Меню

Расчет вторичной нагрузки для трансформаторов тока

Онлайн расчет трансформатора тока

Данный онлайн калькулятор позволяет произвести расчет и выбор измерительных трансформаторов тока (ИТТ/ТТ) для подключения электрического счетчика по мощности.

ПРИМЕЧАНИЕ: После расчета выбранный трансформатор тока необходимо проверить по загрузке при максимальных и минимальных значениях проходящих через него нагрузок.

В соответствии с п.1.5.17. ПУЭ при максимальной нагрузке присоединения ток во вторичной обмотке трансформатора тока должен составлять не менее 40% номинального тока счетчика, а при минимальной рабочей нагрузке — не менее 5%.

Проверку выполнения данного требования можно произвести с помощью следующего онлайн калькулятора:

ПРИМЕЧАНИЕ: Максимальная загрузка должна составлять не менее 40%, а минимальная — не менее 5%, при этом загрузка в любом случае не должна составлять более 100%, данное значение будет означать перегрузку трансформатора тока.

В случае если рассчитанные значения максимальной и/или минимальной загрузок оказались меньше чем 40% и 5% соответственно необходимо выбрать трансформаторы тока с меньшим номиналом или, если это невозможно по условиям максимальной нагрузки, предусмотреть установку двух учетов электроэнергии: один — для максимальной нагрузки, второй — для минимальной.

Справочно: Расчет производится для счетчика с номинальным (базовым) током 5 Ампер.

Оказался ли полезен для Вас данный онлайн калькулятор? Или может быть у Вас остались вопросы? Напишите нам в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

Читайте также:  Блок питания 300 вольт постоянного тока

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Для контроля за режимом работы электроприемников, а также для производства денежного расчета с энергоснабжающей организацией применяются контрольно-измерительные приборы на подстанциях, присоединяемые к цепям высокого напряжения через измерительные трансформаторы тока и напряжения.

  1. Выбор трансформаторов тока
  2. Классы точности трансформаторов тока
  3. Выбора трансформаторов напряжения
  4. Условия выбора трансформаторов напряжения
  5. Надежность измерительных трансформаторов напряжения в сетях с изолированной нейтралью

Выбор трансформаторов тока

Трансформаторы тока выбираются по номинальному напряжению, номинальному первичному току и проверяются по электродинамической и термической стойкости к токам короткого замыкания. Особенностью выбора трансформаторов тока является выбор по классу точности и проверка на допустимую нагрузку вторичной цепи.

Классы точности трансформаторов тока

  • Трансформаторы тока для присоединения счетчиков, по которым ведутся денежные расчеты, должны иметь класс точности 0,5.
  • Для технического учета допускается применение трансформаторов тока класса точности 1;
  • Для включения указывающих электроизмерительных приборов — не ниже 3;
  • Для релейной защиты — класса 10(Р).

Чтобы погрешность трансформатора тока не превысила допустимую для данного класса точности, вторичная нагрузка Z2 не должна превышать номинальную нагрузку Z2ном, задаваемую в каталогах.

Индуктивное сопротивление таковых цепей невелико, поэтому принимают Z2р = г2р. Вторичная нагрузка г2 состоит из сопротивления приборов г приб, соединительных проводов гпр и переходного сопротивления контактов гк:

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Для определения сопротивления приборов, питающихся от трансформаторов тока, необходимо составить таблицу — перечень электроизмерительных приборов, устанавливаемых в данном присоединении.

Суммарное сопротивление приборов, Ом, рассчитывается посуммарной мощности:

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

В РУ 6—10 кВ применяются трансформаторы с /2ном = 5А; в РУ 110 — 220 кВ — 1 или 5 А. Сопротивление контактов ГК принимают 0,05 Ом при двухтрех приборах и 0,10 — при большем количестве приборов. Сопротивление проводов рассчитывается по их сечению и длине. Для алюминиевых проводов минимальное сечение — 4 мм2; для медных — 2,5 мм2.

Читайте также:  Формулы для задач двигатель постоянного тока

Расчетная длина провода зависит от схемы соединения трансформатора тока и расстояния l от трансформатора до приборов:

  • при включении трансформаторов тока в неполную звезду;
  • 21 — при включении всех приборов в одну фазу;
  • l — при включении трансформаторов тока в полную звезду.

При этом длина l может быть принята ориентировочно для РУ 6—10 к В:

  • при установке приборов в шкафах КРУ / = 4… 6 м;
  • на щите управления /= 30…40 м;
  • для РУ 35 кВ / = 45…60 м;
  • для РУ ПО — 220 кВ/ = 65…80 м.

Если при принятом сечении провода вторичное сопротивление цепи трансформаторов тока окажется больше ZHOU для заданного класса точности, то необходимо определить требуемое сечение проводов с учетом допустимого сопротивления вторичной цепи:

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

где р — удельное сопротивление.

