Меню

Счетчики импульсов с параллельным переносом

Счетчики импульсов: схемы, назначение, применение, устройство

Что такое счетчик импульсов?

Счетчик импульсов — это последовательностное цифровое устройство, обеспечивающее хранение слова информации и выполнение над ним микрооперации счета, заключающейся в изменении значения числа в счетчике на 1. По существу счетчик представляет собой совокупность соединенных определенным образом триггеров. Основной параметр счетчика — модуль счета. Это максимальное число единичных сигналов, которое может быть сосчитано счетчиком. Счетчики обозначают через СТ (от англ. counter).

Классификация счетчиков импульсов

Суммирующий счетчик импульсов

Рассмотрим суммирующий счетчик (рис. 3.67, а). Такой счетчик построен на четырех JK-триггерах, которые при наличии на обоих входах логического сигнала «1» переключаются в моменты появления на входах синхронизации отрицательных перепадов напряжения.
Временные диаграммы, иллюстрирующие работу счетчика, приведены на рис. 3.67, б. Через Кси обозначен модуль счета (коэффициент счета импульсов). Состояние левого триггера соответствует младшему разряду двоичного числа, а правого — старшему разряду.

В исходном состоянии на всех триггерах установлены логические нули. Каждый триггер меняет свое состояние лишь в тот момент, когда на него действует отрицательный перепад напряжения.

Таким образом, данный счетчик реализует суммирование входных импульсов. Из временных диаграмм видно, что частота каждого последующего импульса в два раза меньше, чем предыдущая, т. е. каждый триггер делит частоту входного сигнала на два, что и используется в делителях частоты.

Трехразрядный вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный вычитающий счетчик с последовательным переносом, схема и временные диаграммы работы которого приведены на рис. 3.68.

На входы J и К каждого триггера поданы логические 1, поэтому по приходу заднего фронта импульса, подаваемого на его вход синхронизации С, каждый триггер изменяет предыдущее состояние. Вначале сигналы на выходах всех триггеров равны 1. Это соответствует хранению в счетчике двоичного числа 111 или десятичного числа 7. После окончания первого импульса F первый триггер изменяет состояние: сигнал Q1 станет равным 0, a ¯ Q1 − 1.

После первого импульса F счетчик хранит состояние 11О. Дальнейшее изменение состояния счетчика происходит аналогично изложенному выше. После состояния 000 счетчик вновь переходит в состояние 111.

Трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом

Рассмотрим трехразрядный самоостанавливающийся вычитающий счетчик с последовательным переносом (рис. 3.69).
После перехода счетчика в состояние 000 на выходах всех триггеров возникает сигнал логического 0, который подается через логический элемент ИЛИ на входы J и К первого триггера, после чего этот триггер выходит из режима Т-триггера и перестает реагировать на импульсы F.

Трехразрядный реверсивный счетчик с последовательным переносом

Рассмотрим трехразрядный реверсивный счетчик с последовательным переносом (рис. 3.70).
В режиме вычитания входные сигналы должны подаваться на вход Тв. На вход Тс при этом подается сигнал логического 0. Пусть все триггеры находятся в состоянии 111. Когда первый сигнал поступает на вход Тв, на входе Т первого триггера появляется логическая 1, и он изменяет свое состояние. После этого на его инверсном входе возникает сигнал логической 1.

При поступлении второго импульса на вход Тв на входе второго триггера появится логическая 1, поэтому второй триггер изменит свое состояние (первый триггер также изменит свое состояние по приходу второго импульса). Дальнейшее изменение состояния происходит аналогично. В режиме сложения счетчик работает аналогично 4-разрядному суммирующему счетчику. При этом сигнал подается на вход Тс. На вход Тв подается логический 0.
В качестве примера рассмотрим микросхемы реверсивных счетчиков (рис: 3.71) с параллельным переносом серии 155 (ТТЛ):

  • ИЕ6 — двоично-десятичный реверсивный счетчик;
  • ИЕ7 — двоичный реверсивный счетчик.

Направление счета определяется тем, на какой вывод (5 или 4) подаются импульсы. Входы 1, 9, 10, 15 — информационные, а вход 11 используется для предварительной записи. Эти 5 входов позволяют осуществить предварительную запись в счетчик (предустановку). Для этого нужно подать соответствующие данные на информационные входы, а затем подать импульс записи низкого уровня на вход 11, и счетчик запомнит число.

