Меню

Реферат частота переменного тока

Лекция по теме: » Переменный ток»

Учебная дисциплина ОП.03 Электротехника и электроника

« ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА. НЕРАЗВЕТВЛЁННАЯ ЦЕПЬ ПЕРЕМЕННОГО ТОКА С АКТИВНО-ИНДУКТИВНЫМ, ЕМКОСТНЫМ СОПРОТИВЛЕНИЕМ. ВЕКТОРНЫЕ ДИАГРАММЫ. МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА. КОЭФФИЦИЕНТ МОЩНОСТИ ».

План лекции:

1.Переменный ток и его значение.

2. Характеристики переменного тока.

3.Максимакльное (амплитудное) и действующее (мгновенное) значение напряжения и силы тока.

4. Преобразование переменного тока в постоянный.

5.Основные элементы цепи переменного тока.

6. Резистор в цепи переменного тока.

7.Конденсатор в цепи переменного тока.

8.Катушка индуктивности в цепи переменного тока.

9. Мощность переменного тока. Коэффициент мощности.

10. Полное сопротивление в цепи переменного тока, содержащей резистор, конденсатор и катушку.

Сейчас невозможно представить себе нашу цивилизацию без электричества. Телевизоры, холодильники, компьютеры – вся бытовая техника работает на нем. Основным источником энергии является переменный ток.

Электрический ток, питающий розетки в наших домах, является переменным.

А что это такое? Каковы его характеристики? Чем же переменный ток отличается от постоянного?

В известном опыте Фарадея при движении полосового магнита относительно катушки появлялся ток, что фиксировалось стрелкой гальванометра, соединенного с катушкой. Если магнит привести колебательное движение относительно катушки, то стрелка гальванометра будет отклоняться то в одну сторону, то в другую – в зависимости от направления движения магнита. Это означает, что возникающий в катушке ток меняет свое направление. Такой ток называют переменным.

Переменный электрический ток представляет собой электромагнитные вынужденные колебания. Переменный ток в отличие от постоянного имеет период, амплитуду и частоту.

Переменный токэлектрический ток , который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя свое направление в электрической цепи неизменным.

Если говорить о переменном токе простыми словами, то можно сказать что в случае подключения электрической лампочки к сети переменного тока плюс и минус на ее контактах будут меняться местами с определенной частотой или иначе, ток будет менять свое направление с прямого на обратное.

Для чего нужен такой “переменчивый “ переменный ток , почему не использовать только постоянный?

Это сделано для того, чтобы получить возможность без особых потерь получать нужное напряжение в любом количестве способом применения трансформаторов .

Использование переменного тока позволяет передавать электроэнергию в промышленных масштабах на значительные расстояния с минимальными потерями.

Напряжение, которое подается мощными генераторами электростанций, составляет порядка 330 000-220 000 Вольт. Такое напряжение нельзя подавать в дома и квартиры, это очень опасно и сложно с технической стороны. Поэтому переменный электрический ток с электростанций подается на электрические подстанции, где происходит трансформация с высокого напряжения на более низкое, которое мы используем.

На рисунке обратное направление – это область графика ниже нуля.

hello_html_m1924ce78.jpg

Характеристики переменного тока:

Период — это время одного полного колебания.

Т – период, с

Амплитуда – это наибольшее положительное или отрицательное значение силы тока или напряжения.

Частота — это времени, в течение которого ток выполняет одно полное колебание, число полных колебаний за 1 с называется частотой тока и обозначается буквой f. Частота измеряется в герцах (Гц).

В промышленности и быту большинства стран используют переменный ток с частотой 50 Гц. В США частота промышленного тока 60 Гц.

Эта величина показывает количество изменений направления тока за одну секунду на противоположное и возвращение в исходное состояние.

Иными словами в электрической розетке, которая есть в каждом доме и куда мы включаем утюги и пылесосы, плюс с минусом на правой и левой клеммах розетки будет меняться местами с частотой 50 раз в секунду — это и есть, частота переменного тока.

Амплитуда – характеризует состояние переменного тока с течением времени.

Мгновенное и максимальное значения. Величину переменной электродвижущей силы, силы тока, напряжения и мощности в любой момент времени называют мгновенными значениями этих величин и обозначают соответственно строчными буквами ( e, i, u, p ).
Максимальным значением (амплитудой) переменной э. д. с. (или напряжения или тока) называется та наибольшая величина, которой она достигает за один период. Максимальное значение электродвижущей силы обозначается Е m , напряжения — U m , тока — I m .

Действующим (или эффективным) значением переменного тока называется такая сила постоянного тока, которая, протекая через равное сопротивление и за одно и то же время, что и переменный ток, выделяет одинаковое количество тепла.

Для синусоидального переменного тока действующее значение меньше максимального в 1,41 раз, т. е. в hello_html_m16692f20.jpgраз.

hello_html_5a4e029c.jpg

hello_html_m8bbad8d.jpg

hello_html_m41c499.jpg

Преобразование переменного тока в постоянный.

Из переменного тока, можно получить постоянный ток, для этого достаточно подключить сети переменного тока диодный мост или как его еще называют “выпрямитель” .

Из названия “выпрямитель” как нельзя лучше понятно, что делает диодный мост, он выпрямляет синусоиду переменного тока в прямую линию тем самым заставляя двигаться электроны в одном направлении.

hello_html_m7e8c9f90.jpg

hello_html_23aab47a.jpg

hello_html_m1f5c0fe7.jpg

hello_html_620361b1.jpg

Колебания силы тока в цепи резистора совпадают по фазе с колебаниями напряжения.

hello_html_m4795a48e.jpg

hello_html_m6817a23b.jpg

hello_html_m4b53575c.jpg

hello_html_m10080772.jpg

hello_html_m6e03a215.jpg

hello_html_7faa1aaf.jpghello_html_51f415cc.jpg

hello_html_abfd77f.jpg

Видео по теме:«Переменный электрический ток. Получение переменного тока» см. по ссылке:

Вопросы для самоконтроля:

1.Что такое переменный электрический ток?
2. Почему переменный ток получил такое широкое распространение?
3. Поясните, почему передача электроэнергии осуществляется с использованием переменного тока?
4.Что такое период, частота и фаза переменного тока?

