Меню

Счетчик импульсов схема алс

СЧЁТЧИК НА МИКРОКОНТРОЛЛЕРЕ

Счётчик на микроконтроллере довольно прост для повторения и собран на популярном МК PIC16F628A с выводом индикации на 4 семисегментных светодиодных индикатора. Счётчик имеет два входа управления: «+1» и «-1», а также кнопку «Reset». Управление схемой нового счётчика реализовано таким образом, что как бы долго или коротко не была нажата кнопка входа, счёт продолжится только при её отпускании и очередном нажатии. Максимальное количество поступивших импульсов и соответственно показания АЛС — 9999. При управлении на входе «-1» счёт ведётся в обратном порядке до значения 0000. Показания счётчика сохраняются в памяти контроллера и при отключении питания, что сохранит данные при случайных перебоях питающего напряжения сети.

Принципиальная схема реверсивного счётчика на микроконтроллере PIC16F628A:

Сброс показаний счётчика и одновременно состояния памяти в 0, осуществляется кнопкой «Reset». Следует помнить, что при первом включении реверсивного счётчика на микроконтроллере, на индикаторе АЛС может высветиться непредсказуемая информация. Но при первом же нажатии на любую из кнопок информация нормализируется. Где и как можно использовать эту схему — зависит от конкретных нужд, например установить в магазин или офис для подсчёта посетителей или как индикатор намоточного станка. В общем думаю, что этот счётчик на микроконтроллере кому-нибудь принесёт пользу.

Если у кого-то под рукой не окажется нужного индикатора АЛС, а будет какой-нибудь другой (или даже 4 отдельных одинаковых индикатора), я готов помочь перерисовать печатку и переделать прошивку. В архиве на форуме схема, плата и прошивки под индикаторы с общим анодом и общим катодом. Печатная плата показана на рисунке ниже:

Имеется также новая версия прошивки для счётчика на микроконтроллере PIC16F628A. при этом схема и плата счётчика остались прежними, но поменялось назначение кнопок: кнопка 1 — вход импульсов (например, от геркона), 2 кнопка включает счёт на вычитание входных импульсов, при этом на индикаторе светится самая левая точка, 3 кнопка — сложение импульсов — светится самая правая точка. Кнопка 4 — сброс. В таком варианте схему счётчика на микроконтроллере можно легко применить на намоточном станке. Только перед намоткой или отмоткой витков нужно сначала нажать кнопку «+» или «-«. Питается счётчик от стабилизированного источника напряжением 5В и током 50мА. При необходимости можно питать от батареек. Корпус зависит от ваших вкусов и возможностей. Схему предоставил — Samopalkin

Источник



Счетчик импульсов на микросхеме CD4026 до 10, 100, 1000

Если перед вами стоит задача реализовать счетчик импульсов, с подсчетом десятков, сотен или тысяч, то для этого достаточно воспользоваться готовой сборкой — микросхемой CD4026. Благо микросхема практически сводит на нет все заботы по поводу обвязки микросхемы и дополнительных согласующих элементов. При этом один счетчик CD4026 способен «считать» только лишь до 10, то есть если нам необходимо считать до 100, то мы используем 2 микросхемы, если до 1000 то 3 и т.д. Что же, давайте пару слов о самой микросхеме и о ее функционале.

Описание работы счетчика CD4026

Первоначально приведем внешний вид и функциональное обозначение выводов на микросхеме счетчике

Не смотря на то, что все на английском, в принципе здесь все понятно! Показания счетчика увеличиваются каждый раз на 1 единицу, когда на контакт «clock» приходит положительный импульс. При этом на выходах с a-g появляется напряжение, которое при подаче на 7 сегментный индикатор и будет отображать количество импульсов.

Читайте также:  Надо ли устанавливать счетчики с 2012 года

Контакт «reset» сбрасывает показания подсчета при замыкании на +.

Контакт «disable clock» также должен быть соединен на землю.

Контакт «enable display» по факту 3 контакт должен быть подключен к плюсу.

Контакт «÷10» по факту 5 выход, направляет сигнал о переполнении счетчика, дабы к нему можно было подключить аналогичный счетчик и начать отсчет для 10, 100,1000.

Контакт «not 2» принимает значениние LOW тогда и только тогда, когда значение счётчика — 2. В остальных случаях HIGH.

Рабочее напряжение питания микросхемы: 3—15 В. то есть она имеет встроенный стабилизатор. Теперь о том, как подключить эту микросхему в сборку, то есть о принципиальной схеме.

