Меню

Схема включения люминесцентной лампы в сеть переменного тока

Схема включения люминесцентной лампы – обзор вариантов

лампа люминесцентная

Люминесцентные лампы дают более приятный свет и потребляют меньше энергии, чем традиционные «лампочки Ильича».

Но в отличие от ламп накаливания, их нельзя подключать к электросети напрямую — требуется пускорегулирующий аппарат.

Разговор в данной статье пойдет о том, какой может быть схема включения люминесцентной лампы и какими достоинствами обладает каждый из вариантов.

Особенности работы

лампы люминесцентного типа

В люминесцентных светильниках, также именуемых разрядными или газоразрядными, источником света является не раскаленная металлическая нить, как в обычной лампочке, а электрическая дуга (дуговой разряд) в газовой среде.

Производимый дугой свет в чистом виде является непригодным «к употреблению», так как в значительной мере состоит из невидимого ультрафиолетового излучения, а видимая составляющая имеет зеленовато-голубой цвет.

Ситуацию исправляет нанесенный на внутреннюю поверхность колбы люминофор — особое вещество, которое при облучении ультрафиолетом начинает светиться красноватым светом. Этот свет смешивается с зелено-голубым, так что в итоге свечение лампы становится почти белым.

Для люминесцентных светильников характерны следующие особенности:

  1. Для поддержания дуги требуется гораздо меньшее напряжение (его называют напряжением горения), чем для ее создания (напряжение зажигания или пробоя газового промежутка).
  2. Чтобы обеспечить длительный срок службы лампы, электроды ее перед включением, то есть созданием дуги, следует прогреть.
  3. При попытке уменьшить проходящий через лампу ток ее электроды остывают и лампа гаснет, что делает невозможным ее регулирование (диммирование) традиционными способами.
  4. Сопротивление газовой среды в устоявшемся режиме, то есть когда дуга уже возникла, чрезвычайно мало, поэтому для ограничения силы тока последовательно с лампой обязательно нужно включать сопротивление. Поскольку лампа работает на переменном токе, это сопротивление может быть индуктивным (дроссель).

Подключение через электромагнитный балласт со стартером

Самым простым, дешевым, а потому и наиболее распространенным является электромагнитный балласт. В нем применен самый обычный дроссель, рассчитанный на переменный ток с частотой 50 Гц. Одним из важных недостатков такого дросселя является смещение фазы тока относительно фазы напряжения, при котором эффективность любого электрического устройства снижается.

подключение эпра

Схема подключения ЭПРА

В характеристиках обычно указывают не угол, на который происходит смещение, а его косинус — cosφ. Чтобы уменьшить угол расхождения и тем самым увеличить cosφ, приблизив его к единице, в пусковое устройство вводится компенсирующий конденсатор. Подключаться он может по-разному, чаще всего — по схеме параллельной компенсации.

Неотъемлемой частью данной схемы является стартер — газоразрядная лампа в миниатюре, заполненная неоном. У стартера имеются две особенности:

  1. Объем неона в нем подобран таким образом, чтобы напряжение зажигания было выше напряжения горения основной лампы, но ниже сетевого напряжения.
  2. Один из контактов представляет собой биметаллическую пластину, которая по достижении определенной температуры изгибается (из-за разности коэффициентов линейного расширения входящих в ее состав металлов) и при этом прикасается ко второму контакту стартера.

Стартер подключен между электродами лампы последовательно с ними, как бы в обход разрядного промежутка, то есть параллельно ему.

схема включения лампы

Подключение люминесцентных ламп через ЭПРА

Вот как работает эта схема:

  1. При подаче напряжения на лампу газовый промежуток в стартере пробивается и возникает дуга, замыкающая цепь «дроссель — 1-й электрод — стартер — 2-й электрод». По этой цепи течет ток, величина которого ограничивается дросселем. Он заставляет греться электроды лампы, также от дугового разряда в стартере греются его электроды.
  2. Когда биметаллический контакт стартера достаточно разогревается, он сгибается и прикасается ко второму контакту, вследствие чего ток направляется мимо стартера и тот начинает остывать.
  3. Остыв, биметаллический контакт отсоединяется от второго контакта и из-за размыкания цепи на дросселе возникает значительный импульс напряжения. Если этот импульс возникнет в момент однонаправленной фазы сетевого напряжения, то суммарное напряжение на дросселе окажется достаточным для пробоя промежутка между электродами лампы и та включится. Вероятность такого совпадения относительно невелика, поэтому описанный цикл успевает обычно повториться несколько раз. При этом происходит характерное мигание лампы, что считается одним из недостатков светильников этого типа.