5.Что называется действующим значением переменного тока? Какова связь действующих значений ЭДС, напряжения и тока с их амплитудными значениями?

6.По какой формуле определяется индуктивное сопротивление цепи переменному току?

7.По какой формуле определяется емкостное сопротивление цепи переменному току?

8.По какой формуле определяется сдвиг фаз между током и напряжением в цепях переменного тока?

9.По какой формуле вычисляется мощность переменного тока? Что называется коэффициентом мощности?

10.Как используется диод для выпрямления переменного тока?

Рассмотрим примеры решения задач:

Примеры решения расчетных задач

Задача 1. Определите сдвиг фаз колебаний напряжения и силы тока для электрической цепи, состоящей из последовательно включенных проводников с активным сопротивлением R = 1000 Ом, катушки индуктивностью L = 0,5 Гн и конденсатора емкостью С = 1 мкФ. Определите мощность, которая выделяется в цепи, если амплитуда напряжения U = 100 В, а частота = 50 Гц.

Решение:

Сдвиг фаз между током и напряжением в цепях переменного тока определяется соотношением

здесь = 2 — циклическая частота. Следовательно,

Мощность, которая выделяется в цепи, определится по формуле

Для цепи переменного тока справедливо соотношение

где Z — полное сопротивление (импеданс) цепи:

Следовательно, мощность, которая выделяется в цепи

Подставив численные значения в (1), получим (минус означает, что напряжение отстает по фазе). Тогда . Подставив численные значения в (2), получим P = 0,5 Вт.

Задача 2. Конденсатор неизвестной емкости, катушка с индуктивностью L и сопротивлением R подключены к источнику переменного напряжения (рис. 1). Сила тока в цепи равна . Определите амплитуду напряжения между обкладками конденсатора.

Решение:

Из условия задачи видно, что сила тока и напряжение в цепи меняются синфазно. Это означает, что совпадают индуктивное и емкостное сопротивления.

Напряжение на конденсаторе будет равно

Подставляя (5) в (4), получим:

С учетом (3) соотношение (6) примет вид:

Поэтому амплитудное значение напряжения между обкладками конденсатора будет равно

Задача 3. В электрической цепи из двух одинаковых конденсаторов емкости С и катушки с индуктивностью L , соединенных последовательно, в начальный момент времени один конденсатор имеет заряд q , а второй не заряжен (рис. 2). Как будут изменяться со временем заряды конденсаторов и сила тока в контуре после замыкания ключа К ?

Решение:

Цепь, приведенная на рис. 2, представляет собой колебательный контур. Сила тока в нем будет меняться по закону

Чтобы ответить на вопрос задачи, нужно найти максимальное значение силы тока I и частоту колебаний . Частоту колебаний можно определить по формуле

где С экв — емкость системы из двух последовательно соединенных конденсаторов емкостью С :

Подставляя значение С экв в (8), получим, что частота колебаний в контуре будет равна

Подставим значение частоты (9) в выражение для силы тока (7), тогда получим, что сила тока в цепи будет меняться по закону

Для определения I можно воспользоваться законом сохранения энергии. Пусть в некоторый момент времени заряд одного из конденсаторов равен q 1 , тогда заряд второго конденсатора будет q 2 = q q 1 . В начальный момент времени энергия контура сосредоточена в электрическом поле заряженного конденсатора, в произвольный момент времени она перераспределяется между энергией электрического поля двух заряженных конденсаторов и энергией магнитного поля, сосредоточенного в катушке индуктивности. Следовательно, согласно закону сохранения энергии,

Отсюда можно найти зависимость силы тока от заряда q 1 .

Чтобы найти максимальное значение силы тока, нужно взять производную от I по q 1 и приравнять ее к нулю.

Из последнего выражения видно, что максимальное значение силы тока достигается при . Следовательно,

Подставляя полученное значение для максимального значения силы тока в (10), получим, что сила тока в цепи будет меняться по закону

Чтобы найти закон изменения зарядов на пластинах конденсатора, воспользуемся выражением . Преобразовав его, получим квадратное уравнение для q 1 :

Решая уравнение, получим:

Разные знаки означают, что в начальный момент времени любой конденсатор может либо иметь заряд q , либо быть незаряженным. Пусть

Задача 4. Имеются два колебательных контура с одинаковыми катушками и конденсаторами. В катушку одного из контуров вставили железный сердечник, увеличивший ее индуктивность в n = 4 раза. Найдите отношение резонансных частот контуров и их энергий, если максимальные заряды на конденсаторах одинаковы.

Решение:

Резонансные частоты контуров могут быть определены по формуле Томсона:

Задача 5. Два сопротивления R 1 и R 2 и два диода подключены к источнику переменного тока с напряжением U так, как показано на рис. 3. Найдите среднюю мощность, выделяющуюся в цепи.

Решение:

Ток половину периода идет через один диод (например, 1). За это время на сопротивлении R 1 выделяется средняя мощность

В течение второго полупериода ток идет через диод 2, выделяя на нем среднюю мощность

Таким образом, за полный период выделяется средняя мощность

Задачи для самостоятельного решения:

№ 1. В ц.п.т. с напряжением 220 В включена активная нагрузка сопротивлением 40 Ом. Определите ток цепи.

№ 2. Определите сопротивление конденсатора емкостью 5 мкФ при частоте 50 Гц.

№ 3. Определите сопротивление катушки индуктивностью 0,01 Гн при частоте 50 Гц.

№ 4. Определите ток, проходящий через катушку, индуктивное сопротивление которой 5 Ом, а активное сопротивление 1 Ом, если напряжение сети переменного тока 12 В.

