Меню

Рассчитать силу тока сварочной дуги

Расчет силы тока при сварке

Качественная сварка невозможна без точного и правильного расчета силы тока – важнейшего параметра в технологии сварочных работ. Если этот показатель слишком низкий, стержень будет залипать, и поджига дуги не произойдет. Напротив, если выбраны слишком высокие токи, электродуга зажжется хорошо, но возможно прожигание металла детали. Кроме того, и сам стержень сгорит быстрее, чем положено, особенно, если он небольшого диаметра.

Как же рассчитать необходимую мощность? Каким током варить электродом того или иного диаметра? Давайте посмотрим деально.

Ключевые параметры расчета режима сварки

Правильно выбранный режим работы сварочного оборудования обеспечивает хороший и быстрый поджиг и стабильную электродугу. Помимо силы тока параметрами, которые влияют на настройку режима, являются:

  • род тока (постоянный, переменный) и полярность постоянного;
  • диаметр электродного стержня;
  • марка электродного проводника;
  • пространственное положение шва при выполнении работ.

Чем больше перечисленных показателей учитывается в расчетах, тем качественнее будет результат. Рассмотрим, какой ток на какой электрод подается в зависимости от толщины последнего.

Диаметр электрода и сила тока

Толщина электрода напрямую зависит от толщины свариваемых деталей и размера сварного шва. Если ширина последнего не превышает 3–5 мм, то опытный сварщик, как правило, выберет расходник диаметром от 3 до 4 мм. При больших размерах сварочной ванны (5–8 мм) толщина стержня обычно составляет не более 5 мм.

Что же касается величины тока, то работают такие показатели.

  • При d 3 мм – от 65 до 100 Ампер. Диапазон значений широк, они зависят от пространственного положения шва и химического состава свариваемого металла (соответственно и металла сердечника). Сварщики-новички и любители не ошибутся, если выберут усредненное значение – 80–85 Ампер.
  • При d 4 мм – от 120 до 200 А. Зависимость та же – состав металла, расположение шва в пространстве. Это самый распространенный диаметр стержня, характерный для промышленных работ. Позволяет варить и тонкие, и широкие швы.
  • При d 5 мм значение варьируется в диапазоне 169–250 А. Это уже достаточно большой диаметр. Роль играют не только состав сплава и положение шва, но и глубина проварки: чем она больше, тем больше должна быть и сила тока. Если глубина сварочной ванны не менее 5 мм, в режиме должен быть выставлен максимальный показатель – 250 А.
  • При d 6–8 мм минимальный показатель мощности те же 250 Ампер. В условиях тяжелых работ с использованием трансформаторов он увеличивается до 300–350 А.

Ниже в таблице приведены рекомендуемые значения, которые известны любому профессиональному сварщику, но которые могут быть полезны для любителей и новичков.

Источник

Подбор силы тока и диаметра электрода

Выбор режима ручной дуговой сварки

Под режимом сварки понимают группу контролируемых параметров, определяющих ее условия. Параметры режима сварки подразделяют на основные и дополнительные.

К основным параметрам режима ручной сварки относят Силу тока, род и полярность тока, напряжение на дуге, диаметр электрода и скорость сварки. К дополнительными параметрам, состав и толщина покрытий электрода, положение электрода и положение изделия при сварке.

Самым важным и первичным этапом в определение режимов сварки является подбор диаметра электродов. Диаметр электрода выбиратеся в зависимости от толщины металла и пространственного положения сварного шва и вида соединения. Примерное соотношение между толщиной металла S и диаметром электрода при сварке шва приведено в таблице ниже. Пространственные положение в которых можно варить электродами указана на пачке. Подробнее об обозначении характеристик электродов и их расшифровке читайте в статье Покрытые электроды, характеристики, технические требования. Классификация, маркировка ГОСТ 9466-75

Сварные шва вертикальные, горизонтальные и потолочные вне зависимости от толщины металла варят электродами диаметром как правило 3 мм максимум до 4 мм, чтобы избежать стекание жидкого металла и шлака из сварочной ванны.

Также корень шва выполняют электродами диаметром не более 3 мм, для обеспечения полного провара, а последующие слои шва выполняют электродами большего диаметра.