Подключение через электронный балласт

  • большие размеры;
  • хорошо слышимый жужжащий звук.

В электронном балласте перед дросселем устанавливается инвертор, похожий на те, что имеются в современных сварочных аппаратах.

Инвертор состоит из двух модулей:

  1. Выпрямитель (обычный диодный мост), преобразующий сетевой переменный ток в постоянный.
  2. Собственно, инвертор: электронный узел с двумя быстропереключаемыми транзисторами, которые, работая под управлением микросхемы, превращают постоянный ток в переменный, но с очень большой частотой — порядка 20 – 40 кГц.

С повышением частоты переменного тока габариты всех индуктивных устройств — дросселей, трансформаторов — уменьшаются. Устраняется и жужжание, а кроме того, лампа работает более ровно (уменьшается коэффициент мерцания).

балласт э/м

Еще одно отличие данной схемы: стартер заменен конденсатором. Как известно, цепочка «дроссель – конденсатор» представляет собой резонансный контур, в котором токи при подаче переменного напряжения с резонансной частотой возрастают до бесконечности. При запуске микросхема инвертора формирует ток с частотой, близкой к резонансной. Вследствие этого в цепи появляется необходимый для прогрева электродов ток и при этом на конденсаторе формируется напряжение зажигания лампы.

После ее включения микросхема инвертора сразу меняет частоту формируемого переменного тока с тем, чтобы через лампу протекал ток нужной силы.

С его же помощью пользователь может менять в определенных пределах частоту напряжения на выходе инвертора, регулируя тем самым светимость люминесцентной лампы.

Одноламповые схемы включения

Все вышеописанные схемы являются одноламповыми. Подключение стартера осуществляют так: один его контакт подключают к штыревому выводу с одной стороны лампы, второй — к штыревому выводу с другой стороны. Таким образом, с каждой стороны лампы останется по одному свободному выводу — их через дроссель нужно подключить к сети. Компенсирующий конденсатор подключается параллельно питающим контактам лампы.

Для подключения двух ламп применяется несколько иная схема.

Двухламповые схемы включения

Для подключения двух ламп требуются два стартера, но всего один дроссель. Стартеры подключаются так же, как в одноламповой схеме: контакты каждого из них нужно подключить к штыревым выводам с каждой стороны соответствующей лампы. Не задействованные контакты ламп через дроссель подключаются по последовательной схеме к сети.

две лампы через дроссель

Схема подключения двух люминесцентных ламп на один дроссель

Компенсирующие же конденсаторы, по одному на каждую лампу, нужно подключить параллельно питающим контактам.

Если по приведенной схеме подключаются лампы мощностью 18 Вт, мощность дросселя должна составлять 36 Вт, стартеров — от 4 до 22 Вт.

Схема включения люминесцентных ламп

Полезно рассмотреть способы подключения светильников, к которым можно прибегнуть при отсутствии того или иного элемента:

Без дросселя

Дроссель, представляющий собой индуктивное сопротивление, можно заменить сопротивлением активным. В этом качестве может использоваться обычная лампочка накаливания, имеющая ту же мощность, что и люминесцентный светильник. Последний нужно подключить к сети через выпрямитель из двух диодов и двух конденсаторов, на выходе которого получается двойное напряжение.

подключение без стартера и дросселя

Схема подключение люминесцентных ламп без дросселя и стартера

После включения питания и до того, как в лампе возникнет дуговой разряд, на ее электроды будет подано двукратное напряжение сети, что приведет к зажиганию. После пробоя межэлектродного промежутка в лампе установятся рабочие ток и напряжение, при этом в работу включится лампа накаливания.