Читайте также:  Что сделать чтоб газовый счетчик крутил меньше

Вход 14 — вход установки О при подаче высокого уровня напряжения. Для построения счетчиков большей разрядности используются выходы прямого и обратного переноса (выводы 12 и 13 соответственно). С вывода 12 сигнал должен подаваться на вход прямого счета следующего каскада, а с 13 — на вход обратного счета.

Источник



Счетчики

Счетчиком называется последовательное устройство, предназначенное для счета входных импульсов и фиксации их числа в двоичном коде.
Любые счетчики строятся на основе N однотипных связанных между собой разрядных схем, каждая из которых в общем случае состоит и TG и некоторой комбинационной схемы, предназначенной для формирования сигналов управления триггером.
Счетчик может выполнять следующие микрооперации над кодовым словом:

  1. установка в исходное состояние (запись нулевого кода)- установка в нулевое состояние;
  2. запись входной информации в параллельной форме;
  3. хранение информации;
  4. выдача хранимой информации в параллельной форме;
  5. инкремент – увеличение хранящегося кодового слова на единицу;
  6. декремент — уменьшение хранящегося кодового слова на единицу.
  1. Модуль счета М – основной статический параметр, который характеризует максимальное число импульсов, после прихода которого счетчик устанавливается в исходное состояние.
  2. Время установления выходного кода tk – основной динамический параметр, который характеризует временной интервал между моментом подачи входного сигнала и моментом установления нового кода на выходе.

1.По значению модуля счета:
— двоичные, Мкот = целой степени числа 2 (М=2 n );
— двоично-кодированные, в которых М может принимать любое неравное целой степени числа 3, значение.

2.По направлению счета:
— суммирующие, выполняющие микрооперацию инкремента над хранящимся входным словом;
— вычитающие выполняющие микрооперацию декремента над хранящимся входным словом;
— реверсивные, выполняющие либо микрооперацию инкремента, либо декремента в зависимости от управляющего сигнала.

3.По способу организации межразрядных связей:
— счетчик с последовательным переносом, в котором переключение триггеров разрядных схем происходит последовательно один за другим;
— счетчик с параллельным переносом, в котором переключение всех триггеров разрядных схем происходит одновременно по сигналу синхронизации С;
— счетчик с комбинированным последовательно-параллельным переносом, когда используются различные комбинации способов переноса.

Рассмотрим на примере счетчик с модулем счета М=8 , необходимо как минимум три триггера.
Обратимся к таблице трехразрядных двоичных чисел:

Младший разряд Q0 изменяет свое состояние с приходом каждого импульса синхронизации С.
-Q1 – изменяет свое состояние с приходом каждого 2-го С.
— Q2 — изменяет свое состояние с приходом каждого 4-го С.
Данный алгоритм можно реализовать на асинхронных Т-триггерах:

Синхронизация каждого следующего триггера производится выходным сигналом предыдущего триггера, а переключение первого триггера (формирующего Q0) – непосредственно последовательностью синхроимпульсов.

Переключение триггера должно происходить по спаду импульса.
Инкремент (сложение) реализуется на асинхронном Т-триггере с инверсным динамическим входом.
Декремент (вычитание) реализуется на асинхронным Т –триггере с прямым динамическим входом.
Если для синхронизации каждого последующего асинхронного триггера использовать инверсный выход триггера,
Суммирующий счетчик инкремент: ( используется прямой динамический вход)

вычитающий счетчик (используется инверсный динамический вход)

Направление счета счетчика может изменятся путем изменения межразрядных связей: включается в состав каждой разрядной схемы MS (как в последовательно- параллельном или реверсивном RG)