Настройка силы тока в зависимости от диаметра электрода

Силу сварочного тока выбирают в зависимости от марки и диаметра электрода, при этом учитывают положение шва в пространстве, вид соединения, толщину и химический состав свариваемого металла, а также температуру окружающей среды. Сварочный ток — один из главных параметров процесса сварка, от которого зависит качество и надежность полученного сварного шва. При учете всех указанных факторов необходимо стремиться работать на оптимально возможной силе тока обеспечивающем стабильный процесс сварки.

Важно: Сварочный ток и диаметр электрода взаимосвязаны.

Сварка, подбор силы тока

К выбору сварочного тока нужно подходить ответственно! Неправильно выбранный сварочный ток приведет к дефектам. При слишком большой силе тока будут получать прожоги свариваемых деталей. При недостаточной силе сварочного тока металл не будет плавиться получаться непровары и несплавления.
Ничего сложного в выборе сварочного тока нет. Рекомендации по выбору силы тока можно найти на пачке с электродами или в справочниках и нормативных документах. Рекомендованные усредненные значения сварочного тока приведены в таблице ниже. В зависимости от пространственного положения сварного шва, значение силы тока необходимо корректировать, так для сварки вертикальны и потолочных швов силу тока уменьшают на 10-15%. Не следует забывать, что для этих положений сварки диаметр электрода не должен превышать 4 миллиметров. При следовании этим правилам процесс сварки будет идти стабильно и металл не будет стекать из сварочной ванны. Подробней про технику сварки в различных пространственных положениях читайте в статье: Техника ручной дуговой сварки покрытыми электродами

Читайте также:  Средний индукционный ток формула

Напряжение сварочной дуги на аппаратах выставляется автоматически, так что этот параметр не рассматриваем

Таблица 1 — Выбор диаметра электрода при сварке стыковых соединений

Толщина деталей, мм 1,5-2,0 3,0 4,0-8,0 9,0-12,0 13,0-15,0 16,0-20,0 более 20
Диаметр электрода, мм 1,6-2,0 3,0 4,0 4,0-5,0 4,0-5,0 4,0-5,0 4,0-5,0

Таблица 2 — Выбор диаметра электрода при угловых и тавровых соединений

Катет шва, мм 3,0 4,0-5,0 6,0-9,0
Диаметр электрода, мм 3,0 4,0 5,0

Силу сварочного тока определяют по формуле

где dэ — диаметр электрода (электродного стержня), мм;

j — допускаемая плотность тока, А/мм 2 .

При приближённых подсчётах величина сварочного тока может быть определена по одной из следующих формул:

где dэ — диаметр электрода (электродного стержня), мм;

k1, k2, α — коэффициенты, определённые опытным путём:

Рекомендации по выбору силы тока можно найти на пачке с электродами или в справочниках и нормативных документах.

Рекомендуемые значения сварочного тока для электродов различных диаметров

Покрытие электрода Диаметр электрода, мм Ток, А
Основное (электроды УОНИ-13/55, ЦУ-5, 2,5 70-90
ТМУ-21У, ТМЛ-3У, ТМЛ-1У, ЦЛ-39 и др.) 3,0 90-110
4,0 120-170
5,0 170-210
Рутиловое (электроды МР-3, ОЗС-4, АНО-6 и др.) 2,5 70-90
3,0 90-130
4,0 140-190
5,0 180-230

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Правильное выполнение расчета тока при сварке металла

Расчет тока при сварке металла

Сварка

Для получения неразъемного соединения металлических деталей, отличающегося надежностью, широко применяется сварка. Работы проводятся электродами, являющимися основным расходным материалом. Их марка подбирается в зависимости от свариваемой стали. Это позволяет создать соединение, имеющее однородную структуру. Поэтому сочленение получится надежным и выдержит требуемые нагрузки. Однако необходимо знать не только марку стержней, но и их диаметр. Учитывается также толщина металла, позволяющая выбрать аппарат с подходящей мощностью и влияющая на глубину проваривания. Немаловажную роль играет режим оборудования.