Без стартера

Другое решение — запитать лампу через удваивающий выпрямитель и ввести в схему стабилитроны. До зажигания лампы двукратное напряжение на выходе выпрямителя будет удерживать стабилитроны в открытом положении, вследствие чего под этим же напряжением окажутся электроды лампы.

После ее розжига напряжение упадет и работа удвоителя станет невозможной. Соответственно, закроются стабилитроны и напряжение в лампе станет рабочим (ограничивается дросселем).

Видео на тему

Источник

Схемы подключения люминесцентных ламп: с дросселем и без дросселя, 2-х и более ламп (Фото & Видео)

Схемы подключения люминесцентных ламп

Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.

Особенности люминесцентных светильников

Устройство люминесцентной лампы

Устройство люминесцентной лампы

Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.

Читайте также:  Для переменного тока определить амплитуду период частоту фазу начальную фазу

С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).

Электромагнитный ПРА

Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.

После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.

Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).

Электронный пускорегулирующий аппарат

Электронный пускорегулирующий аппарат

Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.

Принцип действия

принцип действия люминесцентных ламп

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

  1. При подаче питания ток, проходя через ПРА, проходит через контакты стартера по вольфрамовым спиралям, раскаляя их и далее уходит в сторону нуля
  2. Стартер оснащается парой контактов: подвижным и неподвижным. При поступлении тока подвижный контакт (биметаллический), нагреваясь, изменяет свою форму и соединяется с первым
  3. При этом сила тока тут же значительно увеличивается до предела, ограничиваемого дросселем. Происходит разогревание электродов
  4. Пластина стартера, напротив, начинает остывать и рассоединяет контакты. В этот момент происходит резкий скачек напряжения и пробивка электронами газа. При превращении ртути в пар источник света переходит в рабочий режим
  5. Стартер в процессе уже не участвует – его контакты разомкнуты.

Основные этапы подключения

Схема подключения одного источника освещения к одному дросселю

Схема подключения одного источника освещения к одному дросселю

Схема подключения люминесцентной лампы с дросселем довольно проста:

  1. Включение в схему компенсирующего конденсатора позволяет снизить потери энергии и сэкономить ее потребление. В принципе, система будет работать и без него, но с большими затратами электроэнергии
  2. Напряжение должно проходить последовательно по всем точкам, начиная с конденсатора
  3. Далее в систему включается ПРА. Для получения ровного свечения его параметры должны идеально соответствовать мощности лампы
  4. Дроссель подключается к источнику света последовательно
  5. После выхода его из катушки следует подсоединить клеммы стартера
  6. Монтируем к нему второй сетевой контакт

К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.

Монтаж двух ламп

Варианты подключений

Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.

Итак, опишем процесс подключения сразу 2 люминесцентных ламп:

  1. Фаза вначале должна подходить ко входу дросселя
  2. От него она должна поступать к первой лампе
  3. Затем направляться к первому стартеру
  4. Далее переходить на вторую контактную пару этого же источника света
  5. Выходящий контакт соединяют с нулем
  6. Точно в такой же последовательности подсоединяют вторую трубу. Первым – ПРА. Затем контакт второго источника света и т.д.

Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.

Пара ламп и один дроссель

Схема с одним дросселем

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

  1. Подсоединяем провод от держателя стартера к одному из разъемов источника света
  2. Второй провод (он будет подлиней) должен проходить от второго держателя стартера к другому концу источника света (лампе). Обратите внимание, что гнезд у него с обеих сторон два. Оба провода должны попасть в параллельные (одинаковые) гнезда, расположенные с одной стороны
  3. Берем провод и вставляем его вначале в свободное гнездо первой, а затем второй лампы
  4. Во второе гнездо первой подсоединяем провод с подключенной к нему розеткой
  5. Раздвоенный второй конец этого провода подключаем к дросселю
  6. Осталось подключить к следующему стартеру второй источник света. Подсоединяем провод в свободное отверстие гнезда второй лампы
  7. Последним проводом соединяем противоположную сторону второго источника света к дросселю

Подключение без дросселя

В данном подключении дроссель не используется

В данном подключении дроссель не используется

Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.

Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.

Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.

