Меню

Схемы для сложных цепей постоянного тока

Анализ сложных цепей постоянного тока

Лекция №3.

Вопросы:

  1. Расчёт методом непосредственного применения закона Кирхгофа.
  2. Расчёт методом контурных токов.
  3. Расчёт методом суперпозиции.
  4. Расчёт методом узловых напряжений.
  5. Расчёт методом эквивалентного генератора.

Ход лекции:

I. Расчёт методом применения закона Кирхгофа.

  1. Определяем кол-во узлов и ветвей.

  1. Произвольно зададим направление токов всех ветвей.
  2. Составляем уравнение по первому закону Кирхгофа для каждого независимого узла: k-1=3.
  1. Недостающие уравнения: m-(k-1)=3 составляем по второму закону Кирхгофа для каждого независимого контура:
  1. Решая систему уравнений находим неизвестные токи в ветвях.
  2. По результатам полученных численно значений токов выполняем действия:

1). Уточняем направление тока в ветвях: если ток отрицательный, то пишем примечание – реальное направление тока противоположено показанному на схеме.

2). Определяем режим работы источника питания: если направление ЭДС и реального тока совпадают, то режим источника питания – режим генератора, если направление ЭДС и реального тока противоположно, то это режим потребителя.

7. Проверка решения – проверка уравнения баланса мощностей: алгебраическая сумма мощностей источников равна арифметической сумме мощностей нагрузок

Если направление ЭДС и реального тока совпадают, то Рист=EI (>0), если направление ЭДС и реального тока не совпадают, то Рист= -EI ( 2 Rn

Итак, уравнение баланса мощностей для нашей схемы:

Итак, если поле подстановки численных значений величин уравнения баланса обращается в тождество, то задача решена верно.

Достоинство метода: Его простота.

Недостатки метода:Большое количество совместно решаемых уравнений для сильно разветвленных цепей.

Поэтому метод применяется для расчета сложных цепей на компьютерах, в ручную не рекомендуется.

II. Расчёт методом контурных токов.

  1. Определение кол-ва узлов К=4, m=6
  2. Находим независимые контуры и для каждого задаётся произвольно положительное направление контурного тока. Контурный ток –ток, обтекающий ветви своего независимого контура.
  3. Составляем уравнения по второму закону Кирхгофа , учитывая все контурные токи, протекающие по ветвям выбранного контура.
  1. Решая систему уравнений например, методом Крамера, найдём контурные токи:

Δ – коэффициент при контурных токах

Δ1, Δ2, Δ3 получают заменой к-того столбца на левую часть уравнений.

  1. Произвольно обозначаем направление токов в ветвях.
  2. Выражаем токи в ветвях через алгебраическую сумму прилегающих контурных токов: контурный ток, совпадающий с током в ветви, записывают с плюсом.
  1. по полученным значениям уточняем реальные направления токов в ветвях и определяем режимы работ.
  2. Проверка режимов баланса мощностей.

Достоинства метода: более короткий алгоритм

Недостатки метода:необходимо знание этого алгоритма.

Область применения: очень широкая для расчёта тока в разветвленных ветвях.

III. Расчёт методом суперпозиции.

В электротехнике принцип суперпозиции проявляет себя как принцип независимости действия ЭДС. Согласно этому принципу каждая ЭДС возбуждает в любой ветви свою долю тока – частичный ток. Результирующий ток в ветви определяется как алгебраическая сумма частичных токов.

  1. Задаём произвольное направление тока в ветвях.
  2. Создаём первую частичную схему замещения: из исходной схемы замещения выбрасываем все источники ЭДС, кроме первого, но оставляем их внутреннее сопротивление. Находим частичные токи в ветвях методом свёртки схемы.

  1. Создаём вторую частичную схему замещения: выбрасываем все источники ЭДС, кроме второго и оставляем их внутренние сопротивления.

Е2

  1. Создаём третью частичную схему замещения аналогично прошлым.

  1. Наложив частичные схемы одну на другую, определяем результирующий ток в каждой ветви как алгебраическую сумму частичных токов.

Истинное направление токов на исходной схеме замещения определяем по результатам аналитического расчёта по правилу:

Если значение тока положительно, то направление тока угадано верно, если значение тока отрицательно, то реальное направление тока противоположно.