Сигнал V определяет направление счета :
V=1 суммирующий счетчик
V=0 вычитающий счетчик
Все рассмотренные выше счетчики являются счетчиками с последовательным переносом, т.к. переключение каждого последующего триггера происходит только после переключения предыдущего триггера.
Достоинство- счетчика с последовательным переносом – простота внутренней структуры.
Недостаток — счетчика с последовательным переносом – большое время установления выходного кода tk
tk≠const, зависит от конкретного значения его выходного кода.
tк max будет в случае изменения выходного кода со значения 111….в 000….. или наоборот
tк max=Ntkтр., где
N – число разрядов в счетчике
tkтр – время переключения одного разряда счетчика
Понизить tmax можно при условии, что все триггеры его разрядных схем будут переключаться одновременно. Для этого:
1.используют синхронные триггеры
2.организуют сигналы, определяют порядок переключения триггеров до прихода сигнала С.
Вернемся к таблице последовательности двоичных чисел: для суммирующего счетчика (для вычитающего таблица пойдет вверх)

Из таблицы видно, что переключение каждого последующего триггера происходит только, когда все предыдущие триггеры установлены в 1, т.е.
, где
Qi,n+1 — значение i-го разряда счетчика в (n+1) момент времени
Qi,n — значение i-го разряда счетчика n-ный момент времени
pi = Q0,n ,Qi,n Qi-1,n — сигнал переноса
Необходимо сформировать сигнал переноса.

Время установленных сигнала счетчика
tmax=1tmp время переключения одного триггера

Сложность практической реализации данных счетчиков состоит в том, что с увеличением числа разрядов счетчика увеличивается и число входов в логический элемент «И», используемых в цепях формирования переноса.
В счетчиках с параллельным переносом направление счета не зависит от вида динамического входа Т (прямой или инверсный) .
Зависит только от вида выхода Т, который используется для формирования сигнала переноса. Комбинированные схемы, идея которых состоит в разбиении разрядных схем счетчика на группы, внутри которых осуществлен параллельный; либо последовательный перенос.
Формирование сигнала переноса между группами выполняется логическим элементом «И» только когда триггеры всех входящих в данную группу разрядных схем установлены в «1»

Время установки выхода кода tmax=1tтр.группы

Читайте также:  Если не поменяли вовремя электросчетчик

Как в схемах с параллельным, так и комбинированным переносом для подготовки счетчика к следующему переключению должно пройти время tкод=tзадержки логического элемента «И».

Схемы со сквозным переносом

Источник

Цифровые счетчики

Цифровой счетчик импульсов — это цифровой узел, который осуществляет счет поступающих на его вход импульсов. Результат счета формируется счетчиком в заданном коде и может храниться требуемое время. Счетчики строятся на триггерах, при этом количество импульсов, которое может подсчитать счетчик определяется из выражения N = 2 n — 1, где n — число триггеров, а минус один, потому что в цифровой технике за начало отсчета принимается 0. Счетчики бывают суммирующие, когда счет идет на увеличение, и вычитающие — счет на уменьшение. Если счетчик может переключаться в процессе работы с суммирования на вычитание и наоборот, то он называется реверсивным. Коль счетчики строят на триггерах, посмотрим, как все это работает:



Рис. 1 Схема счетчика с последовательным переносом на Т-триггерах и графики, поясняющие принцип его работы

В качестве исходного состояния принят нулевой уровень на всех выходах триггеров (Q1 — Q3), т. е. цифровой код 000. При этом старшим разрядом является выход Q3. Для перевода всех триггеров в нулевое состояние входы R триггеров объединены и на них подается необходимый уровень напряжения (т. е. импульс, обнуляющий триггеры). По сути это сброс. На вход С поступают тактовые импульсы, которые увеличивают цифровой код на единицу, т. е. после прихода первого импульса первый триггер переключается в состояние 1 (код 001), после прихода второго импульса второй триггер переключается в состояние 1, а первый — в состояние 0 (код 010), потом третий и т. д. В результате подобное устройство может досчитать до 7 (код 111), поскольку 2 3 — 1 = 7. Когда на всех выходах триггеров установились единицы, говорят, что счетчик переполнен. После прихода следующего (девятого) импульса счетчик обнулится и начнется все с начала. На графиках изменение состояний триггеров происходит с некоторой задержкой t з . На третьем разряде задержка уже утроенная. Увеличивающаяся с увеличением числа разрядов задержка является недостатком счетчиков с последовательным переносом, что, несмотря на простоту, ограничивает их применение в устройствах с небольшим числом разрядов.

