Меню

Схема с источником тока с делителями напряжения

Источники питания с конденсаторным делителем напряжения

Источники питания с конденсаторным делителем напряжения

Сетевой источник питания с гасящим конденсатором (рис. 1), по сути, есть делитель напряжения, у которого верхнее плечо — конденсатор, а нижнее представляет собой сложную нелинейную диодно-резисторно-конденсаторную цепь. Этим и определены недостатки (и достоинства, конечно) таких устройств.

Для того чтобы источник мог работать в широком интервале тока нагрузки с высоким КПД, достаточно входной делитель напряжения выполнить чисто реактивным, например, конденсаторным (рис. 2). Он позволяет дополнительно стабилизировать выходное напряжение источника последовательно включенным компенсационным или импульсным стабилизатором, чего нельзя делать в обычном источнике с гасящим конденсатором. Как показано в статье С. Бирюкова «Расчет сетевого источника питания с гасящим конденсатором» — «Радио», 1997, N 5, с. 48-50, — последовательный стабилизатор можно использовать только при ограничении напряжения на его входе, что опять-таки заметно снижает КПД.

Источник с конденсаторным делителем напряжения целесообразно использовать для совместной работы с импульсными стабилизаторами. Идеально подходит он для устройства, длительно потребляющего малый ток, но требующего в определенный момент резкого его увеличения. Пример — квартирное сторожевое устройство на микросхемах «МОП с исполнительным узлом на реле и звуковом сигнализаторе.

Ток, потребляемый конденсаторным делителем, будет иметь фазовый сдвиг в 90 град. относительно напряжения сети, поэтому делитель напряжения на реактивных элементах не требует охлаждения. Исходя из вышесказанного, ток через делитель вроде бы можно выбрать сколь угодно большим. Однако неоправданное увеличение тока делителя приведет к активным потерям в проводах и к увеличению массы и объема устройства. Поэтому целесообразно принять ток через делитель напряжения в пределах 0,5. 3 от максимального тока нагрузки.

Расчет источника с емкостным делителем несложен. Как следует из ф-лы (2) в упомянутой статье, выходное напряжение Uвых и полный выходной ток (стабилитрона и нагрузки Iвых) источника по схеме 1,а связаны следующим образом: Iвых = 4fC1(2Uc-Uвых).

Эта формула пригодна и для расчета источника с конденсаторным делителем, в ней просто надо заменить С1 на суммарную емкость параллельно соединенных конденсаторов С1 и С2, показанных на рис. 2. a Uc — на Uc2x (напряжение на конденсаторе С2 при RH = °°), т. е. Uc2x = = Uc-C1/(C1+C2). Тогда 1вых = 4f(C1+C2)x x[Uc-C1-i/2/(C1+C2)-Unbix] или после очевидных преобразований 1вых = 4f-C1 [Uc^2 —ивых(1+С2/С1)].

Поскольку падение напряжения на диодах моста Uд при малых значениях Квых становится заметным, получим окончательно 1вых = 4f-C1 [Uc^/2- (Цвых + 2Цд) (1 + +С2/С1)].

Из формулы видно, что при Рн=0 (т. е. при Uвых=0) ток Iвых, если пренебречь падением напряжения на диодах, остается таким же, как у источника питания, собранного по схеме 1 ,а. Напряжение же на выходе без нагрузки уменьшается: Uauxx = =Uc-C1^/2/(C1+C2)-2Un.

Емкость и рабочее напряжение конденсатора С2 выбирают исходя из необходимого выходного напряжения — соотношение значений емкости С1/С2 обратно пропорционально значениям падающего на С1и С2 напряжения. Например, если С1″ =1 мкф, а С2=4 мкФ, то напряжение Uc1 будет равно 4/5 напряжения сети, a Uc2=Uc/5, что при напряжении сети Uc = 220 В соответствует 186 и 44 В. Необходимо учесть, что амплитудное значение напряжения почти в 1,5 раза превышает действующее, и выбрать конденсаторы на соответствующее номинальное напряжение.