№ 5. В ц.п.т. с напряжением 220 В включена эл.лампа, по спирали которой течет ток 5 А. Вычислите активную мощность этой лампы.

№ 6. В электрическую цепь напряжением 220 В последовательно включены реостат сопротивлением 5 Ом, катушка с активным сопротивлением 6 Ом и индуктивным сопротивлением 4 Ом, конденсатор с емкостным сопротивлением 3 Ом. Определите ток в цепи. Постройте векторную диаграмму токов и напряжений.

№ 7. В ц.п.т. с напряжением 220 В включены конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите реактивную мощность цепи.

Постройте векторную диаграмму токов и напряжений.

№ 8. В ц.п.т. с напряжением 380 В включены активное сопротивление 50 Ом и конденсатор емкостью 1000 мкФ. Определите полную мощность цепи.

Постройте векторную диаграмму токов, напряжений и мощностей.

№ 9. В ц.п.т. напряжением 110 В последовательно включены активное сопротивление 30 Ом, емкостное – 45 Ом и индуктивное — 50 Ом. Определите полное сопротивление этой цепи.

№ 10. В ц.п.т. с напряжением 220 В включены активное сопротивление 20 Ом, конденсатор емкостью 100 мкФ и катушка индуктивностью 0,05 Гн. Определите полную мощность цепи. Постройте векторную диаграмму токов, напряжений, мощностей.

Домашнее задание:

1.Выучить и законспектировать лекцию.

2. Разобрать и записать в тетрадь примеры решения задач, которые приведены в конце лекции.

3. Ответить на вопросы для самоконтроля.

4. Выполнить на оценку задания в тестовой форме:

hello_html_61a97888.pnghello_html_39ad8b4f.png

hello_html_5e842b30.pnghello_html_m6007d484.png

Ответы (указав фамилию, имя, название теста и группу) прислать по следующему адресу в контакте: http :// vk . com / id216653613

Источник

Переменный ток

Понятие и характерные свойства переменного тока как электрического тока, который изменяется с течением времени по гармоническому закону. Резистор, конденсатор и катушка в цепи переменного тока. Закон Ома и исследование мощности для заданной цепи.

  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Переменный ток

Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.

Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.

Переменный ток — это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника

Переменный ток — это электрический ток, который изменяется с течением времени по гармоническому закону.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой щ по синусоидальному или косинусоидальному закону:

где u — мгновенное значение напряжения, Um — амплитуда напряжения, щ — циклическая частота колебаний. Если напряжение меняется с частотой щ, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

где — разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

2. Резистор в цепи переменного тока

переменный цепь ток мощность

Пусть цепь состоит из проводников с малой индуктивностью и большим сопротивлением R (из резисторов). Например, такой цепью может быть нить накаливания электрической лампы и подводящие провода. Величину R, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением. В цепи переменного тока могут быть и другие сопротивления, зависящие от индуктивности цепи и ее емкости. Сопротивление R называется активным потому, что, только на нем выделяется энергия, т.е.

Сопротивление элемента электрической цепи (резистора), в котором происходит превращение электрической энергии во внутреннюю энергию, называют активным сопротивлением.

Итак, в цепи имеется резистор, активное сопротивление которого R, а катушка индуктивности и конденсатор отсутствуют (рис. 1).

Пусть напряжение на концах цепи меняется по гармоническому закону:

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому можно считать, что мгновенное значение силы тока определяется законом Ома:

Следовательно, в проводнике с активным сопротивлением колебания силы тока по фазе совпадают с колебаниями напряжения (рис. 2), а амплитуда силы тока равна амплитуде напряжения, деленной на сопротивление:

При небольших значениях частоты переменного тока активное сопротивление проводника не зависит от частоты и практически совпадает с его электрическим сопротивлением в цепи постоянного тока.

3. Катушка в цепи переменного тока

Индуктивность влияет на силу переменного тока в цепи. Это можно обнаружить с помощью простого опыта. Составим цепь из катушки большой индуктивности и лампы накаливания (рис. 3). С помощью переключателя можно присоединять эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть одинаковы. Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы тока в рассматриваемой цепи меньше силы постоянного тока.

Объясняется это самоиндукцией. При подключении катушки к источнику постоянного напряжения сила тока в цепи нарастает постепенно. Возникающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь по прошествии некоторого времени сила тока достигает наибольшего (установившегося) значения, соответствующего данному постоянному напряжению. Если напряжение быстро меняется, то сила тока не будет успевать достигать тех установившихся значений, которые она приобрела бы с течением времени при постоянном напряжении, равном максимальному значению переменного напряжения. Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью L цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.

Докажем это математически. Пусть в цепь переменного тока включена идеальная катушка с электрическим сопротивлением провода, равным нулю (рис. 4). При изменениях силы тока по гармоническому закону

в катушке возникает ЭДС самоиндукции:

где L — индуктивность катушки, щ — циклическая частота переменного тока.

Так как электрическое сопротивление катушки равно нулю, то ЭДС самоиндукции в ней в любой момент времени равна по модулю и противоположна по знаку напряжению на концах катушки, созданному внешним генератором:

Следовательно, колебания напряжения на катушке индуктивности опережают колебания силы тока на р/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на р/2.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (рис. 5). В момент, когда напряжение становится равным нулю, сила тока максимальна по модулю.

Произведение Im?L?щ является амплитудой колебаний напряжения на катушке:

Отношение амплитуды колебаний напряжения на катушке к амплитуде колебаний силы тока в ней называется индуктивным сопротивлением (обозначается XL):

Связь амплитуды колебаний напряжения на концах катушки с амплитудой колебаний силы тока в ней совпадает по форме с выражением закона Ома для участка цепи постоянного тока:

В отличие от электрического сопротивления проводника в цепи постоянного тока, индуктивное сопротивление не является постоянной величиной, характеризующей данную катушку. Оно прямо пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в катушке при постоянном значении амплитуды колебаний напряжения должна убывать обратно пропорционально частоте. Постоянный ток вообще «не замечает» индуктивности катушки. При щ = 0 индуктивное сопротивление равно нулю (XL = 0).