Счетчики с параллельным переносом

Для повышения быстродействия применяют способ одновременного формирования сигнала переноса для всех разрядов. Достигается это введением элементов И , через которые тактовые импульсы поступают сразу на входы всех разрядов счетчика. Посмотрим на схему:

Читайте также:  Однофазные электронные счетчики учета электроэнергии



Рис. 2 Счетчик с параллельным переносом и графики, поясняющие его работу

С первым триггером все понятно. На вход второго триггера тактовый импульс пройдет только тогда, когда на выходе первого триггера будет лог. 1 (особенность схемы И ), а на вход третьего — когда на выходах первых двух будет лог. 1 и т. д. Задержка срабатывания на третьем триггере такая же, как и на первом. Такой счетчик называется счетчиком с параллельным переносом. Как видно из схемы, с увеличением числа разрядов увеличивается число лог. элементов И , причем чем выше разряд, тем больше входов у элемента. Это является недостатком таких счетчиков.

Реверсивный счетчик

Описанные выше счетчики однонаправленные и считают на увеличение, однако на практике часто необходимо менять направление счета в процессе работы. Счетчики, которые в процессе работы могут менять направление счета называются реверсивными.


Рис. 3 Реверсивный счетчик

Для счетных импульсов предусмотрены два входа: «+1» — на увеличение, «-1» — на уменьшение. Соответствующий вход (+1 или -1) подключается ко входу С. Это можно сделать схемой ИЛИ, если влепить ее перед первым триггером (выход элемента ко входу первого триггера, входы — к шинам +1 и -1). Непонятная фигня между триггерами (DD2 и DD4) называется элементом И-ИЛИ. Этот элемент составлен из двух элементов И и одного элемента ИЛИ, объединенных в одном корпусе. Сначала входные сигналы на этом элементе логически перемножаются, потом результат логически складывается.

Число входов элемента И-ИЛИ соответствует номеру разряда, т. е. если третий разряд, то три входа, четвертый — четыре и т. д. Логическая схема является двухпозиционным переключателем, управляемым прямым или инверсным выходом предыдущего триггера. При лог. 1 на прямом выходе счетчик отсчитывает импульсы с шины «+1» (если они, конечно, поступает), при лог. 1 на инверсном выходе — с шины «-1». Элементы И (DD6.1 и DD6.2) формируют сигналы переноса. На выходе >7 сигнал формируется при коде 111 (число 7) и наличии тактового импульса на шине +1, на выходе

Все это, конечно, интересно, но красивей смотрится в микросхемном исполнении:


Рис. 4 Четырехразрядный двоичный счетчик

Вот типичный счетчик с предустановкой . СТ 2 означает, что счетчик двоичный, если он десятичный, то ставится СТ10, если двоично-десятичный — СТ2/10. Входы D0 — D3 называются информационными входами и служат для записи в счетчик какого-либо двоичного состояния. Это состояние отобразится на его выходах и от него будет производится начало отсчета. Другими словами, это входы предварительной установки или просто предустановки . Вход V служит для разрешения записи кода по входам D0 — D3, или, как говорят, разрешения предустановки . Этот вход может обозначаться и другими буквами. Предварительная запись в счетчик производится при подаче сигнала разрешения записи в момент прихода импульса на вход С. Вход С тактовый. Сюда запихивают импульсы. Треугольник означает, что счетчик срабатывает по спаду импульса. Если треугольник повернут на 180 градусов, т. е. задницей к букве С , значит он срабатывает по фронту импульса. Вход R служит для обнуления счетчика, т. е. при подаче импульса на этот вход на всех выходах счетчика устанавливаются лог. 0. Вход PI называется входом переноса. Выход p называется выходом переноса. На этом выходе формируется сигнал при переполнении счетчика (когда на всех выходах устанавливаются лог. 1). Этот сигнал можно подать на вход переноса следующего счетчика. Тогда при переполнении первого счетчика второй будет переключаться в следующее состояние. Выходы 1, 2, 4, 8 просто выходы. На них формируется двоичный код, соответствующий числу поступивших на вход счетчика импульсов. Если выводы с кружочками, что бывает намного чаще, значит они инверсные, т. е. вместо лог. 1 подается лог. 0 и наоборот. Более подробно работа счетчиков совместно с другими устройствами будет рассматриваться в дальнейшем.

Источник