Подключение ЭПРА

Подсоединение ЭПРА (электронного пускового механизма)

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

  1. Разобрать старую схему, удалив из нее дроссель, стартер, а также конденсаты. Внутри должны остаться лишь источник света и провода
  2. Прикрепляем подобранный по мощности ЭПРА к корпусу саморезами. Если ламп две, то мощность электронного механизма должна быть выше в 2 раза
  3. Соединяем его проводами с гнездами ламп
  4. Если сборка произведена правильно, оба источника света должны засветиться одновременно, ровным ярким светом. Гудения, естественно, быть уже не должно.

Достоинства и недостатки люминесцентных источников света

Использование ламп для тепличного выращивания растений

Использование ламп для тепличного выращивания растений

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещения

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Читайте также:  Цвет машин постоянного тока

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

Схемы подключения люминесцентных ламп: с дросселем и без дросселя, 2-х и более ламп (Фото & Видео)

ВИДЕО: Как подключить люминесцентную лампу

Схемы подключения люминесцентных ламп: с дросселем и без дросселя, 2-х и более ламп (Фото & Видео)

Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.

Источник

Схема подключения люминесцентных ламп с дросселем: пошаговая инструкция

Екатерина ПильниковаОпубликовал(а): Екатерина Пильникова
Обновлено: 11.01.2021

Люминесцентные лампы подключаются в соответствии с несколько более сложной схемой по сравнению со своими ближайшими «родственниками» — лампами накаливания. Для зажигания ламп люминесцентного типа, в цепь должны быть включены пусковые устройства, от качества которых напрямую зависит срок эксплуатации светильников.

Люминесцентные лампы

Люминесцентные лампы

Чтобы разобраться в особенностях схем, надо в первую очередь изучить устройство и механизм действия подобных приборов.

Кратко об особенностях работы ламп

Каждый из таких приборов является герметичной колбой, наполненной специальной смесью газов. При этом смесь рассчитана таким образом, чтобы на ионизацию газов уходило гораздо меньшее по сравнению с обыкновенными лампами накаливания количество энергии, что позволяет заметно экономить на освещении.

Чтобы люминесцентная лампа постоянно давала свет, в ней должен поддерживаться тлеющий разряд. Для обеспечения такового осуществляется подача требуемого напряжения на электроды лампочки. Главная проблема заключается в том, что разряд может появиться только при подаче напряжения, существенно превышающего рабочее. Однако и эту проблему производители ламп с успехом решили.

Люминесцентные лампы

Люминесцентные лампы

Электроды установлены по обеим сторонам люминесцентной лампы. Они принимают напряжение, благодаря которому и поддерживается разряд. У каждого электрода есть по два контакта. С ними соединяется источник тока, благодаря чему обеспечивается прогревание окружающего электроды пространства.

Таким образом, люминесцентная лампа зажигается после прогрева ее электродов. Для этого они подвергаются воздействию высоковольтного импульса, и лишь затем в действие вступает рабочее напряжение, величина которого должна быть достаточной для поддержания разряда.

Сравнение ламп

Сравнение ламп

Световой поток, лм Светодиодная лампа, Вт Контактная люминисцентная лампа, Вт Лампа накаливания, Вт
50 1 4 20
100 5 25
100-200 6/7 30/35
300 4 8/9 40
400 10 50
500 6 11 60
600 7/8 14 65

Под воздействием разряда газ в колбе начинает излучать ультрафиолетовый свет, невосприимчивый человеческим глазом. Чтобы свет стал видимым человеку, внутренняя поверхность колбы покрывается люминофором. Это вещество обеспечивает смещение частотного диапазона света в видимый спектр. Путем изменения состава люминофора, меняется и гамма цветовых температур, благодаря чему обеспечивается широкий ассортимент люминесцентных ламп.

Как подключить люминесцентную лампу

Как подключить люминесцентную лампу

Лампы люминесцентного типа, в отличие от простых ламп накаливания, не могут просто включаться в электрическую сеть. Для появления дуги, как отмечалось, должны прогреться электроды и появиться импульсное напряжение. Эти условия обеспечиваются при помощи специальных балластов. Наибольшее распространение получили балласты электромагнитного и электронного типа.