Зависимость амплитуды колебаний силы тока в катушке от частоты приложенного напряжения можно наблюдать в опыте с генератором переменного напряжения, частоту которого можно изменять. Опыт показывает, что увеличение в два раза частоты переменного напряжения приводит к уменьшению в два раза амплитуды колебаний силы тока через катушку.

4. Конденсатор в цепи переменного тока

Рассмотрим процессы, протекающие в электрической цепи переменного тока с конденсатором. Если подключить конденсатор к источнику постоянного тока, то в цепи возникнет кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Если заряженный конденсатор отключить от источника постоянного тока и соединить его обкладки с выводами лампы накаливания, то конденсатор будет разряжаться, при этом наблюдается кратковременная вспышка лампы.

При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор вновь заряжается, но полярность напряжения на его обкладках изменяется на противоположную и т.д. Процессы зарядки и разрядки конденсатора чередуются с периодом, равным периоду колебаний приложенного переменного напряжения.

Как и в цепи постоянного тока, через диэлектрик, разделяющий обкладки конденсатора, электрические заряды не проходят. Но в результате периодически повторяющихся процессов зарядки и разрядки конденсатора по проводам, соединенным с его выводами, течет переменный ток. Лампа накаливания, включенная последовательно с конденсатором в цепь переменного тока (рис. 6), кажется горящей непрерывно, так как человеческий глаз при высокой частоте колебаний силы тока не замечает периодического ослабления свечения нити лампы.

Установим связь между амплитудой колебаний напряжения на обкладках конденсатора и амплитудой колебаний силы тока. При изменениях напряжения на обкладках конденсатора по гармоническому закону

заряд на его обкладках изменяется по закону:

Электрический ток в цепи возникает в результате изменения заряда конденсатора: i = q’. Поэтому колебания силы тока в цепи происходят по закону:

Следовательно, колебания напряжения на обкладках конденсатора в цепи переменного тока отстают по фазе от колебаний силы тока на р/2 или колебания силы тока опережают по фазе колебания напряжения на р/2 (рис. 7). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того как напряжение достигает максимума, сила тока становится равной нулю и т.д.

Произведение Um?щ?C является амплитудой колебаний силы тока:

Отношение амплитуды колебаний напряжения на конденсаторе к амплитуде колебаний силы тока называют емкостным сопротивлением конденсатора (обозначается ХC):

Связь между амплитудным значением силы тока и амплитудным значением напряжения по форме совпадает с выражением закона Ома для участка цепи постоянного тока, в котором вместо электрического сопротивления фигурирует емкостное сопротивление конденсатора:

Емкостное сопротивление конденсатора, как и индуктивное сопротивление катушки, не является постоянной величиной. Оно обратно пропорционально частоте переменного тока. Поэтому амплитуда колебаний силы тока в цепи конденсатора при постоянной амплитуде колебаний напряжения на конденсаторе возрастает прямо пропорционально частоте.

5. Закон Ома для электрической цепи переменного тока

Рассмотрим электрическую цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки (рис. 8). Если к выводам этой электрической цепи приложить электрическое напряжение, изменяющееся по гармоническому закону с частотой щ и амплитудой Um, то в цепи возникнут вынужденные колебания силы тока с той же частотой и некоторой амплитудой Im. Установим связь между амплитудами колебаний силы тока и напряжения

В любой момент времени сумма мгновенных значений напряжений на последовательно включенных элементах цепи равна мгновенному значению приложенного напряжения:

Во всех последовательно включенных элементах цепи изменения силы тока происходят практически одновременно, так как электромагнитные взаимодействия распространяются со скоростью света. Поэтому можно считать, что колебания силы тока во всех элементах последовательной цепи происходят по закону:

Колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, а колебания напряжения на катушке опережают по фазе колебания силы тока на р/2. Поэтому уравнение (1) можно записать так:

где URm, UCm и ULm — амплитуды колебаний напряжения на резисторе, конденсаторе и катушке.

Амплитуду колебаний напряжения в цепи переменного тока можно выразить через амплитудные значения напряжения на отдельных ее элементах, воспользовавшись методом векторных диаграмм.

При построении векторной диаграммы необходимо учитывать, что колебания напряжения на резисторе совпадают по фазе с колебаниями силы тока, поэтому вектор, изображающий амплитуду напряжения URm, совпадает по направлению с вектором, изображающим амплитуду силы тока Im Колебания напряжения на конденсаторе отстают по фазе на р/2 от колебаний силы тока, поэтому вектор

UCm отстает от вектора Im на угол 90°. Колебания напряжения на катушке опережают колебания силы тока по фазе на р/2, поэтому вектор ULm опережает вектор Im на угол 90° (рис. 9).

На векторной диаграмме мгновенные значения напряжения на резисторе, конденсаторе и катушке определяются проекциями на горизонтальную ось векторов Rm, Cm, Lm вращающихся с одинаковой угловой скоростью щ против часовой стрелки. Мгновенное значение напряжения во всей цепи равно сумме мгновенных напряжений uR, uC, и uL на отдельных элементах цепи, т.е. сумме проекций векторов URm, UCm и ULm на горизонтальную ось. Так как сумма проекций векторов на произвольную ось равна проекции суммы этих векторов на ту же ось, то амплитуду полного напряжения можно найти как модуль суммы векторов:

Читайте также:  С моторчика дать ток

Из рисунка 9 видно, что амплитуда напряжений на всей цепи равна:

Введя обозначение для полного сопротивления цепи переменного тока:

выразим связь между амплитудными значениями силы тока и напряжения в цепи переменного тока следующим образом:

Это выражение называют законом Ома для цепи переменного тока.

