Меню

Схема треугольник без нулевого провода

Соединение 3-х фазазных приемников «звездой» без нулевого провода.

Схема «звезда без нулевого провода». При равномерной или симметричной нагрузке всех трех фаз, когда во всех фазах включены одинаковые активные и реактивные сопротивления (R A =R B = R C и Х A=Х В=Х С), фазные токи i A, i B и i C будут равны по величине и сдвинуты от соответствующих фазных напряжений на равные углы. В этом случае получаем симметричную систему токов, при которой токи i A, i B, i C будут сдвинуты по фазе друг относительно друга на угол 120°, а ток i 0 в нулевом проводе в любой момент времени равен нулю. Очевидно, что при равномерной нагрузке можно удалить нулевой провод и передавать электрическую энергию источника к приемнику по трем линейным проводам 1, 2 и 3 (рис. 209). Такая схема называется «звезда без нулевого провода». При трехпровод-ной системе передачи электрической энергии в каждое мгновение ток по одному (или двум) проводу проходит от источника трехфазного тока к приемнику, а по двум другим (или одному) протекает обратно от приемника к источнику (рис. 210). Векторная диаграмма напряжений для схемы «звезда без нулевого провода» при равномерной нагрузке фаз будет такая же, как и для схемы «звезда с нулевым проводом» (см. рис. 207). Такими же будут и соотношения между фазными и линейными токами и напряжениями:

Следует отметить, что схема «звезда без нулевого провода» может быть применена только при равномерной нагрузке фаз. Практически это имеет место лишь при подключении к источникам трехфазного тока электрических двигателей, так как каждый трехфазный электродвигатель снабжен тремя одинаковыми обмотками, которые равномерно нагружают все три.

Источник



Соединение типа звезда и треугольник для электродвигателей

На сегодняшний день данная тема особо актуальна, и в интернете можно найти массу вопросов по ней. Ответов тоже много, но некоторые из них на гранью фантастики. Поэтому мы решили пошагово и точно рассказать о соединении обмоток электродвигателя так исходя из своей практики.

Для начала вкратце вспомним действие асинхронного электродвигателя. Подключают его сети с трехфазным переменным напряжением. В статоре есть 3 обмотки, сдвинутые по отношению друг к другу на 120 электроградуса. Все это необходимо для того. Чтобы возникло вращающееся магнитное поле.

Выводы обмоток статора обозначают так:

  • С1, С2, С3 – начала обмоток,
  • С4, С5, С6 – конец обмоток.

Указанное обозначение является стандартным, но сегодня появились новые маркировки выводов, которые соответствуют ГОСТу 26772-85:

  • U1, V1, W1 — начала обмоток,
  • U2, V2, W2 – конец обмоток.

Выводы фазных обмоток асинхронного двигателя выводят на клеммник или колодку и размещают так, чтобы при подключении использовать специальные перемычки и не перекрещивать провода.

Клеммник в основном стараются прикреплять сверху или, если не получается, сбоку. Иногда если тип клеммника позволяет его можно развернуть на 180°, чтобы осуществление подводки питающих кабелей было удобней.

На клеммник можно вывести 3 или 6 выводов фазных обмоток статора.

Рассмотрим каждую ситуацию отдельно.

Например: Если вывести в клеммник 6 выводов обмоток статора, то подключиться можно в сеть на два разноуровневых напряжения, которые могут отличаться величиной в 1,73 раза (√3). Если взять электродвигатель с напряжением 220/380 (В), а в сети уровень линейного напряжения будет составлять 380 (В), то статорные обмотки следует соединять по схеме звезда.

Читайте также:  Как правильно подключать телевизионные провода

Концы трех обмоток соединяем в одной точке за счет специальной перемычки. На начальные концы обмоток подаем трехфазное сетевое напряжение. Напряжение фазной обмотки должно составить 220 (В), а линейное напряжение между двумя фазными обмотками — 380 (В).

Если сеть имеет линейное напряжение уровнем 220 (В), то обмотку статора нужно соединить по схеме треугольник. Пошаговое соединение по типу треугольник фазных обмоток:

  • конец обмотки фазы «А» C4 (U2) соединяем с началом обмотки фазы «В» С2 (V1)
  • конец обмотки фазы «В» С5 (V2) соединяем с началом обмотки фазы «С» С3 (W1)
  • конец обмотки фазы «С» С6 (W2) соединяем с началом обмотки фазы «А» С1 (U1)

Места, где произведено соединение, подключаются к соответствующим фазам питающего трехфазного напряжения.