Цены на люминесцентные лампы

Классическое подключение через электромагнитный балласт

Особенности схемы

В соответствии с этой схемой в цепь включается дроссель. Также в составе схемы обязательно присутствует стартер.

Дроссель для люминесцентных ламп Дроссель для люминесцентных ламп Стартер для люминесцентных ламп - Philips Ecoclick StartersS10 220-240V 4-65W Стартер для люминесцентных ламп — Philips Ecoclick StartersS10 220-240V 4-65W

Последний представляет собой маломощный неоновый источник света. Устройство оснащено биметаллическими контактами и питается от электросети с переменными значениями тока. Дроссель, стартерные контакты и электродные нити подключаются последовательно.

Вместо стартера в схему может включаться обыкновенная кнопка от электрозвонка. В данном случае напряжение будет подаваться путем удерживания кнопки звонка в нажатом положении. Кнопку нужно отпустить после зажигания светильника.

Подключение лампы с электромагнитным балластом

Подключение лампы с электромагнитным балластом

Порядок действия схемы с балластом электромагнитного типа выглядит следующим образом:

  • после включения в сеть, дроссель начинает накапливать электромагнитную энергию;
  • через стартерные контакты обеспечивается поступление электричества;
  • ток устремляется по вольфрамовым нитям нагрева электродов;
  • электроды и стартер нагреваются;
  • происходит размыкание контактов стартера;
  • аккумулированная дросселем энергия высвобождается;
  • величина напряжения на электродах меняется;
  • люминесцентная лампа дает свет.

В целях повышения показателя полезного действия и уменьшения помех, возникающих в процессе включения лампы, схема комплектуется двумя конденсаторами. Один из них (меньший) размещается внутри стартера. Его главная функция заключается в погашении искр и улучшении неонового импульса.

Схема подключения одной люминесцентной лампы через стартер

Схема подключения одной люминесцентной лампы через стартер

Среди ключевых преимуществ схемы с балластом электромагнитного типа можно выделить:

  • надежность, проверенную временем;
  • простоту;
  • доступную стоимость.
  • Недостатков, как показывает практика, больше, чем преимуществ. Среди их числа нужно выделить:
  • внушительный вес осветительного прибора;
  • продолжительное время включения светильника (в среднем до 3 секунд);
  • низкую эффективность системы при эксплуатации на холоде;
  • сравнительно высокое потребление энергии;
  • шумную работу дросселя;
  • мерцание, негативно воздействующее на зрение.

Порядок подключения

Подсоединение лампы по рассмотренной схеме выполняется с задействованием стартеров. Далее будет рассмотрен пример установки одного светильника с включением в схему стартера модели S10. Это современное устройство имеет невозгораемый корпус и высококачественную конструкцию, что делает его лучшим в своей нише.

Главные задачи стартера сводятся к:

  • обеспечению включения лампы;
  • пробою газового промежутка. Для этого цепь разрывается после довольно длительного нагрева электродов лампы, что приводит к выбросу мощного импульса и непосредственно пробою.

Дроссель используется для выполнения таких задач:

  • ограничения величины тока в момент замыкания электродов;
  • генерации напряжения, достаточного для пробоя газов;
  • поддержания горения разряда на постоянном стабильном уровне.

В рассматриваемом примере подключается лампа на 40 Вт. При этом дроссель должен иметь аналогичную мощность. Мощность же используемого стартера равна 4-65 Вт.

Подключаем в соответствии с представленной схемой. Для этого делаем следующее.

Первый шаг

Параллельно подключаем стартер к штыревым боковым контактам на выходе люминесцентного светильника. Эти контакты представляют собой выводы нитей накаливания герметичной колбы.

Второй шаг

На оставшиеся свободными контакты подключаем дроссель.

Третий шаг

К питающим контактам подключаем конденсатор, опять-таки, параллельно. Благодаря конденсатору будет компенсироваться реактивная мощность и уменьшаться помехи в сети.