Алгоритм метода прост, требует знание только закона Ома, однако не производительный, поэтому для полного анализа сложной электрической цепи не применяется. Рекомендуется для частичного анализа цепи.

IV. Расчёт методом узловых напряжений.

В приложении для цепи с параллельными ветвями получил название «метод двух узлов».

  1. k=2, m=3
  2. Нахождение токов всех ветвей: Задаём произвольно условно положительное направление узлового напряжения между узлами и определяем его по формуле:

Узловое напряжение равно дроби, в числителе которого алгебраическая сумма произведений ЭДС на проводимости активных ветвей, а в знаменателе сумма проводимости всех ветвей.

  1. Определяем токи всех ветвей или заданной ветви, записывая уравнение второго закона Кирхгофа для каждой ветви и приложенного к ней узлового напряжения:

4. Проверка: Уравнение баланса мощностей:

Достоинства:1. краткий алгоритм

2. метод как для полного, так и для частичного анализа

Недостаток: надо знать специфику алгоритма

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Тема 1.2. Электрические цепи постоянного тока

Электрические цепи и ее элементы

Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.

Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС — E ), токе ( I ) и напряжении ( U ).

Элементы цепи можно разделить на три группы:

1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);

2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);

3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.

Читайте также:  Двухфазный бесколлекторный электродвигатель постоянного тока

Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.

Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.

Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.

Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.

Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.

Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.

Активные и пассивные элементы

Элемент называется пассивным , если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.

Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).

Линейные и нелинейные цепи

Электрическая цепь называется линейной , если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.

Если электрическая цепь содержит хотя бы один нелинейный элемент , то она является нелинейной.

Топологические элементы электрической цепи.

Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.

Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.

Узел – точка соединения трех или более ветвей.

Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.

Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.

Положительные направления тока, напряжения и ЭДС.

Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.

Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.

По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.

За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.

Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.

Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.

Основные законы электрической цепи

Условное обозначение параметров в цепях постоянного и переменного тока.

i – переменный ток; I – постоянный ток;

u – переменное напряжение; U – постоянное напряжение;

e – переменная ЭДС; E – постоянная ЭДС;

Источник

Схемы для сложных цепей постоянного тока

Методы расчета сложных электрических цепей постоянного тока

1. Метод узловых и контурных уравнений

В основе расчета лежат первый и второй законы Кирхгофа.

  1. Произвольно выбираем направление тока в ветвях.
  2. Произвольно выбираем направление обхода контуров.
  3. Зная полярность источников, проставляем направление ЭДС.
  4. Составляем уравнения по первому закону Кирхгофа. Их должно быть но одно меньше, чем узлов.
  5. Составляем уравнения по второму закону Кирхгофа из расчета, что общее число уравнений должно быть равно числу неизвестных токов.
  6. Решаем систему уравнений и определяем неизвестные токи. Если в результате решения какой-либо ток окажется со знаком «-», то направление его противоположно выбранному.
  1. 1=r2=0;
  2. 1=0,3 Ом;
  3. 2=1 Ом;
  4. 3=24 Ом;

Итак, на схеме рисуем направления токов (1), согласно этим направлениям рисуем направления обхода контуров (2), согласно полярности источников питания ставим направления ЭДС (3).

Согласно первому закону Кирхгофа:

Теперь составляем уравнения по второму закону Кирхгофа:

Получили систему из трех уравнений. Решаем.

2. Метод контурных токов

Этот метод основан на втором законе Кирхгофа

  1. Произвольно выбираем направления контурных токов (рис.2)
  2. Составляем уравнения по второму закону Кирхгофа.

3. Определяем истинные токи.

3. Метод двух узлов

Этот метод применим для схем, имеющих два узла

  1. Выбираем произвольно направления токов в ветвях в одну и ту-же сторону (см. рис.3 – стрелки со штрихами).
  2. Определяем проводимости ветвей:
  1. Определяем напряжение между двумя узлами по формуле:
  1. Определяем токи в ветвях
Читайте также:  Что представляет собой цепь переменного тока с индуктивным сопротивлением

Так как, значения I2 и I3 получились отрицательными, то эти токи будут противоположными по направлению (на рисунке показаны жирные сплошные стрелки).