Л инейное напряжение в данном случае должно составлять 220 (В), и на трехфазной обмотке также 220 (В).

На клеммнике при подключении по схеме треугольник обмоток статора асинхронного двигателя специальные перемычки следует установить так:

В представленных примерах при подключении, что по схеме звезда, что треугольник напряжение каждой фазы обмотки асинхронного двигателя составляет 220 (В).

Иногда так бывает, что на клеммник асинхронного двигателя выведено не 6, а 3 вывода. В такой ситуации соединение независимо от вида схемы будет выполняться внутри двигателя с торца. В данном случае подключение к сети можно будет провести только при одном напряжении, которое указано на таблице с технической информацией.

Если обмотки асинхронного двигателя соединены звездой, то запуск будет мягким, а работа плавной. При этом допускаются кратковременные перегрузки. При соединении треугольником обмоток асинхронного электродвигателя можно достичь его максимальной мощности. В период запуска токи будут иметь большое значение. Можно будет еще пронаблюдать, что двигатель, подключенный по данной схеме, будет сильнее нагреваться.

Исходя из полученных данных, мы должны понимать, что асинхронные двигатели средней мощности и выше следует запускать по схеме звезда. При наборе номинальной частоты вращения в автоматическом режиме происходит переключение его на схему треугольника.

Также на основе собственного опыта рекомендуем для асинхронного электродвигателя использовать стеатитовые клеммные колодки, которые позволят надежно и безопасно провести подключение проводов к любой сети. Их можно использовать не только для электродвигателей, но и для оборудования и отдельных нагревательных элементов с повышенным уровнем температуры.

Клеммные колодки КМ имеют керамический корпус и расположенный внутри трубчатый латунный профиль. Наличие резьбовых отверстий позволяет устанавливать шпильки для колодки.

Выбирая клеммные колодки, в первую очередь обращайте внимание на предъявляемый уровень их сопротивления температурной нагрузке. Клеммники низкого качества приводят к плавлению изоляции, и провоцирую появление коротких замыканий в системе питания. Применение стеатитовых колодок позволяет исключить перечисленные риски, т. к. корпус из керамики выдерживает температуру вплоть до 1000 °С. А клеммные колодки керамические для для асинхронного электродвигателя работают при постоянной температурной нагрузке окружающей среды в 300°С.

Читайте также:  Сопротивление высоковольтных проводов ока

Помимо стеатитовых клеммных колодок для электродвигателей «Элемаг» изготавливает еще несколько разных вариантов колодок обладающих высоким уровнем термостойкости. В разделе товаров на сайте вы можете рассмотреть:

  • Стеатитовые клеммники SL;
  • Керамические клеммники SD Ceramics;
  • Клеммные колодки стеатитовые KMK Ceramica;
  • Клеммные колодки фарфоровые Werit;
  • Клеммные блоки термостойкие Conta-Clip.

Термостойкие колодки от «Элемаг» широко используют для подключения электротехнического оборудования, т. к. им характерно безопасное использование и удобное проведение соединений. Мы изготавливаем клеммники для температурных нагрузок свыше 100°С. Мы используем для разных типов колодок стеатит, керамику и даже фарфор. Это отличные изоляторы способные выдерживать сверхвысокие температуры, обладают устойчивостью к пробоям тока, не поддаются плавке и горению. Для увеличения защиты мы можем покрывать колодки специальной керамической глазурью.

Корпуса у колодок могут быть закрытыми или открытыми. У первых контакты располагаются внутри корпуса, а у вторых контакты размещены вверху колодки. Для фиксации колодок в корпусе могут быть выполнены специальные отверстия.

У нас в ассортименте вы сможете подобрать и открытые и закрытые колодки на 2, 3, 4, 5 контактов.

Мы советуем устанавливать лампы, чередуя в шахматном порядке. Эта схема поможет уменьшить количество необогреваемых точек.

Источник

Цепи при соединении нагрузки в треугольник

Аварийный режим при соединении звездой с нейтральным проводом в случае обрыва нейтрали и одной из фаз. Схема аварийного случая. Векторные диаграммы токов и напряжений для такого случая. Последствия аварийного случая.