Подключение через современный электронный балласт

Подключение источника света с электронным балластом

Подключение источника света с электронным балластом

Особенности схемы

Современный вариант подключения. В схему включается электронный балласт – это экономное и усовершенствованное устройство обеспечивает гораздо более длительный срок службы люминесцентных ламп по сравнению с вышерассмотренным вариантом.

В схемах с электронным балластом люминесцентные лампы работают на повышенном напряжении (до 133 кГц). Благодаря этому свет получается ровным, без мерцаний.

Современные микросхемы позволяют собирать специализированные пусковые устройства с низким энергопотреблением и компактными размерами. Это дает возможность помещать балласт прямо в цоколь лампы, что делает реальным производство малогабаритных осветительных приборов, вкручивающихся в обыкновенный патрон, стандартный для ламп накаливания.

При этом микросхемы не только обеспечивают светильники питанием, но и плавно подогревают электроды, повышая их эффективность и увеличивая срок службы. Именно такие люминесцентные лампы можно использовать в комплексе с диммерами – устройствами, предназначенными для плавного регулирования яркости света лампочек. К люминесцентным лампам с электромагнитными балластами диммер не подключишь.

По конструкции электронный балласт является преобразователем электронапряжения. Миниатюрный инвертор трансформирует постоянный ток в высокочастотный и переменный. Именно он и поступает на нагреватели электродов. С повышением частоты интенсивность нагрева электродов уменьшается.

Включение преобразователя организовано таким образом, чтобы сначала частота тока находилась на высоком уровне. Люминесцентная лампочка, при этом, включается в контур, резонансная частота которого значительно меньше начальной частоты преобразователя.

Далее частота начинает постепенно уменьшаться, а напряжение на лампе и колебательном контуре увеличиваться, за счет чего контур приближается к резонансу. Интенсивность нагрева электродов также увеличивается. В какой-то момент создаются условия, достаточные для создания газового разряда, в результате возникновения которого лампа начинает давать свет. Осветительный прибор замыкает контур, режим работы которого при этом изменяется.

При использовании электронных балластов схемы подключения ламп составлены так, что у регулирующего устройства появляется возможность подстраиваться под характеристики лампочки. К примеру, спустя определенный период использования люминесцентные лампы требуют более высокого напряжения для создания начального разряда. Балласт сможет подстроиться под такие изменения и обеспечить необходимое качество освещения.

Таким образом, среди многочисленных преимуществ современных электронных балластов нужно выделить следующие моменты:

  • высокую экономичность эксплуатации;
  • бережный прогрев электродов осветительного прибора;
  • плавное включение лампочки;
  • отсутствие мерцания;
  • возможность использования в условиях низких температур;
  • самостоятельную адаптацию под характеристики светильника;
  • высокую надежность;
  • небольшой вес и компактные размеры;
  • увеличение срока эксплуатации осветительных приборов.

Недостатков всего 2:

Взрывозащищенные люминесцентные светильники серии EXEL-V из нержавеющей стали

  • усложненная схема подключения;
  • более высокие требования к правильности выполнения монтажа и качеству используемых комплектующих.

Взрывозащищенные люминесцентные светильники серии EXEL-V из нержавеющей стали

Цены на электронные балласты для люминесцентных ламп

Порядок подключения

Все необходимые коннекторы и провода обычно идут в комплекте с электронным балластом. Со схемой подключения вы можете ознакомиться на представленном изображении. Также подходящие схемы приводятся в инструкциях к балластам и непосредственно осветительным приборам.

В такой схеме лампа включается в 3 основные стадии, а именно:

  • электроды прогреваются, благодаря чему обеспечивается более бережный и плавный пуск и сохраняется ресурс прибора;
  • происходит создание мощного импульса, требующегося для поджига;
  • значение рабочего напряжение стабилизируется, после чего напряжение подается на светильник.

Современные схемы подсоединения ламп исключают необходимость применения стартера. Благодаря этому риск перегорания балласта в случае запуска без установленной лампы исключается.

Схема для последовательного подключения двух ламп

Схема для последовательного подключения двух ламп

Схема для последовательного подключения двух ламп

Отдельного внимания заслуживает схема подсоединения сразу двух люминесцентных лампочек к одному балласту. Приборы подключаются последовательно. Для выполнения работы нужно подготовить:

Схема подключения двух люминесцентных ламп через стартер

  • индукционный дроссель;
  • стартеры в количестве двух штук;
  • непосредственно люминесцентные лампы.