Из векторной диаграммы, приведенной на рисунке 9, видно, что фаза колебаний полного напряжения равна щ•t + ц. Поэтому мгновенное значение полного напряжения определяется формулой:

Начальную фазу ц можно найти из векторной диаграммы:

Величина cos ц играет важную роль при вычислении мощности в электрической цепи переменного тока.

Мощность в цепи переменного тока

Мощность в цепи постоянного тока определяется произведением напряжения на силу тока:

Физический смысл этой формулы прост: так как напряжение U численно равно работе электрического поля по перемещению единичного заряда, то произведение U•I характеризует работу по перемещению заряда за единицу времени, протекающего через поперечное сечение проводника, т.е. является мощностью. Мощность электрического тока на данном участке цепи положительна, если энергия поступает к этому участку из остальной сети, и отрицательна, если энергия с этого участка возвращается в сеть. На протяжении очень малого интервала времени переменный ток можно считать неизменным. Поэтому мгновенная мощность в цепи переменного тока определяется такой же формулой:

Пусть напряжение на концах цепи меняется по гармоническому закону:

При этом мощность меняется со временем как по модулю, так и по знаку. В течение одной части периода энергия поступает к данному участку цепи (р > 0), но в течение другой части периода некоторая доля энергии вновь возвращается в сеть (р 2 •R), вводятся понятия действующих значений силы тока и напряжения. Из равенства мощностей получим:

Действующим значением силы тока называют величину, в v2 раз меньшую ее амплитудного значения:

Действующее значение силы тока равно силе такого постоянного тока, при котором средняя мощность, выделяющаяся в проводнике в цепи переменного тока, равна мощности, выделяющейся в том же проводнике в цепи постоянного тока.

Аналогично можно доказать, что действующее значение переменного напряжения в v2 раз меньше его амплитудного значения:

Заметим, что обычно электрическая аппаратура в цепях переменного тока показывает действующие значения измеряемых величин. Переходя к действующим значениям силы тока и напряжения, уравнение (10) можно переписать:

Таким образом, мощность переменного тока на участке цепи определяется именно действующими значениями силы тока и напряжения. Она зависит также от сдвига фаз цc между напряжением и током. Множитель cos цc в формуле называется коэффициентом мощности.

В случае, когда цc = ± р/2, энергия, поступающая к участку цепи за период, равна нулю, хотя в цепи и существует ток. Так будет, в частности, если цепь содержит только катушку индуктивности или только конденсатор. Как же средняя мощность может оказаться равной нулю при наличии тока в цепи? Это поясняют приведенные на рисунке 10 графики изменения со временем мгновенных значений напряжения, силы тока и мощности при цc = — р/2 (чисто индуктивное сопротивление участка цепи). График зависимости мгновенной мощности от времени можно получить, перемножая значения силы тока и напряжения в каждый момент времени. Из этого графика видно, что в течение одной четверти периода мощность положительна и энергия поступает к данному участку цепи; но в течение следующей четверти периода мощность отрицательна, и данный участок отдает без потерь обратно в сеть полученную ранее энергию. Поступающая в течение четверти периода энергия запасается в магнитном поле тока, а затем без потерь возвращается в сеть.

Лишь при наличии проводника с активным сопротивлением в цепи, не содержащей движущихся проводников, электромагнитная энергия превращается во внутреннюю энергию проводника, который нагревается. Обратного превращения внутренней энергии в электромагнитную на участке с активным сопротивлением уже не происходит.

При проектировании цепей переменного тока нужно добиваться, чтобы cos цc не был мал. Иначе значительная часть энергии будет циркулировать по проводам от генератора к потребителям и обратно. Так как провода обладают активным сопротивлением, то при этом энергия расходуется на нагревание проводов.

Неблагоприятные условия для потребления энергии возникают при включении в сеть электродвигателей, так как их обмотка имеет малое активное сопротивление и большую индуктивность. Для увеличения cos цc в сетях питания предприятий с большим числом электродвигателей включают специальные компенсирующие конденсаторы. Нужно также следить, чтобы электродвигатели не работали вхолостую или с недогрузкой. Это уменьшает коэффициент мощности всей цепи. Повышение cos цc является важной народнохозяйственной задачей, так как позволяет с максимальной отдачей использовать генераторы электростанций и снизить потери энергии. Это достигается правильным проектированием электрических цепей. Запрещается использовать устройства с cos цc

Источник

Частота электрического тока — определение, физический смысл

Частота электрического тока 3

Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.

Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду.

Васильев Дмитрий Петрович

В республиках бывшего СССР стандартной считается частота тока в 50 Гц.

Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Частота электрического тока 1

Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:

Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.

Частота электрического тока 2

Более подробно о частоте переменного тока Вы можете узнать из видео:

Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.

Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.

Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.

Абрамян Евгений Павлович

Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.

Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.

Ещё одно интересное видео о частоте переменного тока:

Источник



Реферат: Электрические цепи переменного тока

Федеральное агентство по образованию РФ

Курского государственного политехнического колледжа

по дисциплине: «Электротехника»

на тему: «Электрические цепи переменного тока»

Асеев Евгений Сергеевич

студент 2 курса специальности

«Атомные станции и установки»

Проверил: Горлов А.Н.

Принцип получения переменной ЭДС. Действующее значение тока и напряжения

Метод векторных диаграмм

Цепь переменного тока с активным сопротивлением и индуктивностью

Цепь переменного тока с разной нагрузкой

Последовательная цепь, содержащая активное сопротивление, индуктивность и емкость

Резонанс напряжений и токов

Проводимость и расчет электрических цепей

До конца 19 века использовались только источники постоянного тока – химические элементы и генераторы. Это ограничивало возможности передачи электрической энергии на большие расстояния. Как известно, для уменьшения потерь в линиях электропередачи необходимо использовать очень высокое напряжение. Однако получить достаточно высокое напряжение от генератора постоянного тока практически невозможно. Проблема передачи электрической энергии на большие расстояния была решена только при использовании переменного тока и трансформаторов.