Сварочный процесс

Сегодня не всегда нужно выполнять расчет тока при сварке металла. Имеется возможность воспользоваться известными значениями, вычисленными специалистами прошлых поколений. Пренебрегая информацией, не удастся провести сочленение изделий. При маленькой силе электротока начинает липнуть основной расходный материал и перестает образовываться дуга. Высокое значение повышает вероятность сквозного прогара детали.

Совет! Не нужно использовать слишком тонкий электрод – пруток быстро сгорит.

Сварочные режимы

Требуемый режим сварки влияет на силу электротока при выполнении работ электродом. Он включает показатели, зависящие от первоначальных данных. Необходимо, чтобы их было максимальное количество. Это позволит более качественно провести требуемую работу. Благодаря исходной информации определяется размер, форма шва.

К основным показателям относятся следующие параметры:

  • марка, диаметр электродного прутка;
  • положение сочленения;
  • сила, род, полярность электротока;
  • слоистость шва.

Если создается многослойный шов, тогда могут меняться параметры, включая режим и толщину основного расходного материала. Прутки подбираются к металлу, а первоначальные сведения зависят непосредственно от них. Когда шов расположен вертикально, амперы уменьшаются на 10-20% от номинального значения. Если же сочленение выполняется в нижнем положении, тогда сила тока берется без изменения из расчета или соответствующей таблицы. Когда процесс проводится возле потолка, электроток нужно снизить на 20-25%. Уменьшение амперов замедлит расплавление металла. Сталь будет медленнее стекать со стыка.

Совет! Выполняя операции возле потолка, необходимо использовать электрод с диаметром максимум 0,4 см.

Выбирая основной расходный материал, нужно обращать внимание на технические характеристики, отраженные на пачке. Здесь обозначается ток сварки, его сила и поперечный размер прутка.

Вычисления ампер

Несмотря на известность нужных значений силы электротока, зависящих от толщины соединяемых деталей и электродов, необходимо проводить точный расчет ампер. Для этого применяется формула:

В выражение используются следующие величины:

К1 — коэффициент положения операции. Он равен 1 при нижнем сварочном процессе. Если шов создается вертикально, тогда К=0,9, а во время потолочных работ К=0,8.

K2 — коэффициент, значение которого зависит от размера электрода. Его определить поможет нижеприведенная таблица по сварке металла:

Источник

Расчет режимов автоматической сварки

Расчет силы сварочного тока, А

где, Iсв – сила сварочного тока, А;

dпр – диаметр сварочной проволоки;

a – плотность тока, принимается равной a≥40-50А/мм 2 , при сварке для более глубокого проплавления.

Зависимость напряжения дуги от силы сварочного тока (флюс ПФК-56с) приведены в таблице 2.4.1:

Таблица 2.7.1-Зависимость напряжения дуги от силы сварочного тока

Сила сварочного тока, А 180-300 300-400 500-600 600-700 700-850 850-1000
Напряжение дуги, В 32-34 34-36 36-40 38-40 40-42 41-43

2) Скорость подачи сварочной проволоки, м/ч

где, αр – коэффициент расплавления сварочной проволоки, г/Ач для переменного тока определяется по формуле :

Iсв – сила сварочного тока, А;

dпр – диаметр сварочной проволоки, мм;

ρ – плотность металла г/см 3 , (для стали ст3=7,8г/см 3 );

3) Скорость сварки, м/ч

где, αн – коэффициент наплавки, г/Ач;

Коэффициент наплавки для постоянного тока αр рассчитывается по формуле:

Iсв – сила сварочного тока, А;

Fβ – площадь поперечного сечения одного валика, см 2 , принимаем равным 0,4см 2 ;

ρ – плотность металла г/см 3 , (для стали 09Г2С=7,8г/см 3 );-

Масса наплавленного металла, г

где, Vн – объем наплавленного металла, см 3 ;

ρ – плотность металла г/см 3 , (для стали 09Г2С=7,8г/см 3 );

Выполним расчёт общей массы наплавленного металла на корпусные швы Lшва=31,8 м

5) Объем наплавленного металла, см 3

где, Fн – площадь наплавленной поверхности, см 2 ;

h- высота наплавленного слоя, мм;