Несмотря на то, что теоретически конденсаторы в цепи переменного тока мощности не потребляют, реально в них из-за наличия потерь может выделяться некоторое количество тепла. Проверить заранее пригодность конденсатора для использования в источнике можно, просто подключив его к электросети и оценив температуру корпуса через полчаса. Если конденсатор С1 успевает заметно разогреться, его следует счесть непригодным для использования в источнике.

Практически не нагреваются специальные конденсаторы для промышленных электроустановок — они рассчитаны на большую реактивную мощность. Такие конденсаторы используют в люминесцентных светильниках, в пускорегулирующих устройствах асинхронных электродвигателей и т. п.

Ниже представлены две практические схемы источников питания с конденсаторным делителем: пятивольтный общего назначения (рис. 3) на ток нагрузки до 0,3 А и источник бесперебойного питания для кварцованных электронно-механических часов (рис. 4).

Делитель напряжения пятивольтного источника состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее по схеме неполярное плечо емкостью 100 мкФ. Поляризующими диодами для оксидной пары служат левые по схеме диоды моста. При номиналах элементов, указанных на схеме, ток замыкания (при Rн=0) равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки — 27 В.

Электронно-механические часы обычно питают от одного гальванического элемента напряжением 1,5 В. Предлагаемый источник вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА. Напряжение, снятое с делителя С1С2, выпрямляет узел на элементах VD1, VD2. СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12В.

Читайте также:  Пульсирующий постоянный ток где используется

Источник

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Пять схем делителя напряжения предназначенных не только для деления напряжения

Для чего нужен делитель напряжения

Делитель напряжения в классическом варианте представляет собой очень простую схему, состоящую из двух резисторов и предназначенную для уменьшения напряжения до нужных значений.

делитель напряжения

Но делитель напряжения с некоторыми изменениями можно использовать не только лишь для деления напряжения. В данном материале мы рассмотрим пять несложных схем, которые могут быть полезны на практике для решения тех или иных схемотехнических задач.

Для чего нужен делитель напряжения

Делитель напряжения для измерения напряжения батареи

Есть несколько разных случаев, когда вам может потребоваться «понизить» напряжение аккумулятора или батареи. В этом случае делитель не заменяет понижающий регулятор. Так, вам может потребоваться понизить напряжение аккумулятора, чтобы измерить его. Предположим, вы используете микропроцессор с 3.3 В (как у Raspberry Pi, например) или микроконтроллер (к примеру, ESP8266). Ваша плата питается от двух последовательно соединенных литий-полимерных аккумуляторов. Вместе эти батареи создают питание 7.4 вольта.

Делитель напряжения для измерения напряжения батареи

Два резистора сопротивлением 100 кОм уменьшают напряжение с 7.4 до 3.7 вольт. Хотя это уже немного, оно все еще слишком высоко для систем с напряжением 3.3 В. Когда деление напряжения пополам не работает, можно посчитать делитель напряжения с разными сопротивлениями. Взяв R1 равным 100 кОм и R2 равным 68 кОм делитель выдает около 3.0 вольта. Этого достаточно, правда?

Делитель напряжения для измерения напряжения батареи

Но здесь есть две проблемы. Во-первых, подключение этих двух резисторов последовательно к батарее создаст ток утечки. Независимо от того, что еще происходит в цепи, через делитель будет проходить 44 мкА. Вроде бы мало, но это означает, что мы тратим 325 мкВт энергии впустую. С питанием от USB не стоит беспокоиться о такой большой утечке. Однако при питании от батарей эта утечка означает меньшее время автономной работы. Во-вторых, существует проблема обратного питания, от чего тоже надо избавиться. Для этого желательно реализовать мониторинг напряжения.

Тем не менее, в большинстве приложений не требуется постоянный мониторинг напряжения батареи. Например, вы можете просто включить делитель напряжения, когда вы делаете измерение, как это показано на схеме ниже. Добавьте PNP-транзистор с высокой стороны к простому делителю напряжения. При этом цифровая линия ввода/вывода будет управлять NPN-транзистором, который включает и выключает PNP-транзистор. При такой конфигурации ни один ток не может прокрасться через защитные диоды аналогового вывода. И у вас есть полный контроль над работой делителя.