Схема подключения двух люминесцентных ламп через стартер

Последовательность подключения

Первый шаг. К каждой лампочке подсоединяется стартер. Соединение параллельное. В рассматриваемом примере стартер подключаем на штыревой выход с обоих торцов осветительного прибора.

Второй шаг. Свободные контакты подсоединяются к электросети. При этом соединение выполняется последовательно, посредством дросселя.

Третий шаг. Параллельно к контактам осветительного прибора подсоединяются конденсаторы. Они будут уменьшать выраженность помех в электросети и компенсировать возникающую реактивную мощность.

Важный момент! В обычных бытовых выключателях, в особенности это характерно для бюджетных моделей, контакты могут залипать под воздействием повышенных стартовых токов. Ввиду этого для использования в комплексе с люминесцентными осветительными приборами рекомендуется использовать только специально предназначенные для этого высококачественные выключатели.

Вы ознакомились с особенностями разных схем подключения ламп люминесцентного типа и теперь сможете самостоятельно справиться с установкой и заменой таких осветительных приборов.

Взрывозащищенные люминесцентные светильники серии LN

Взрывозащищенные люминесцентные светильники серии LN

Видео – Схема подключения люминесцентных ламп

Источник



Схемы подключения люминесцентных ламп

С повышением цен на электроэнергию, приходится задумываться о более экономных светильниках. Одни из таких используют осветительные приборы дневного света. Схема подключения люминесцентных ламп не слишком сложна, так что даже без особых знаний электротехники можно разобраться.

Хорошая освещенность и линейные размеры - преимущества ламп дневного света

Хорошая освещенность и линейные размеры — преимущества дневного света

Принцип работы люминесцентного светильника

В светильниках дневного света использована способность паров ртути излучать инфракрасные волны под воздействием электричества. В видимый для нашего глаза диапазон, это излучение переводят вещества-люминофоры.

Потому обычная люминесцентная лампа представляет собой стеклянную колбу, стенки которой покрыты люминофором. Внутри также находится некоторое количество ртути. Имеются два вольфрамовых электрода, обеспечивающих эмиссию электронов и разогрев (испарение) ртути. Колба заполнена инертным газом, чаще всего — аргоном. Свечение начинается при наличии паров ртути, разогретых до определенной температуры.

Принципиальное устройство люминесцентной лампы дневного света

Принципиальное устройство люминесцентной лампы дневного света

Но для испарения ртути обычного напряжения сети недостаточно. Для начала работы параллельно с электродами включают пуско-регулирующие устройства (сокращенно ПРА). Их задача — создать кратковременный скачок напряжения, необходимый для начала свечения, а затем ограничивать рабочий ток, не допуская его неконтролируемого возрастания. Эти устройства — ПРА — бывают двух видов — электромагнитные и электронные. Соответственно, схемы отличаются.

Схемы со стартером

Самыми первыми появились схемы со стартерами и дросселями. Это были (в некоторых вариантах и есть) два отдельных устройства, под каждое из которых имелось свое гнездо. Также в схеме есть два конденсатора: один включен параллельно (для стабилизации напряжения), второй находится в корпусе стартера (увеличивает длительность стартового импульса). Называется все это «хозяйство» — электромагнитным балластом. Схема люминесцентного светильника со стартером и дросселем — на фото ниже.

Схема включения люминесцентной лампы со стартером

Схема подключения люминесцентных ламп со стартером

Вот как она работает:

  • При включении питания, ток протекает через дроссель, попадает на первую вольфрамовую спираль. Далее, через стартер попадает на вторую спираль и уходит через нулевой проводник. При этом вольфрамовые нити понемногу раскаляются, как и контакты стартера.
  • Стартер состоит из двух контактов. Один неподвижный, второй подвижный биметаллический. В нормальном состоянии они разомкнуты. При прохождении тока биметаллический контакт разогревается, что приводит к тому, что он изгибается. Согнувшись, он соединяется с неподвижным контактом.
  • Как только контакты соединились, ток в цепи мгновенно вырастает (в 2-3 раза). Его ограничивает только дроссель.
  • За счет резкого скачка очень быстро разогреваются электроды.
  • Биметаллическая пластина стартера остывает и разрывает контакт.
  • В момент разрыва контакта возникает резкий скачок напряжения на дросселе (самоиндукция). Этого напряжения достаточно для того, чтобы электроны пробили аргоновую среду. Происходит розжиг и постепенно лампа выходит на рабочий режим. Он наступает после того, как испарилась вся ртуть.