Расход сварочной проволоки, г

где, Gн – масса наплавленного металла, г;

Читайте также:  Током по нервам процедура

ψ – коэффициент металла на угар и разбрызгивание, принимается равным 0,02-0,03;

7) Расход флюса, г/пог. м

где Uд – напряжение на дуге, В, берем из таблицы 2.4.1- Зависимость напряжения дуги от силы тока;

св – скорость сварки, м/ч;

Выполним расчёт общей массы флюса

Время горения дуги, ч

где Gн – масса наплавленного металла, г;

Iсв – сила сварочного тока, А;

где, αн – коэффициент наплавки, г/Ач;

Полное время сварки, ч

где, t – время горения дуги, ч;

Kп – коэффициент использования сварочного поста, принимается равным 0,6-0,7;

10) Расход электроэнергии, кВт/ч

где, Uд – напряжение на дуге, В;

Iсв – сила сварочного тока, А;

η – КПД источника питания, при переменном токе принимается 0,8-0,9;

W – мощность источника питания, работающего на холостом ходе, кВт×ч, на переменном токе принимаем равным 0,2-0,4кВт;

T – полное время сварки, ч;

t – время горения дуги, ч;

A = ×2,35×0,3×(3,92-2,35) = 51,31 кВт×ч.

2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1Последовательность изготовления конструкции

Дать характеристику изделию (конструкции) согласно типового задания предприятия, на котором студент проходил производственную практику. Указать назначение изделия, условия его работы на предприятии.

Технологический процесс изготовления конструкции представляет собой последовательность переходов в операциях, производимых для получения изделия. Технологический процесс составляется в соответствии с технологической картой, то есть последовательного изготовления узлов и конструкций в целом. технологическая карта представляет собой следующую последовательность:

1. Очистка металла

6. Подготовка кромок

Рассмотрим технологическую последовательность на примере изготовления простого узла: урна.

Для выполнения работы необходимо произвести подготовку металла под сварку согласно технологической карте, для этого на заготовительном участке его подвергают первоначальной обработке. В подготовительную работу входят следующие операции: правка, очистка, разметка, резка, подготовка кромок.

1. Очистка поверхности металла от загрязнений, масел, ржавчины производится на гидравлических дробе-пескоструйных и дробе-пескометных установках (или металлической щеткой). Также металл очищают стальными вращающимися щетками, шлифовальными кругами, пламенем сварочной горелки, травлением в растворе кислот и щелочей.

2. Прокат поступающий с завода-изготовителя может иметь неровности и искривления. Прокат правят в холодном состоянии на правильных станках (или вручную на правильном стенде). Правку тонколистового металла проводят в холодном состоянии на листоправильных вальцах или прессах, толстолистового металла — в горячем состоянии вручную на правильных плитах.

3. Разметка производится путем нанесения на металл конфигурации заготовки с припуском. Припуск — это разность между размером заготовки и чистовым размером детали. Припуск снимают при последующей обработке. Для разметки применяются разметочные столы или плиты необходимых размеров. При ручной разметке перенос размеров с чертежа на металл в натураль­ную величину осуществляется при помощи рулетки, чертилки, металлической линейки и угольника. Разметка производится с соблюдением экономии металла.

4. Резка выполняется кислородными резаками по намеченной линии контура детали вручную или газорезательными машинами специального назначения. Резка на механических станках более-производительна и дает высокое качество реза. Для механической прямолинейной резки листового металла применяют гильятиновые пресс-ножницы, для резки профильного проката применяют прокатные пресс-ножницы.

5. Штамповка заготовок проводится в холодном или горячем состоянии. Стальные листы толщиной до 6. 8 мм штампуют в хо­лодную. Для металла толщиной 8. 10 мм применяют штамповку с предварительным подогревом.

6. Заготовки зачищаются для удаления заусенцев с кромок деталей после штамповки, а также для удаления с поверхности кромок окалины и шлаков после кислородной резки. Для зачистки мелких деталей используют стационарные установки с наждачными кругами. Крупногабаритные детали зачищают переносными пневматическими или электрическими шлифмашинками. Кромки очищают стальными вращающимися щетками, шлифовальными кругами, пламенем сварочной горелки.