Аварийными являются режимы, возникают при коротких замыканиях в нагрузке

или в линиях и обрыве проводов. Остановимся на некоторых типичных аварийных

Обрыв нейтрального провода при несимметричной нагрузке

В симметричном режиме IN= 0, поэтому обрыв нейтрального провода не приводит

к изменению токов и напряжений в цепи и такой режим не является аварийным. Однако,

при несимметричной нагрузке IN¹ 0, поэтому обрыв нейтрали приводит к изменению всех

фазных токов и напряжений. На векторной диаграмме напряжений точка «0» нагрузки,

совпадающая до этого с точкой « N» генератора, смещается таким образом, чтобы сумма

фазных токов оказалась равной нулю (рис.8.4.1). Напряжения на отдельных фазах могут

существенно превысить номинальное напряжение.

Обрыв фазы при симметричной нагрузке в схеме без нулевого провода

При обрыве, например, фазы А сопротивления RA и RB оказываются

соединёнными последовательно и к ним приложено линейное напряжение UBC.

Напряжение на каждом из сопротивлений составляет 3 / 2 от фазного напряжения в

нормальном режиме. Нулевая точка нагрузки на векторной диаграмме напряжений

смещается на линию ВС, и при RB = RC она находится точно в середине отрезка ВС

Аварийный режим при соединении звездой с нейтральным проводом в случае обрыва одной из фаз при целой нейтрали. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.

Обрыв фазы при симметричной нагрузке в схеме с нулевым проводом

При обрыве провода, например, в фазе А ток этой фазы становится равным нулю,

Читайте также:  Разные типы соединения проводов

напряжения и токи в фазах В и С не изменяются, а в нулевом проводе появляется ток

IN = IB + IC.Он равен току, который до обрыва протекал в фазе А (рис. 8.4.2).

Аварийный режим при соединении звездой с нейтральным проводом в случае короткого замыкания одной из фаз при целой нейтрали. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая

При коротком замыкании фазы нагрузки в схеме с нулевым проводом ток в этой

фазе становится очень большим (теоретически бесконечно большим) и это приводит к

аварийному отключению нагрузки защитой. В схеме без нулевого провода при

замыкании, например, фазы А, нулевая точка нагрузки смещается в точку «А» генератора.

Тогда к сопротивлениям фаз В и С прикладываются линейные напряжения. Токи в этих

фазах возрастают в 3 раз, а ток в фазе А – в 3 раза (рис. 8.4.4).

Короткие замыкания между линейными проводами и в той и в другой схеме

приводят к аварийному отключению нагрузки.

Аварийный режим при соединении треугольником в случае короткого замыкания одной из фаз. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.

Аварийные режимы трёхфазной

цепи при соединении нагрузки в треугольник

При коротких замыканиях в фазах нагрузки или между линейными проводами токи

резко возрастают и происходит аварийное отключение установки защитой.

Обрывы фаз или линейных проводов при соединении нагрузки в треугольник не

приводят к перегрузкам по токам или напряжениям, как это иногда случается при

соединении нагрузки в звезду.

При обрыве одной фазы нагрузки (рис. 8.5.1) ток этой фазы становится равным

нулю, а в оставшихся двух фазах ток не меняется. Два линейных тока уменьшаются в 3

раз, т. е. становятся равными фазному току, а третий остаётся неизменным.

Аварийный режим при соединении треугольником в случае обрыва одного из проводов линии. Схема аварийного случая. Векторные диаграммы токов и напряжений. Последствия аварийного случая.

При обрыве линейного провода (например, В) фазные сопротивления RAB и RBC

оказываются соединёнными последовательно и включёнными параллельно с

сопротивлением RCA на напряжение UCA (рис. 8.5.2). Цепь фактически становится

70 Расчёт мощности в трёхфазных цепях, как для звезды, так и для треугольника. Расчёт для симметричных и несимметричных схем. Схемы с двумя и тремя ваттметрами. Их вид и использование.

Измерение активной мощности в трехфазных цепях производят с помощью трех, двух или одного ваттметров, используя различные схемы их включения. Схема включения ваттметров для измерения активной мощности определяется схемой сети (трех- или четырехпроводная), схемой соединения фаз приемника (звезда или треугольник), характером нагрузки (симметричная или несимметричная), доступностью нейтральной точки.

При несимметричной нагрузке в четырехпроводной цепи активную мощность измеряют тремя ваттметрами (рис. 3.18), каждый из которых измеряет мощность одной фазы – фазную мощность.

Активная мощность приемника определяют по сумме показаний трех ваттметров

где P 1 = U A I A cos φ A; P 2 = U B I B cos φ B; P 3 = U C I C cos φ C.

Источник