Рабочее напряжение в лампе ниже сетевого, на которое рассчитан стартер. Потому после розжига он не срабатывает. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует.

Эта схема называется еще электромагнитный балласт (ЭМБ), а схема работы электромагнитное пускорегулирующее устройство — ЭмПРА . Часто это устройство называют просто дросселем.

Недостатков у этой схемы подключения люминесцентной лампы достаточно:

  • пульсирующий свет, который негативно сказывается на глазах и они быстро устают;
  • шумы при пуске и работе;
  • невозможность запуска при пониженной температуре;
  • длительный старт — от момента включения проходит порядка 1-3 секунд.

Две трубки и два дроссели

В светильниках на две лампы дневного света два комплекта подключаются последовательно:

  • фазный провод подается на вход дросселя;
  • с выхода дросселя идет на один контакт лампы 1, со второго контакта уходит на стартер 1;
  • со стартера 1 идет на вторую пару контактов той же лампы 1, а свободный контакт соединяют с нулевым проводом питания (N);

Так же подключается вторая трубка: сначала дроссель, с него — на один контакт лампы 2, второй контакт этой же группы идет на второй стартер, выход стартера соединяется со второй парой контактов осветительного прибора 2 и свободный контакт соединяется с нулевым проводом ввода.

Схема на две лампы дневного света

Схема подключения на две лампы дневного света

Та же схема подключения двухлампового светильника дневного света продемонстрирована в видео. Возможно, так будет проще разобраться с проводами.

Схема подключения двух ламп от одного дросселя (с двумя стартерами)

Практически самые дорогие в этой схеме — дросселя. Можно сэкономить, и сделать двухламповый светильник с одним дросселем. Как — смотрите в видео.

Электронный балласт

Все недостатки описанной выше схемы стимулировали изыскания. В результате была разработана схема электронного балласта. Она которая подает не сетевую частоту в 50Гц, а высокочастотные колебания (20-60 кГц), тем самым убирая очень неприятное для глаз мигание света.

Один из электронных балластов - ЭПРА

Один из электронных балластов — ЭПРА

Выглядит электронный балласт как небольшой блок с выведенными клеммами. Внутри находится одна печатная плата, на которой собрана вся схема. Блок имеет небольшие габариты и монтируется в корпусе даже самого небольшого светильника. Параметры подобраны так, что пуск происходит быстро, бесшумно. Для работы больше никаких устройств не надо. Это так называемая безстартерная схема включения.

На каждом устройстве с обратной стороны нанесена схема. По ней сразу понятно, сколько ламп к нему подключается. Информация продублирована и в надписях. Указывается мощность ламп и их количество, а также технические характеристики устройства. Например, блок на фото выше обслуживать может только одну лампу. Схема ее подключения есть справа. Как видите, ничего сложного нет. Берете провода, соединяете проводниками с указанными контактами:

  • первый и второй контакты выхода блока подключаете к одной паре контактов лампы:
  • третий и четвертый подаете на другую пару;
  • ко входу подаете питание.

Все. Лампа работает. Ненамного сложнее схема включения двух люминесцентных ламп к ЭПРА (смотрите схему на фото ниже).

ЭПРА для двух ламп дневного света

ЭПРА для двух ламп дневного света

Преимущества электронных балластников описаны в видео.

Такое же устройство вмонтировано в цоколь ламп дневного света со стандартными патронами, которые еще называют «экономлампами». Это аналогичный осветительный прибор, только сильно видоизмененный.

Это тоже люминесцентные лампы, только форма другая

Это тоже люминесцентные лампы, только форма другая

Источник