Подготовку свариваемых кромок деталей большой толщины выполняют кислородной резкой или обработкой на строгальных или фрезерных станках. Подготовка кромок производится в зависимости от толщины металла, при толщине более 4 мм. производится V, X, K-образный скос кромок.

7. С помощью роликовых вальцов изготавливаются обечайки для сварки различных емкостей цилиндрической формы.

8. Для подготовки тонколистового металла используются кромкогибочные прессы или специальные станки. Гибку деталей и заготовок проводят на металлогибочных вальцах

9. Сборка и прихватка.

Сборка является ответственной операцией в технологическом процессе изготовления конструкций. При сборке важно обеспе­чить точность пригонки и совпадения кромок свариваемых эле­ментов. При сборке могут использоваться сборочно — сварочные приспособления. Точность сборки указывается на чертеже и в технических условиях, для проверки точности сборки использу­ются шаблоны, щупы, измерители швов. Применяются три мето­да сборки и сварки конструкций:

1) Сборка узла а целом с последующей сваркой — изготавливают простые узлы.

2) Последовательная сборка и сварка путем наращивания эле­ментов — способ малопроизводителен.

3) Поузловая сборка и сварка с последующей сборкой и сваркой конструкций из этих узлов — наиболее прогрессивен.

В процессе сборки детали скрепляются короткими, однослой­ными швами, называемыми прихватками. Выполняют их элек­тродами того же типа, что и сварку данного изделия. Длина при­хватки берется от 20 до 120 мм, расстояние между прихватками 200 — 500 мм, перед наложением основного шва с прихваток уда­ляется шлак.

При сборке важное выдержать необходимый зазор и требуемое совмещение кромок.

Первый узел – сборка и прихватка

Выставляется задняя стенка позиция №2 и левая боковина позиция №5. Сборку производится согласно чертежа, с соблюдением точности при­гонки и совпадения кромок. Расставляются прихватки электродом УОНИ 13/55, d эл. = 3 мм, I св = 115 А. Длина прихваток 20 мм, через каждые 210мм.

Второй узел — сборка и прихватка.

Выставляются согласно чертежа перед­няя стенка позиция №3 и правая боковина позиция №4. Сварка производится как в узле №1

Третий узел — сборка узлов и сварка.

Согласно чертежа производится сборка и выполнение прихваток первого и вто­рого узла. При сборке соблюдаются точность пригонки, подгоняются узлы, выверяются диагонали. Затем произ­водится сварка коробки. Чтобы избе­жать деформации и напряжения соблюдаются меры по их предупреж­дению:

1) расставляются прихватки

2) соблюдается порядок наложения швов.

Швы производятся угловые, без скоса кромок. Кромки совпадают, зазор выставляется 0+2, ширина шва 8 ± 4, усиление 0,5 +1,5 — 0,5. Электродом производятся колебательные движения, в конце заваривается кратер.

Четвертый узел — сборка и сварка узла.

Согласно чертежа устанавливается третий узел. На днище позиции №1 вымеряются углы, центр и расставляются прихватки, очищаются от шлака и производится сварка с соблюдением мер по предупреждению напряжений и деформаций — соблюдается порядок наложения швов, Соеди­нения тавровые, шов выполняется согласно чер­тежа.

Шов 1, 3, 4 выполняются по ГОСТ 5264 — 80 — Т1 ∆3.

Шов №2 согласно ГОСТ 11534 — 75 — Т5 ∆3.

При выполнении этих швов целесообразнее конструкцию устанавливать в удобное положение и швы распола­гать «в лодочку». Детали на столе устанавливаются под углом 45°, с наклоном в 10°, чтобы предотвратить затекание жидкого металла впереди электрода. Дуга горит устойчиво при опирании покрытия электрода на свариваемые кромки изделия. В конце заваривается кратер.

Общий вид изделия

2.2Контроль изготовленной конструкции

В процессе изготовления сварной конструкции необходимо обеспечить требования к сварному шву и качество изделия. Контроль качества изготавливаемой конструкции производится с целью выявления дефектов сварного шва, дефектных участков швов и околошовной зоны. Контроль осуществляется различными методами неразрушающего и разрушающего контроля.