1. Принцип получения переменной ЭДС

Переменный ток имеет ряд преимуществ по сравнению с постоянным: генератор переменного тока значительно проще и дешевле генератора постоянного тока; переменный ток можно трансформировать; переменный ток легко преобразуется в постоянный; двигатели переменного тока значительно проще и дешевле, чем двигатели постоянного тока.

В принципе переменным током можно назвать всякий ток, который с течением времени изменяет свою величину, но в технике переменным током называют такой ток, периодически изменяет и величины и направление. Причем среднее значение силы такого тока за период Т равно нулю. Периодическим переменный ток называется потому, что через промежутки времени Т, характеризующие его физические величины принимают одинаковые значения.

В электротехнике наибольшее распространение получил синусоидальный переменный ток, т.е. ток, величина которого изменяется по закону синуса (или косинуса), обладающий рядом достоинств по сравнению с другими периодическими токами.

Переменный ток промышленной частоты получают на электростанциях с помощью генераторов переменного тока (трехфазных синхронных генераторов). Это довольно сложные электрические машины, рассмотрим только физические основы их действия, т.е. идею получения переменного тока.

Пусть в однородном магнитном поле постоянного магнита равномерно вращается с угловой скоростью ω рамка площадью S .(рис. 1).

Магнитный поток через рамку будет равен:

где α – угол между нормалью к рамке n и вектором магнитной индукции B. Поскольку при равномерном вращении рамки ω= α/t, то угол α будет изменяться по закону α= ω t и формула(1.1) примет вид:

Поскольку при вращении рамки пересекающий ее магнитный поток все время меняется, то по закону электромагнитной индукции в ней будет наводиться ЭДС индукции Е :

Е= -dФ/dt =BSωsinωt =E0sinωt (1.3)

где Е0 = BSω – амплитуда синусоидальной ЭДС. Таким образом, в рамке возникнет синусоидальная ЭДС, а если замкнуть рамку на нагрузку, то в цепи потечет синусоидальный ток.

Величину ωt = 2πt/Т = 2πft, стоящую под знаком синуса или косинуса, называют фазой колебаний, описываемых этими функциями. Фаза определяет значение ЭДС в любой момент времени t. Фаза измеряется в градусах или радианах.

Время Т одного полного изменения ЭДС (это время одного оборота рамки) называют периодом ЭДС. Изменение ЭДС со временем может быть изображено на временной диаграмме (рис. 2).

Величину, обратную периоду, называют частотой f = 1/T. Если период измеряется в секундах, то частота переменного тока измеряется в Герцах. В большинстве стран, включая Россию, промышленная частота переменного тока составляет 50Гц (в США и Японии – 60 Гц).

Величина промышленной частоты переменного тока обусловлена технико-экономическими соображениями. Если она слишком низка, то увеличиваются габариты электрических машин и, следовательно, расход материалов на их изготовление; заметным становится мигание света в электрических лампочках. При слишком высоких частотах увеличиваются потери энергии в сердечниках электрических машин и трансформаторах. Поэтому наиболее оптимальными оказались частоты 50 – 60 Гц. Однако, в некоторых случаях используются переменные токи как с более высокой, так и более низкой частотой. Например, в самолетах применяется частота 400 Гц. На этой частоте можно значительно уменьшить габариты и вес трансформаторов и электромоторов, что для авиации более существенно, чем увеличение потерь в сердечниках. На железных дорогах используют переменный ток с частотой 25 Гц и даже 16,66 Гц.

Действующие значения тока и напряжения

Для описания характеристик переменного тока необходимо избрать определённые физические величины. Мгновенные и амплитудные значения для этих целей неудобны, а средние значения за период равны нулю. Поэтому вводят понятие действующих значений тока и напряжения. Они основаны на тепловом действии тока, не зависящем от его направления.

Читайте также:  Резонанс токов в гармонике

Действующими значениями тока и напряжения называют соответствующие параметры такого постоянного тока, при котором в данном проводнике за данный промежуток времени выделяется столько же теплоты, что и при переменном токе. Найдем соотношение между действующими и амплитудными значениями.

В активном сопротивлении R при постоянном токе I за период постоянного тока T по закону Джоуля-Ленца выделится следующее количество теплоты:

При переменном токе i в том же сопротивлении R за бесконечно малый промежуток времени dt выделится следующее количество теплоты:

где мгновенное значение тока i определяется формулой:

Тогда теплота, выделяемая переменным током за период Т равна:

Интеграл (1.7) вычисляется следующим образом:

Второй интеграл равен нулю, поскольку это интеграл от периодической функции за один период. Приравняв, согласно определению (1.4) и (1.8), получим:

Таким образом, действующее значение переменного тока в √2 раз меньше его амплитудного значения. Аналогично вычисляются действующие значения напряжения и ЭДС:

U = U0/√2; E = E0/√2 (1.10)

Действующие значения обозначаются прописными латинскими буквами без индексов.

2. Метод векторных диаграмм

Метод векторных диаграмм – то есть изображение величин, характеризующих переменный ток векторами, а не тригонометрическими функциями, чрезвычайно удобен.

Переменный ток, в отличие от постоянного, характеризуется двумя скалярными величинами – амплитудой и фазой. Поэтому для математического описания переменного тока необходим математический объект, также характеризуемый двумя скалярными величинами. Существуют два таких математических объектов – это вектор на плоскости и комплексное число. В теории электрических цепей и те и другие используются для описания переменных токов.

При описании электрической цепи переменного тока с помощью векторных диаграмм каждому току и напряжению сопоставляется вектор на плоскости в полярных координатах, длина которого равна амплитуде тока или напряжения, а полярный угол равен соответствующей фазе. Поскольку фаза переменного тока зависит от времени, то считается, что все векторы вращаются против часовой стрелки с частотой переменного тока. Векторная диаграмма строится для фиксированного момента времени.