Полученное сечение округляется до большего стандартного сечения контрольных кабелей: 2,5; 4; 6; 10 мм2.

Условия выбора трансформатора тока приведены в табл. 7.5. Дополнительно могут быть заданы: КТН = 1т.тн/УР21ном — кратность тока динамической стойкости трансформатора тока; КТ = /Т//|„ОМ — кратность тока термической стойкости; /i„OM — номинальный ток первичной обмотки трансформатора тока.

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

Выбора трансформаторов напряжения

Трансформаторы напряжения, предназначенные для питания катушек напряжения измерительных приборов и реле, устанавливают на каждой секции сборных шин. Их выбирают по форме исполнения, конструкции и схеме соединения обмоток, номинальному напряжению, классу точности и вторичной нагрузке.

Условия выбора трансформаторов напряжения

Выбор трансформаторов тока и трансформаторов напряжения: формулы, расчет, схемы

  • конструкция, схема соединения;
  • соблюдение условия Uc.ном = U1ном (где Uc.ном— номинальное напряжение сети, к которой присоединяется трансформатор напряжения, кВ;
  • U1.ном— номинальное напряжение первичной обмотки трансформатора, кВ);
  • класс точности;
  • соблюдение условия S2 рас

При определении вторичной нагрузки сопротивление соединительных проводов не учитывается, так как оно мало. Однако ПУЭ требует оценить потерю напряжения, которая в проводах от трансформаторов к счетчикам не должна превышать 0,5 %, а в проводах к щитовым измерительным приборам — 3 %. Сечение провода, выбранное по механической прочности, как правило, отвечает требованиям потерь напряжения.

Выбор типа трансформатора напряжения определяется его назначением. Если от ТН получают питание расчетные счетчики, то целесообразно использовать на напряжениях 6, 10, 35 кВ два однофазных трансформатора типа НОМ или НОЛ, соединенных по схеме открытого неполного треугольника.

Два однофазных ТН обладают большей мощностью, чем один трехфазный, а по стоимости на напряжения 6 и 10 кВ они примерно равноценны. Если одновременно с измерением необходимо производить контроль изоляции в сетях 6—10 кВ, то устанавливают трехфазные трехобмоточные пятистержневые трансформаторы напряжения серии НТМИ или группу из трех однофазных трансформаторов серии ЗНОМ или ЗНОУТ, если мощность НТМИ недостаточна.

При использовании трех однофазных трансформаторов, соединенных в звезду, нейтральная точка обмотки высокого напряжения ТН должна быть заземлена для правильной работы приборов контроля состояния изоляции

Для напряжения 110 кВ и выше применяют каскадные трансформаторы НКФ.

Надежность измерительных трансформаторов напряжения в сетях с изолированной нейтралью

Электрические сети 6-35 кВ Украины и стран СНГ выполнены с изолированной нейтралью. Эти сети при определенных токах замыкания на землю (для Uн=35 кВ – 10 А; Uн=10 кВ – 20 А; Uн=6 кВ – 30 А) должны иметь, как правило, реакторную или резистивную компенсацию нейтрали.

надежность трансформаторов тока

Основным преимуществом сетей с изолированной нейтралью является возможность обеспечивать длительное время потребителей электроэнергией даже при наличии «земли» в сети без их отключения. В то же время одним из основных недостатков является опасность возникновения (при малых токах замыкания на землю, равных 0,5-3,5 А) феррорезонансных процессов с последующим повреждением электромагнитных трансформаторов напряжения (ТН).

Феррорезонансные процессы (ФРП) в таких сетях, как показывает опыт эксплуатации и исследования, проведенные учеными «Львовской политехники», возникают во время появления и обрыва «земли» в сети (срабатывание разрядников, касание ветвями деревьев, обрыв троса фаз ЛЭП, стекание капель росы по изоляторам, особенно загрязненным, некоторым коммутационным переключениям, приводящим к изменению емкости в сети и т.д.).

В большинстве случаев эти ФРП проходят при частотах 17 и 25 Гц и сопровождаются протеканием через первичную обмотку ТН сверхтоков, которые на порядок и больше превышают допустимые для ТН токи, из-за чего первичные обмотки перегорают в течение нескольких минут. В эксплуатации имеют место случаи, когда первоначально по два-три раза (после замены) перегорает высоковольтный предохранитель 35 кВ, рассчитанный на номинальный ток срабатывания 2 А (это при том, что допустимый ток первичной обмотки ТН не превышает 60 мА), при этом повреждается ТН. Таким образом, имеют место неоднократные протекания больших токов через об-мотку ТН сверх допустимых, которые постепенно, за счет перегрева внутренних слоев, приводят к разложению изоляции и повреждению ТН.

В настоящее время, если судить по публикациям российских журналов, проводится большая работа по защите ТН от их повреждений в сетях.

Однако каждый из предлагаемых методов имеет свои недостатки и не в состоянии полностью решить проблему защиты ТН от воздействия ФРП. Кроме того, отсутствует возможность фиксации появления ФРП на участке сети с ТН.

