.

Количество этих выводов может быть разным. Собственно на конце каждого такого вывода и находятся тиристоры. Они и осуществляют подключение определенного количества витков.

В результате получается так, что, когда нужно повысить напряжение, происходит подключение дополнительного количества витков. Когда стабилизатор напряжения, который относится к тиристорному типу, должен снизить напряжение, происходит отключение определенного количества витков.

витки в стабилизаторе

Стоит обратить внимание на тот факт, что все витки являются как бы поделенными на группы. Подсоединение каждой из группы осуществляется через выводы.

Грубо говоря, если количество витков равно цифре 100 и выводов пять, то подключение одного вывода означает, что ток проходит через 20 витков. В данном случае напряжение изменится на определенную фиксированную величину, то есть на определенную степень. Собственно такое изменение напряжения и называется ступенчатой стабилизацией.

На практике в некоторых стабилизаторах подключение одного определенного количества витков приводит к увеличению или уменьшению напряжения на 15-20 вольт. Чем больше выводов (то есть в отдельной группе становится меньше витков), тем на меньшую величину изменяется выходное напряжение при подключении одного вывода.

Подытоживая, отметим, что при росте/падении напряжения на входе происходит отключение/подключение определенного вывода второй обмотки благодаря работе тиристоров. Между переключениями обмоток наблюдается интересный факт: насколько меняется ток на входе, настолько же он меняется на выходе.

На практике выглядит так: на входе есть напряжение в 180 вольт и на выходе обеспечивается 220. Когда напряжение растет, например до 185, на выходе напряжение возрастает до 225-ти.

Далее происходит переключение обмотки и на выходе снова становится 220. Конечно, величина изменений выходного тока определяется особенностями различных моделей тиристорных стабилизаторов напряжения, которые используются дома.

Для этих стабилизаторов она может колебаться от 2 до 10 вольт.

Полезный совет: при переключении тиристоров можно будет заметить небольшое мерцание ламп накаливания. Данный факт является следствием вышеописанного процесса выравнивания тока и он не означает, что тиристорный стабилизатор сломался. Это стандартный режим его работы.
В общем, тиристорные стабилизаторы обеспечивают уровень выходного напряжения, который колеблется в пределах 214-226 вольт. Это является высоким показателем их работы.

Особенности работы тиристоров

Как уже отмечалось, главным отличием тиристорного стабилизатора напряжения от других приборов для стабилизации напряжения является наличие в его схеме тиристорных ключей. Их работа также сопровождается определенными особенностями.

Их включение/выключение может приводить к искажению синусоидальной формы тока. Учитывая это, микроконтроллер должен включать/выключать любой тиристор, когда ток находится в нулевой точке синусоиды.

Для осуществления этого алгоритм электронной схемы предусматривает проведение измерения напряжения в несколько десятков раз и определение момента включения тиристора. Сам процесс занимает не более одной микросекунды, поэтому он никоим образом не приводит к долгому выравниванию тока.

Также в это же время процессор определяет, является ли включенным, или выключенным тиристор, чтобы затем дать правильную команду.

Примечательным фактом является то, что тиристоры боятся перегрузки и во время таких ситуаций они перегорают. Для устранения такого сценария при появлении чрезмерной нагрузки микроконтроллер дает команду на выключение тока, то есть отключение стабилизатора.

Еще одна особенность кроется в том, что во время своей работы тиристоры сильно греются. Учитывая это, производители обязаны ставить радиаторы для охлаждения.

Такие особенности работы тиристоров и трансформатора приводят к тому, что тиристорные приборы должны обладать мощными электронными схемами.

Типы тиристорных стабилизаторов

Сегодня на рынке можно увидеть одно- и двухкаскадные тиристорные стабилизаторы напряжения. Однокаскадным стабилизатором является такой, который регулирует напряжение в один этап.

Двухкаскадные проводят нормализацию тока в два этапа. В течение первого происходит грубое выравнивание. На втором этапе выходной ток получает идеальные характеристики.

Двухкаскадная система регулирования позволяет использовать тиристоры с большей эффективностью, поскольку растет количество комбинаций их включения. Так, если на обоих каскадах находятся по четыре тиристоры, то их можно включать шестнадцатью способами.

Конечно, с ростом количества тиристоров на каскадах, растет количество их способов включения.

Двухкаскадный способ регулирования тока является несколько медленным однокаскадного. Он занимает до 20 миллисекунд, тогда как 1-каскадный длится 10 миллисекунд.

Преимущества и недостатки

Итак, зная детальное строение и особенности работы тиристорного стабилизатора можно определить, какими достоинствами и недостатками он обладает.
К преимуществам относятся:

  1. Отсутствие шума при нормализации тока.
  2. Один тиристор может сработать более 1 млрд. раз, что является очень высоким показателем.
  3. Во время размыкания не образуется дуговой разряд.
  4. Небольшой уровень энергопотребления.
  5. Небольшие габариты.
  6. Высокая скорость выравнивания напряжения.
  7. Высокий уровень точности нормализации напряжения (до ± 3 процентов).
  8. Возможность работы при очень низких или высоких уровнях напряжения (120-300 вольт).

Что касается недостатков тиристорного стабилизатора, то они кроются:

  • в ступенчатом способе стабилизации тока;
  • в микрокотроллерном управлении. Его осуществляет электронная схема, которая является аналогом процессора компьютера. Соответственно она также требует стабильного тока и может «подвисать»;
  • в высокой цене (она является следствием дорогих тиристоров и электронных схем управления).

Как подключить?

Использование тиристорных стабилизаторов напряжения в доме позволит уберечь технику от изменений тока в течение многих лет. Однако перед использованием его нужно подключить.

В зависимости от назначения тиристорные стабилизаторы могут подключаться после счетчика и распределительного щитка (то есть будут подавать стабильный ток на весь дом), или же перед отдельным прибором.

В первом случае тиристорные приборы имеют большую мощность и их подключают через клеммы. В этом случае к клеммам подключаются входные, выходные провода, а также заземляющий. При подключении как входящих, так и выходных проводов соблюдается правило: к фазной клемме подсоединяют фазный кабель, к нулевой — нулевой кабель. Также необходимым условием является осуществление заземления.

Большинство моделей, которые предназначены для подачи питания для одного прибора, имеют кабель и розетки. Благодаря кабелю стабилизатор подключается к сети. Далее к розетке, расположенной на нем, подсоединяют вилки кабелей подключаемых приборов.

Полезный совет: для того, чтобы заземлить такой тиристорный стабилизатор, вилку его кабеля всего-то нужно вставить в трехполюсную розетку.

Условия эксплуатации

Тиристорные стабилизаторы выгодны не только тем, что не создают шума, но и тем, что являются неприхотливыми к окружающим условиям. Так, многие модели могут работать в условиях, когда температура воздуха превышает -40 градусов Цельсия и является меньшей +40 градусов Цельсия.

Полезный совет: будет лучше, если тиристорный стабилизатор не использовать при морозной температуре, даже если он может работать в таких условиях. Идеальной температурой для работы будет такая, которая превышает +5 градусов Цельсия.

Тиристорный стабилизатор может отлично работать в помещении, уровень влажности в котором не является большим 80-ти процентов. Некоторые производители предлагают стабилизаторы с устойчивостью к высшим уровням влажности. Однако их делают на заказ.

Конечно, близ тиристорного устройства не должно находиться легковоспламеняющихся предметы, а также вокруг него должно быть пространство в как минимум пять сантиметров.

Техобслуживание сводится к очистке вентиляционных отверстий и проверке качества крепления входных и выходных проводов.

Источник