Более подробно построение и использование векторных диаграмм будет изложено ниже на примерах конкретных цепей.

3. Цепь переменного тока с активным сопротивлением и индуктивностью

Рассмотрим цепь (рис. 3), в котором к активному сопротивлению (резистору) приложено синусоидальное напряжение:

U (t) = U0sin ωt (1.11)

Тогда по закону Ома ток в цепи будет равен:

I (t) = U (t)/R = U0sin ωt/R = I0 sin ωt (1.12)

Мы видим, что ток и напряжение совпадают по фазе. Векторная диаграмма для этой цепи приведена на рисунке 4:

Выясним, как изменяется со временем мощность в цепи переменного тока с резистором. Мгновенное значение мощности равно произведению мгновенных значений тока и напряжения:

p (t) = i(t)u(t) = I0 U0 sin ωt = I0 U0(1- cos2 ωt)/2 (1.13)

Из этой формулы мы видим, что мгновенная мощность всегда положительна и пульсирует с удвоенной частотой (рис. 5):

Это означает, что электрическая энергия необратимо превращается в теплоту независимо от направления тока в цепи.

Вычислим среднее значение мощности за период:

Pср = 1/T ∫ p(t)dt = I0U0/2T ∫ dt − I0U0/2T ∫ cos2ωt dt = (I0U0/2T) ∙T = IU = I R

поскольку второй интеграл равен нулю как интеграл от периодической функции за период.

Мы видим, что в цепи с резистором вся электрическая энергия необратимо превращается в тепловую энергию. Те элементы цепи, на которых происходит необратимое преобразование электрической энергии в другие виды энергии (не только в тепловую), называются активными сопротивлениями. Поэтому резистор представляет собой активное сопротивление.

Рассмотрим цепь (рис. 6), в котором к катушке индуктивности L, не обладающей активным сопротивлением (R=0), приложено синусоидальное напряжение (1.11):

Протекающий через катушку переменный ток создает в ней ЭДС самоиндукции eL. Тогда в соответствии со вторым правилом Кирхгофа можно записать:

Согласно закону Фарадея, ЭДС самоиндукции равна:

Подставив (1.16) в (1.15), имеем:

dI/dt = − eL/L = U/L = U0 sin ωt/L (1.17)

Интегрируя это уравнение, получим:

I =− U0cos ωt/ω L + const = U0sin (ωt − π/2)/ ωL+ const (1.18)

где const – постоянная интегрирования, которая говорит о том, что в цепи может быть и постоянный ток. При отсутствии постоянного тока она равна нулю. При отсутствии постоянного тока она равна нулю. Окончательно имеем:

I = I0 sin (ωt − π/2) (1.19)

где I0 = U0/ ωL. Деля обе части на √2, получим:

I = U/ ωL= U/ XL (1.20)

Соотношение (1.20) представляет собой закон Ома для цепи с идеальной индуктивностью, а величина XL= ωL называется индуктивным сопротивлением.

Из формулы (1.19) мы видим, что в рассмотренной цепи ток отстает по фазе от напряжения на π/2. Векторная диаграмма для этой цепи изображена на рисунке 7.

Вычислим мощность, потребляемую цепью с чисто индуктивным сопротивлением.

Мгновенная мощность равна:

p (t)= I0 U0 sin ωt(ωt − π/2)= − I0 U0 sin2 ωt/2 (1.21)

Мы видим, она изменяется по закону синуса с удвоенной частотой (рис. 8).

Положительные значения мощности соответствуют потреблению энергии катушкой, а отрицательные — возврату запасенной энергии обратно источнику.

Средняя за период мощность равна:

Pср = 1/T ∫ p(t)dt = (− I0 U0 /2T) ∫ sin2 ωt dt = 0 (1.22)

Мы видим, что цепь с индуктивностью мощности не потребляет – это чисто реактивная нагрузка.

5. Цепь переменного тока с разной нагрузкой

Цепь переменного тока с активно-индуктивной нагрузкой

Рассмотрим электрическую цепь (рис. 9), в котором через катушку индуктивности L, обладающую активным сопротивлением R, протекает переменный ток:

I = I0 sin ωt (1.23)

Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности и на резисторе:

Напряжение на резисторе, как показано выше, совпадает по фазе с током:

UR = U0R sin ωt (1.25)

а напряжение на индуктивности равно ЭДС самоиндукции со знаком “минус” (по второму правилу Кирхгофа):

UL = L(dI/dt)= I0 ωLcos ωt = U0Lsin(ωt + π/2) (1.26)

где U0L= I0 ωL (1.27)

Напряжение на индуктивности опережает ток на π/2. Переходя к формуле (1.27) к действующим значениям переменного тока (I = I0/√2; U= U0/√2), получим:

Это закон Ома для цепи с идеальной индуктивностью (т.е. не обладающей активным сопротивлением), а величина XL= ωL называется индуктивным сопротивлением. Построив векторы I, UR и UL и воспользовавшись формулой (1.24), мы найдем вектор U.

Как видно из векторной диаграммы, модуль вектора U равен

U= √ UR + UL = √ I R + I (ωL) = I√ R + (ωL) = IZ (1.29)

называется полным сопротивлением цепи.

Сдвиг по фазе φ между током и напряжением также определяется из векторной диаграммы:

tg φ = UL/ UR = ωL/ R (1.31)

В данной цепи угол сдвига фаз между током и напряжением зависит от значений R и L и изменяется в пределах от 0 до π/2.