Делитель напряжения для измерения напряжения батареи

Делитель напряжения для смещения уровня напряжения

Современные микроконтроллеры основаны на 3.3-вольтовой логике с использованием в некоторых случаях 1.8 В. Использование более старого стандарта напряжения 5.0 В означает, что вам нужны сигналы ввода-вывода с изменением напряжения. Например, подключение выхода Arduino Uno непосредственно к входу ESP8266 может привести к повреждению последнего.

Конечно, для целей согласования уровней напряжения можно использовать специальные микросхемы, например, TXB0108. Но гораздо проще и дешевле воспользоваться делителем напряжения, как показано на схеме ниже, в которой напряжение с вывода Arduino Uno преобразуется для приема на вывод Raspberry Pi. Только следует учитывать, что такая схема справедлива в отношении однонаправленных сигналов.

Делитель напряжения для смещения уровня напряжения

Делитель напряжения для опорного напряжения

Не все цепи делителя напряжения используют только резисторы. Один пример, полезный для формирования опорного напряжение, содержит резистор и диод.

Делитель напряжения для опорного напряжения

В данном случае применяется стабилитрон (зенеровский диод) на 3.3 В. Используя стабильный источник питания на 5.0 В, резистор на 340 Ом можно получить стабильное напряжение 3.0 вольта. Имейте в виду, что это не регулятор напряжения. Ну, по крайней мере, не тот, который может обеспечить много тока.

Делитель напряжения для формирования лесенки сопротивлений R-2R

Лестница R-2R представляет собой кучу повторяющихся резисторов или сеть резисторов. Идея состоит в том, что при включении большего количества выходов это влияет на выходное напряжение. Эта схема является одним из способов сделать цифро-аналоговый преобразователь (ЦАП). Вы активируете цифровые линии и получаете аналоговое напряжение. Поскольку это форма делителя тока, эффективность зависит от того, насколько хорошо резисторы согласованы друг с другом. Поэтому вы должны использовать прецизионные компоненты или измерять каждый, чтобы они соответствовали друг другу.

Делитель напряжения для формирования лесенки сопротивлений R-2R

Добавьте больше резисторов в строку для большего разрешения. Используйте более подходящие резисторы для большей точности. В этом примере с резисторами 1 кОм и 2 кОм каждый бит по напряжению составляет 313 мВ. Максимальное выходное напряжение составляет 4.68 В.

Читайте также:  Индукция магнитного поля созданного системой токов определяется

Делитель напряжения для управления несколькими кнопками с помощью одного вывода

Делитель напряжения для управления несколькими кнопками с помощью одного вывода

Для работы с сетью кнопок и резисторов, вы можете использовать один аналоговый вывод микроконтроллера. Между каждой кнопкой находится значение резистора. В этом примере используются резисторы 470 Ом. Когда вы нажимаете кнопку, R1 (1 кОм) образует делитель с остальной частью сети.

Делитель напряжения для управления несколькими кнопками с помощью одного вывода

В данном случае мы нажимаем кнопку два (2), в итоге мы получаем напряжение делителя, состоящего из резисторов 1 кОм и 1.4 кОм. Вам не нужно использовать равные значения резисторов. Вы выбираете значения, которые дают вам широкий диапазон между кнопками. Таким образом, ваш код, считывающий аналоговый сигнал, может иметь широкий диапазон ввода.

Источник

Схема с источником тока с делителями напряжения

Делители тока

Давайте проанализируем простую параллельную цепь и определим силу тока на каждом из ее резисторов:

kirhgof44

Как вы уже знаете, напряжение на всех компонентах параллельной цепи одинаково. Исходя из этого можно заполнить верхнюю строчку рассмотренной ранее таблицы:

kirhgof45

Теперь, используя закон Ома (I = U/R), мы можем рассчитать силу тока на каждом резисторе (в каждой ветви):

kirhgof46

Один из принципов параллельных цепей гласит, что общая сила тока в таких цепях равна сумме отдельных токов. Поэтому, суммируя 6 мА, 2мА и 3мА, мы можем заполнить ячейку общей силы тока в нашей таблице:

kirhgof47

И наконец, вычислим общее сопротивление нашей цепи. Сделать это можно при помощи закона Ома (R = U/I), или при помощи формулы параллельного соединения резисторов. В обоих случаях мы получим одинаковый ответ:

kirhgof48

Из данной таблицы видно, что сила тока через каждый резистор связана с его сопротивлением (учитывая равенство напряжений на всех резисторах). Причем взаимосвязь эта обратнопропорциональна. К примеру, сила тока через резистор R1 вдвое больше, чем через резистор R3, хотя сопротивление последнего в два раза превышает сопротивление первого.