Схема подключения счетчика импульсов на микросхеме CD4026

Взгляните на схему. В ней ведется подсчет световых импульсов изменения сопротивления для фоторезистора. В качестве фоторезистора можно применить скажем фоторезистор 5516. Итак, за счет изменения сопротивления, смещается и потенциал на базе транзистора. В итоге, начинает протекать ток по цепи коллектор — эмиттер, а значит на вход 1 микросхемы подается импульс, который и подлежит подсчету.
Как только первая микросхема отсчитывает 1 десяток, то на выводе 5 появляется один импульс о «переполнении» счетчика. В конечном счете этот импульс подается на вторую микросхему, которая работает по точно такому же принципу. Но в этом случае микросхема уже считает не единицы, а десятки. Если же добавить 3 микросхему, то это будут сотни и т.д.

Для сброса на 0, достаточно подать плюс на ножки 15 микросхем. Микросхема предназначена для работы с 7 сегментным индикатором. При подаче на один из выводов этого индикатора, мы получаем нужную нам цифру. Взгляните на таблицу.

В заключении еще раз хотелось бы сказать, что счетчик импульсов в данном случае функционален, при этом потребует от вас минимальных затрат и знаний. Что еще немаловажно, схема не нуждается в настройке, по крайнем мере цифровая часть. Единственное быть может придется «поиграться» с резисторами и фоторезистором на входе.

Источник

Счётчики

Счетчиком называют устройство, предназначенное для подсчёта числа импульсов поданных на вход. Они, как и сдвигающие регистры, состоят из цепочки триггеров. Разрядность счетчика, а следовательно, и число триггеров определяется максимальным числом, до которого он считает.


Рисунок 1

Регистр сдвига можно превратить в кольцевой счетчик, если выход последнего триггера соединить с входом первого. Схема такого счетчика на разрядов приведена на рисунке 1. Перед началом счета импульсом начальной установки в нулевой разряд счетчика (Q0) записывается логическая 1, в остальные разряды — логические 0. С началом счета каждый из приходящих счётных импульсов Т перезаписывает 1 в следующий триггер и число поступивших импульсов определяется по номеру выхода, на котором имеется 1. Предпоследний (N-1) импульс переведет в единичное состояние последний триггер, а импульс перенесёт это состояние на выход нулевого триггера, и счет начнётся сначала. Таким образом, можно построить кольцевой счетчик с произвольным коэффициентом счета (любым основанием счисления), изменяя лишь число триггеров в цепочке.

Читайте также:  Как вернуть деньги за поверку счетчиков

Недостаток такого счетчика — большое число триггеров, необходимы; для его построения. Более экономичны, а поэтому и более распространены счетчики, образованные счетными Т-триггерами. После каждое тактового импульса Т сигнал на входе D (инверсном выходе) меняется на противоположный и поэтому частота выходных импульсов вдвое меньше частоты поступающих. Собрав последовательную цепочку из n счетных триггеров соединяя выход предыдущего триггера со входом C следующего), мы получим частоту fвых=fвх/2 n . При этом каждый входной импульс меняет код числа на выходе счетчика на 1 в интервале от 0 до N=2 n -1.

Микросхема К155ИЕ5 рисунок 2 содержит счетный триггер (вход С1) и делитель на восемь (вход С2) образованный тремя соединенными последовательно триггерами. Триггеры срабатывают по срезу входного импульса (по переходу из 1 в 0). Если соединить последовательно все четыре триггера как на рисунке 2, т получится счетчик по модулю 2 4 =16. Максимальное хранимое число при полном заполнении его единицами равно N=2 4 -1=15=(111)2. Такой счетчик работает с коэффициентом счета К (модулем), кратным целой степени 2, и в нем совершается циклический перебор К=2 n устойчивых состояний. Счетчик имеет выходы принудительной установки в 0.


Рисунок 2

Часто нужны счетчики с числом устойчивых состояний, отличным от 2 n Например, о электронных часах есть микросхемы с коэффициентом счета 6 (десятки минут). 10 (единицы минут). 7 (дни недели). 24 (часы). Для построения счётчика с модулем К≠2 n можно использовать устройство из n триггеров для которого выполняется условие 2 n >К. Очевидно, такой счётчик может иметь лишние устойчивые состояния (2 n -К). Исключить эти ненужные состояния Можно использованием обратных связей, по цепям которых счетчик переключается в нулевое состояние в том такте работы когда он досчитывает до числа К.

Для счетчика с К=10 нужны четыре триггера (так как 2 3 4 ) должен иметь десять устойчивых состояний N==0,1. 8,9. В том такте, когда он должен был перейти в одиннадцатое устойчивое состояние (N=10), его необходимо сбросить в исходное нулевое состояние. Для такого счётчика можно использовать микросхему К155ИЕ5 рисунок 3, введя цепи обратной связи с выходов счетчика, соответствующих числу 10 (т. е. 2 и 8) на входы установки счетчика в 0 (вход R). В самом начале 11-го состояния (число 10) на обоих входах элемента И микросхемы появляются логические 1, вырабатывающие сигнал сброс всех триггеров счетчика в нулевое состояние.