4. Метод наложения или метод суперпозиции

Метод основан на том, что любой ток в цепи создается совместным действием всех источников питания. Поэтому можно рассчитать частичные токи от действия каждого источника питания отдельно, а затем, найти истинные токи как арифметическую составляющую частичных.

Источник

Схемы Электрических Цепей Постоянного Тока

При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Таким образом, электрическая цепь на рис.


Точка Н определяет номинальный режим, если напряжение и ток соответствуют их номинальным значениям Uном и Iном, приведенным в паспорте источника электрической энергии.

Элемент электрической цепи, параметры которого сопротивление и др.
Электрические цепи (часть 1)

Элементы цепи Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода. По закону Ома токи в каждой ветви: По первому закону Кирхгофа общий ток Смешанное соединение — комбинация первых двух соединений, где параллельное соединение может быть преобразовано к последовательному.

Для их составления необходимо задать условные направления токов в ветвях номер введем в соответствии с порядковым номером сопротивлений.

Метод узловых потенциалов Вторым методом, которым пользуются для решения сложных цепей, является метод узловых потенциалов. Тогда из выражения 1.

Внешняя вольт-амперная характеристика источника электрической энергии Точка X вольт-амперной характеристики источника электрической энергии отвечает режиму холостого хода х.

Подключение цепи к источнику постоянной ЭДС 5. Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

КОНДЕНСАТОР В ЦЕПИ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА [РадиолюбительTV 89]

Электрическая цепь постоянного тока

Алгебраическая сумма падений напряжений на резистивных элементах в любом замкнутом контуре равно алгебраической сумме ЭДС. Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

Источник электрической энергии характеризуется понятием ЭДС Е , под которой понимают величину, численно равную энергии, получаемой внутри источника единицей электрического заряда.

При расчете в схеме электрической цепи выделяют несколько основных элементов. Этот метод основан на составлении уравнений по первому закону Кирхгофа: Схема сложной электрической цепи с двумя узлами.

Для разных электротехнических устройств указывают свои номинальные параметры.

Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают.

Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников.

В случае последовательного соединения сопротивлений в ветви В общем виде уравнения узловых потенциалов имеют вид: Если в схеме имеются источники тока, то слагаемое в правой части будет равно сумме источников тока: Метод узловых потенциалов имеет преимущество, если число независимых узлов меньше числа контуров. Желательно во всех контурах положительные направления обхода выбирать одинаковыми, например, по часовой стрелке, как показано на рис.
Устройство и принцип работы двигателя постоянного тока. Схема двигателя постоянного тока.

Похожие статьи

Такая система известна, как электрическая цепь. Схема электрической цепи.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования.

Отключение цепи от источника постоянной ЭДС 5. В противном случае это слагаемое отрицательно. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.

Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока. Для электрической цепи на рис.

Для контура. Это произойдет, если к зажимам аb двухполюсника присоединена внешняя цепь с источниками питания. Точка К характеризует режим короткого замыкания к. Первый закон Кирхгофа: сумма токов в узле равна нулю 1.

Elektrotechnik fuer Grundlagen der Elektronik


Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит.

Мощность цепи несинусоидального тока 4. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже. За направление электрического тока в электротехнике принято направление, противоположное направлению движения электронов. Сложной электрической цепью называется цепь, содержащая несколько источников и которую нельзя свернуть до простой цепи последовательного или параллельного соединения.

Зная токи, можно найти напряжения на элементах цепи, мощность отдельных элементов и электрической цепи в целом, мощность источников и др. Контур — любой замкнутый путь, проходящий по нескольким ветвям.
как решать задачи со сложными схемами

Элементы цепи

При сравнении внешних характеристик источника ЭДС рис. Мощность трёхфазной цепи 3.

Классический метод расчёта переходных процессов 5. В зависимости от электропроводности все вещества подразделяют на: 1.

Читайте также:  Асинхронный двигатель с редуктором переменного тока

Последовательное соединение в цепи Большое количество электрических цепей состоят из нескольких приемников тока.

Согласованный режим Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. На схеме этот элемент выглядит следующим образом. В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают.