Если мы изменим напряжение питания этой схемы, то обнаружим, что пропорциональность соотношений не изменится:

kirhgof49

Несмотря на то, что напряжение источника питания изменилось, ток через резистор R1 по-прежнему в два раза превышает ток через резистор R3. Таким образом, пропорциональность между токами различных ветвей цепи является исключительно функцией сопротивления.

Кроме того, токи отдельных ветвей цепи составляют фиксированные пропорции от ее общей силы тока. Несмотря на четырехкратное увеличение напряжения источника питания, соотношение между током любой ветви и общим током осталось неизменным:

kirhgof50

Благодаря способности делить общий ток на пропорциональные части, параллельные цепи часто называют делителями тока. Поэкспериментировав немного с математикой, мы можем вывести формулу для расчета отдельных токов цепи, имея данные о сопротивлениях резисторов, общем сопротивлении цепи и общей силе тока:

kirhgof51

Отношение общего сопротивления к отдельным сопротивлениям имеет ту же пропорцию, что и отношение отдельных токов к общей силе тока цепи. Полученная выше формула называется формулой делителя тока, с ее помощью легче определять токи отдельных ветвей параллельной цепи, если известна общая сила тока.

Давайте повторно рассчитаем токи каждой из ветвей нашей параллельной цепи, используя только что полученную формулу делителя тока (будем считать, что общая сила тока и общее сопротивление нам известны):

kirhgof52

Если сравнить формулы делителя напряжения и делителя тока, то можно увидеть, что они удивительно похожи друг на друга. Однако, в формуле делителя напряжения Rn (отдельное сопротивление) делится на Rобщ., а в формуле делителя тока — наоборот, Rобщ. делится на Rn:

kirhgof53

Именно из-за отношения сопротивлений очень легко перепутать эти формулы. В целях избежания путаницы вы должны знать, что отношение сопротивлений в обоих уравнениях должно быть меньше единицы (в конце концов это уравнения делителей, а не умножителей!). Если отношение будет больше единицы, значит вы перепутали уравнения. Зная, что общее сопротивление последовательной цепи (делитель напряжения) всегда больше любого из ее отдельных сопротивлений, Rобщ. мы должны поставить в знаменатель отношения, а Rn — в числитель (только в этом случае отношение будет меньше единицы). И наоборот, зная что общее сопротивление параллельной цепи (делитель тока) всегда меньше любого из ее отдельных сопротивлений, Rобщ. мы должны поставить в числитель отношения, а Rn — в знаменатель.

Схемы делителей токов, как и делителей напряжений, нашли применение в электрических цепях измерительных приборов, где часть измеряемого тока необходимо пропустить через чувствительный прибор:

Источник



Делитель напряжения: схема и расчёт

Для того, чтобы получить из исходного напряжения лишь его часть используется делитель напряжения (voltage divider). Это схема, строящаяся на основе пары резисторов.

Читайте также:  Практическая работа расчет простых электрических цепей постоянного тока

В примере, на вход подаются стандартные 9 В. Но какое напряжение получится на выходе Vout? Или эквивалентный вопрос: какое напряжение покажет вольтметр?

Ток, протекающий через R1 и R2 одинаков пока к выходу Vout ничего не подключено. А суммарное сопротивление пары резисторов при последовательном соединении:

$ R_t = R_1 + R_2 = 900 \unit<Ом data-lazy-src=

В этом случае Vout уже не может быть расчитано лишь на основе значений Vin, R1 и R2: сама нагрузка провоцирует дополнительное падение напряжения (voltage drop). Пусть нагрузкой является нечто, что потребляет ток в 10 мА при предоставленных 5 В. Тогда её сопротивление

$ R_L = \frac<U data-lazy-src=

Пропорция сохраняется, Vout не меняется:

$ V_<out data-lazy-src=