Теперь рассмотрим как изменяется со временем мощность в цепи с активно-индуктивной нагрузкой. Мгновенные значения тока и напряжения можно представить в виде:

U(t) = U0 sin ωt (1.32)

I(t) = I0 sin(ωt − φ)

Тогда мгновенное значение мощности равно:

p(t)= I(t) U(t) = I0 U0 sin ωt sin(ωt − φ)=(I0 U0/2)[cosφ − cos(2ωt − φ)] = =(I0 U0/2)(1− cos2ωt) cosφ − (I0 U0/2) sin2ωt sin φ (1.33)

Мгновенное значение мощности имеет две составляющие: первое слагаемое — активная, и второе — реактивная (индуктивная). Поэтому средняя за период мощность не равна нулю:

Pср = 1/T ∫ pdt = (I0 U0/2T) cosφ ∫dt − (I0 U0/2T) cosφ ∫ cos2ωt dt −

−(I0 U0/2T) sin φ ∫ sin2ωt dt = (I0 U0/2) cosφ (1.34)

и является активной мощностью. Соответствующая этой мощности электрическая энергия превращается в активном сопротивлении R в теплоту.

Цепь переменного тока с емкостью

Рассмотрим электрическую цепь, в которой переменное напряжение (1.11) приложено к емкости С (рис. 11). Мгновенное значение тока в цепи с емкостью равно скорости заряда на обкладках конденсатора:

I = C (dU/dt) = ωCU0 cos ωt = I0 sin (ωt + π/2) (1.36)

В этой цепи ток опережает напряжение на π/2. Переходя в формуле (1.37) к действующим значениям переменного тока (I = I0/√2; U= U0/√2), получим:

Это закон Ома для цепи переменного тока с емкостью, а величина

Xc= 1/ωC называется емкостным сопротивлением. Векторная диаграмма для этой цепи показана на рис. 12.

Найдем мгновенную и среднюю мощность в цепи, содержащей емкость. Мгновенная мощность равна:

p(t)= i(t) u(t) = I0U0 sin (ωt + π/2) sin ωt = IUsin2 ωt (1.39)

Мгновенная мощность изменяется с удвоенной частотой (рис. 13). При этом положительные значения мощности соответствуют заряду конденсатора, а отрицательные — его разряду и возврату запасенной энергии в источник. Средняя за период мощность здесь равна нулю

Pср = 1/T ∫ p(t)dt = IU/T ∫ sin2 ωt dt = 0 (1.40)

т.к. в цепи с конденсатором активная мощность не потребляется, а проходит обмен электрической энергией между конденсатором и источником.

Цепь переменного тока с активно-емкостной нагрузкой

Реальная цепь переменного тока с емкостью всегда содержит активное сопротивление — сопротивление проводов, активные потери в конденсаторе и т.п. Рассмотрим реальную цепь, состоящую из последовательно соединенных конденсатора С и активного сопротивления R (рис. 14). В этой цепи протекает ток I = I0 sin ωt .

В соответствии со вторым правилом Кирхгофа, сумма напряжений на резисторе и на емкости равна приложенному напряжению:

Напряжение на резисторе совпадает по фазе с током:

UR = U0R sin ωt (1.42)

а напряжение на конденсаторе отстает от тока:

UC = U0C sin (ωt − π/2) (1.43)

Построив векторы I,UR и UC и воспользовавшись формулой (1.41), найдем вектор U. Векторная диаграмма для этой цепи показана на рисунке 15.

Как видно из векторной диаграммы, модуль вектора U равен

U =√ UR + UC =√ I R + I (1/ωC) = I √ R + (1/ωC) = IZ1 (1.44)

называется полным сопротивлением цепи.

Сдвиг по фазе φ между током и напряжением в данной цепи также определяется из векторной диаграммы:

tg φ = UC/ UR = (1/ωC)/ R (1.46)

В рассмотренной цепи угол сдвига фаз между током и напряжением зависит от значений R и C и изменяется в пределах от 0 до π/2.

Рассмотрим теперь, как изменяется со временем мощность в цепи с активно – емкостной нагрузкой. Мгновенные значения тока и напряжения можно представить в виде:

I (t) = I0 sin (ωt + φ) (1.47)

Тогда мгновенное значение мощности равно:

p(t)= I(t) U(t) = I0 U0 sin ωt sin(ωt + φ)=(I0 U0/2)[cosφ − cos(2ωt + φ)] = =(I0 U0/2)(1− cos2ωt) cosφ + (I0 U0/2) sin2ωt sin φ (1.48)

Мгновенное значение мощности имеет две составляющие: первое слагаемое — активная, а второе — реактивная (емкостная). Поэтому средняя за период мощность не равна нулю:

Pср =1/T ∫ pdt = I0U0/2T cosφ ∫ dt − I0U0/2T cosφ ∫ cos2 ωtdt + I0U0/2T ∙

sin φ ∫ sin2ωt dt = I0U0/2T cosφ (1.49)

и является активной мощностью. Соответствующая этой мощности электрическая энергия превращается в активном сопротивлении R в теплоту.

6. Последовательная цепь, содержащая активное сопротивление, индуктивность и емкость

Теперь рассмотрим цепь переменного тока, содержащую индуктивность, емкость и резистор, включенные последовательно (рис. 16).

Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности, на емкости и на резисторе:

U = UL + UC + UR (1.50)

Напряжение на резисторе совпадает по фазе с током, напряжение на катушке опережает ток по фазе на π/2, а напряжение на емкости отстает от тока по фазе на π/2. Можно записать эти напряжения в следующем виде:

UR = U0R sin ωt = I0R sin ωt

UL = U0Lsin (ωt + π/2) = I0 ωL (ωt + π/2) (1.51)

UC = U0C sin (ωt − π/2) = (I0/ωC) sin (ωt − π/2)

Поскольку нам известны амплитуды и фазы этих векторов, мы можем построить векторную диаграмму и найти вектор U (рис. 17)

Из полученной векторной диаграммы мы можем найти модуль вектора приложенного к цепи напряжения U и сдвиг по фазе φ между током и напряжением:

U = √ UR + (UL − UC) = I √ R +( ωL− 1/ωC) = IZ (1.52)

Z = √ R +( ωL− 1/ωC) (1.53)

называется полным сопротивлением цепи. Из диаграммы видно, что сдвиг по фазе между током и напряжением определяется уравнением:

Источник