Метод узловых потенциалов

Идеальному источнику тока приписывают внутреннее сопротивление, стремящееся к бесконечно большому значению, и неизменный ток Iк не зависящий от напряжения на его зажимах, равный току коротного замыкания, вследствие чего неограниченное увеличение присоединенной к источнику нагрузки сопровождается теоретически неограниченным возрастанием напряжения и мощности. Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока.

Различают два рода тока: 1. Ветвь электрической цепи схемы — участок цепи с одним и тем же током. Последовательное включение источников питания источников ЭДС применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС рис. Между узлами 1 и 3 имеются две параллельные ветви с источниками ЭДС Е1 и Е2 , между узлами 2 и 3 также имеются две параллельные ветви с резисторами R1 и R2. Данное устройство работы системы применяется к любому электрическому бытовому прибору.

По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже. Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. При сравнении внешних характеристик источника ЭДС рис. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Классический метод расчёта переходных процессов 5. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Это уравнение является линейным. В состав цепи входят: 1.
Законы Кирхгофа — Теория и задача

Источник



СЛОЖНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА

Общие сведения

Электрические цепи с последовательно-параллельным соеди­нением приемников энергии при питании их от одного источника электрической энергии, а также одноконтурные цепи называют простыми цепями. Расчет этих цепей осуществляется по формулам закона Ома и первого закона Кирхгофа. При этом заданные сопро­тивления часто заменяют одним эквивалентным. Так, цепь на рис. 6.1, а можно привести к элементарному виду с одним экви­валентным сопротивлением г, подключенным к источнику энергии с ЭДС Е1 (рис. 6.1,6). В данном случае Электрические цепи с несколькими контурами, состоящими из разных ветвей с произвольным размещением потребителей и источников энергии, называются сложными электрическими цепя­ми. Сложные электрические цепи рассчитывают методами: 1) уз­ловых и контурных уравнений; 2) контурных токов; 3) узлового напряжения; 4) наложения (суперпозиции); 5) эквивале­нтного преобразования тре­угольника и звезды сопротив­лений. В первом методе ис- ‘пользуются первый и второй законы Кирхгофа. Первый за­кон был рассмотрен в § 4.3.

Второй закон Кирхгофа

Сложная электрическая цепь(рис. 6.2, а) имеет два узла (Б и Д) и три ветви с токами .Обозначим контуры цепи I — АБДЕА; II — АБВГДЕА; III — БВГДБ. В контуре АБДЕА включены ЭДС Е1, Е1 и сопротивления на которых созда­ются падения напряжения: , . Если точку А заземлить, то ее потенциал будет равен нулю. Потенциалы точек Б и Д выразятся следующим образом: ; Если от потенциала от­нять падение напряжения и прибавить к нему ЭДС Е1, то полу­чим потенциал : , или В левой части полученного равенства оставим ЭДС Е1 и Е2, а все остальные его члены перенесем в правую часть. Тогда получим или В левой части этого уравнения записана алгебраическая сумма ЭДС, действующих в первом контуре, а в правой — сумма падений напряжения во всех сопротивлениях, входящих в этот контур. В общем виде для любого контура

Равенство (6.1) является математическим выражением второго закона Кирхгофа: в любом контуре электрической цепи алгебраиче­ская сумма ЭДС равна алгебраической сумме падений напряжений в отдельных сопротивлениях.

Для каждого контура сложной электрической цепи по второму закону Кирхгофа можно составить

только одно уравнение. При этом особое внимание следует обра­тить на знаки ЭДС и падение напряжения. Вначале произвольно выбирают направление обхода контура. Если действующая в кон­туре ЭДС совпадает с направлением обхода, то ее считают поло­жительной, при обратном направлении ЭДС отрицательна. Паде­ние напряжения на сопротивлении считают положительным, если направление тока в нем совпадает с направлением обхода контура

В электрических цепях встречаются элементы с выводами, на которых имеются напряжения U (сеть напряжения, делитель напряжения и т. д.). В этом случае удобнее использовать следую­щую форму записи второго закона Кирхгофа: . При этом ЭДС напряжения и токи, положительные направления кото­рых совпадают с направлением обхода контура, записываются в соответствующую часть уравнения с положительным знаком. В противном случае эти же величины записываются с отрицатель­ным знаком. Например, для контура (рис. 6.2, б) при обходе его по часовой стрелке имеем

Источник