В этом разделе необходимо дать краткое описание контролю внешним осмотром и любому из неразрушающих методов

Внешний осмотр позволяет выявить следующие дефекты:

1. отклонения от геометрических размеров шва – усиление, ширина шва, чешуйчатость.

4. шлаковые включения

5. незаплавленный кратер

7. брызги металла

8. незаваренный корень шва

Внутренние дефекты выявляются рентгенографическими методами, ультразвуковой дефектоскопией, испытанием на герметичность. Этими методами выявляются:

Источник



6.1. Расчет режимов ручной дуговой сварки (наплавки)

При ручной дуговой сварке (наплавке) к параметрам режима сварки относятся сила сварочного тока, напряжение, скорость перемещения электрода вдоль шва (скорость сварки), род тока, полярность и др.

Диаметр электрода выбирается в зависимости от толщины свариваемого металла, типа сварного соединения и положения шва в пространстве.

При выборе диаметра электрода для сварки можно использовать следующие ориентировочные данные:

В многослойных стыковых швах первый слой выполняют электродом 3–4 мм, последующие слои выполняют электродами большего диаметра.

Сварку в вертикальном положении проводят с применением электродов диаметром не более 5 мм. Потолочные швы выполняют электродами диаметром до 4 мм.

При наплавке изношенной поверхности должна быть компенсирована толщина изношенного слоя плюс 1–1,5 мм на обработку поверхности после наплавки.

Сила сварочного тока, А, рассчитывается по формуле:

где К – коэффициент, равный 25–60 А/мм; dЭ – диаметр электрода, мм.

Коэффициент К в зависимости от диаметра электрода dЭ принимается равным по следующей таблице:

Силу сварочного тока, рассчитанную по этой формуле, следует откорректировать с учетом толщины свариваемых элементов, типа соединения и положения шва в пространстве.

Если толщина металла S ≥ 3dЭ, то значениеIСВ следует увеличить на 10–15%. Если же S ≤ 1,5dЭ, то сварочный ток уменьшают на 10–15%. При сварке угловых швов и наплавке, значение тока должно быть повышено на 10–15%. При сварке в вертикальном или потолочном положении значение сварочного тока должно быть уменьшено на 10–15%.

Для большинства марок электродов, используемых при сварке углеродистых и легированных конструкционных сталей, напряжение дуги UД= 22 ÷ 28 В.

Расчет скорости сварки, м/ч, производится по формуле:

где αН – коэффициент наплавки, г/А ч (принимают из характеристики выбранного электрода по табл. 9 приложения); FШВ – площадь поперечного сечения шва при однопроходной сварке (или одного слоя валика при многослойном шве), см 2 ; ρ – плотность металла электрода, г/см 3 (для стали ρ =7,8 г/см 3 ).

Масса наплавленного металла, г, для ручной дуговой сварки рассчитывается по формуле:

где l – длина шва, см; ρ – плотность наплавленного металла (для стали ρ=7,8 г/см 3 ).

Расчет массы наплавленного металла, г, при ручной дуговой наплавке производится по формуле:

где FНП – площадь наплавляемой поверхности, см 2 ; hН – требуемая высота наплавляемого слоя, см.

Время горения дуги, ч, (основное время) определяется по формуле:

Полное время сварки (наплавки), ч, приближенно определяется по формуле:

где tO – время горения дуги (основное время),ч; kП – коэффициент использования сварочного поста, который принимается для ручной сварки 0,5 ÷ 0,55.

Расход электродов, кг, для ручной дуговой сварки (наплавки) определяется по формуле:

где kЭ – коэффициент, учитывающий расход электродов на 1 кг наплавленного металла (табл. 9 приложения).

Расход электроэнергии, кВт ч, определяется по формуле:

где UД– напряжение дуги, В; η– КПД источника питания сварочной дуги; WO–мощность, расходуемая источником питания сварочной дуги при холостом ходе, кВт; Т– полное время сварки или наплавки, ч.

Значения η источника питания сварочной дуги и WO можно принять по таблице:

Выбор и обоснование источника питания сварочной дуги может быть осуществлен по табл. 1–5 приложения.

Источник