Рисунок 3

Во всех сериях цифровых микросхем есть счетчики с внутренней организацией наиболее ходовых коэффициентов пересчета, например в микросхема К155ИЕ2 и К155ИЕ6 К=10. в микросхеме К155ИЕ4 К=2х6==12.

Как видно из схем и диаграмм на рисунках 1-3, счетчики могут выполнят функции делителей частоты, т. е. устройств, формирующих из импульсной последовательности с частотой fвх импульсную последовательность на выходе, последнего триггера с частотой fвых, в К раз меньшую входной. При таком использовании счетчиков нет необходимости знать, какое число в нем записано в настоящий момент, поэтому делители в некоторых случаях могут быть значительно проще счетчиков. Микросхема К155ИЕ1, например, представляет собой делитель на 10, а К155ИЕ8 — делитель с переменным коэффициентом деления К=64/n. где n=1. 63.

Кроме рассмотренных суммирующих широко применяют реверсивные счетчики на микросхемах К155ИЕ6. К155ИЕ7, у которых в зависимости от режима работы содержимое счетчика или увеличивается на единицу режим сложения, говорится что происходит инкремент счётчика или уменьшается на единицу режим вычитания, декремент после прихода очередного счетного импульса. Микросхема К155ИЕ1 рисунок 4 — делитель на 10. Установка ее триггеров в 0 осуществляется одновременной подачей высокого уровня на входы 1 и 2 (элемент И). Счетные импульсы подают на вход 8 или 9 (при этом на другом входе должен быть высокий уровень) или одновременно на оба входа (элемент И).

Читайте также:  Задания для конкурс лучший счетчик по математике


Рисунок 4

В состав микросхемы К155ИЕ2 рисунок 4 входят триггер со счетным входом (вход С1) и делитель на 5 (вход С2). При соединении выхода счетного триггера с входом С2 образуется двоично-десятичный счетчик (диаграмма его работы аналогична приведенной на рисунке 3). Счет происходит по срезу импульса. Счетчик имеет входы установки в 0 (R0 с логикой И) и входы установки в 9 (R9 с логикой И).


Рисунок 5

Микросхему К155ИЕ4 образуют счетный триггер и делитель на 6 рисунок 5. О микросхеме К155ИЕ5 было сказано ранее рисунок 2

Микросхемы К155ИЕ6 и К155ИЕ7 рисунок 6,а)-реверсивные счетчики предварительной записью, первый из них — двоично-десятичный, второй четырехразрядный двоичный. Установка их в 0 происходит при высок уровне на входе R. В счетчик можно записать число подав на выходы D1-D4 (в К155ИЕ6 от 0 до 9, в К155ИЕ7 от 0 до 15). Для этого на вход S необходимо подать низкий уровень, на входах С1 и С2 высокий уровень, на входе R — низкий. Счет начнется с записанного числа по импульсам низкого уровня, подаваемым на вход С1 (в режиме сложения) или на С2 (в режиме вычитания). Информация на выходе изменяется по фронту счётного импульса. При этом на втором счетном входе и входе S должен быть высокий уровень, на входе R-низкий, а состояние входов D безразлично. Одновременно с каждым десятым (шестнадцатым) на входе С1 импульсом на выходе P1 повторяющий его выходной импульс, который может подаваться вход следующего счетчика. В режиме вычитания одновременно с каждым импульсом на входе С2, переводящим счетчик в состояние 9, (15), на выходе Р2 появляется выходной импульс.

Временная диаграмма работы счетчика К155ИЕ6 приведена на рисунке 6,б. На диаграмме в режиме параллельной записи (S=0) было записано число 6 (высокий уровень на входах D2 и D3).


Рисунок 6

Микросхемы К176ИЕ1, К56ИИЕ10 и К561ИЕ16 рисунок 7 — двоичные счётчики. Счетчик К561ИЕ10 при подаче счетных импульсов на вход С1 и при С2=1 работает по фронту, при счете по входу С2 и при С1==0 — по срезу. Счётчик К561ИЕ16 не имеет выходов от второго и третьего делителя. Счетчики устанавливаются в нулевое состояние при подаче высокого уровня на вход R. Для правильной работы этих и всех других счетчиков, выполненных по КМОП технологии (серий К164, К176, К564, К561..), необходимо после включения питания (или после снижения напряжения источника питания до 3 В) устанавливать их в исходное нулевое состояние подачей импульса высокого уровня на вход R. В противном случаи счётчики могут работать случайными коэффициентами пересчёта. Импульс сброса после включения питания может подаваться автоматически, если ввести времязадающую RC-цепь и инвертор, как показано на рисунке 7,в.


Рисунок 7

Источник