С этой точки зрения наиболее эффективным способом подавления (а главное фиксацией времени и длительности) ФРП является устройство подавления резонанса (УПР), разработанное на кафедре электрических сетей «Львовской политехники», типа ПЗФ-5 (рис. 1, 2).

надежность трансформаторов тока

При возникновении феррорезонанса на выводах обмотки «разомкнутого треугольника» трехфазного ТН (или группы трех однофазных ТН) возникает напряжение нулевой последовательности 3U0 ? 100 В с субгармонической частотой (чаще всего 20-25 Гц).

После появления напряжения с субгармонической частотой устройство ПЗФ-5 с заданной задержкой времени однократно подключает к выводам обмотки «разомкнутого треугольника» резистор 5-6 Ом на время, заданное для гашения ФРП. Подключенный резистор обеспечивает срыв (погашение) феррорезонансных колебаний в течение t ?0,3 с, что исключает возможность термического повреждения обмоток ВН ТН феррорезонансными процессами.

Читайте также:  Направление тока в электрической цепи это

У устройства ПЗФ-5 предусмотрено однократное его включение на заданное время с повторной готовностью к срабатыванию через заданное время. При длительном феррорезонансе предусмотрено повторное однократное срабатывание устройства с последующим запретом (блокированием) импульса гашения вплоть до ликвидации феррорезонанса, после чего устройство снова будет готово к работе. Это обеспечивает термическую стойкость резистора при многократных частых пусках устройства (например, при перемежающей дуге, частыми замыканиями на землю проводов сети ветками деревьев, порывами ветра и т.д.). Устройство формирует архив и отражает на дисплее 5 последних режимов феррорезонанса (срабатываний устройства). В «архиве аварий» устройства накапливается информация о дате и времени возникавших аварийных состояний, что дает эксплуатационным службам дополнительную информацию о состоянии сети в том или ином режиме. По анализу «архива» появляется возможность принять меры по повышению надежности сети в целом.

В настоящее время в системах установлено около 60 УПР. В сетях, где они установлены, информации о повреждениях ТН и неправильной работе ПЗФ не поступало.

Устройство представляет собой металлический ящик размерами 240х185х80 мм, к которому подводится питание ТН 100 В, 50 Гц и напряжение 3U0 от «разомкнутого треугольника», по которому и определяется наличие резонанса в сети. Устройство потребляет не более 10 ВА, устанавливается на панели релейной защиты и может работать при температуре окружающей среды от -55 0С до +60 0С. УПР ПЗФ-5 имеет кнопки вызова – ввода информации (с контролем информации по цифровому индикатору), проверки исправности (тестирования), а также контакты для запуска реле сигнализации при срабатывании (пуске) защиты или потере питания. Масса устройства 3 кг (рис. 3).

Прибор типа ПЗФ-5 обеспечивает защиту трансформатора напряжения от повреждения при феррорезонансных процессах. Вместе с этим нужно учитывать, что ПЗФ-5 может защитить ТН от повреждения только в том случае, если не менее 60% ТН в электрически связанной сети будет оборудовано устройством защиты от ФРП. Наиболее благоприятными условиями для предотвращения ФРП является оборудование такими устройствами 80-90% ТН в электрически связанной сети. Это необходимо потому, что вывод в ремонт одного ТН, оборудованного устройством ПЗФ, приведет к уменьшению общего процента оборудованных ТН, и условия для предотвращения ФРП соответственно ухудшатся.Разработчики и изготовители ТН, так же как и эксплуатационники, заинтересованы в безаварийной работе ТН и было бы целесообразно провести проверку работы устройства ПЗФ-5 в наиболее проблемных сетях, обобщить опыт работы и на его основе принять окончательное решение о целесообразности применения ПЗФ-5.

Источник



1.7 Пример расчета вторичной нагрузки трансформатора тока типа тпол-10-0,5/10р-1000/5у1

Трансформатор тока (ТТ) типа ТПОЛ-10-0,5/10Р-1000/5У1 установлен в присоединении трансформатора собственных нужд 10,5/6,3кВ электростанции на стороне низшего напряжения.

Номинальная вторичная нагрузка ТТ S2ном=10В∙А или Z2ном=0,4 Ом. Соединение обмоток ТТ выполнено по схеме звезды. К измерительным обмоткам ТТ подключены амперметр, ваттметр, индукционный счетчик активной энергии класса точности 1. Нагрузки фаз ТТ указаны в таблице 1.5.

Наибольшая нагрузка приходится на фазы а и с и составляет

Sп = 7 В∙А, или Zп = 0,28 Ом.

Таблица 1.5 Нагрузки фаз ТТ

Потребление прибора, В∙А

Полное сопротивление прибора, Ом

Нагрузка, В∙А, ТТ в фазе

Для присоединения вторичной нагрузки использован провод из алюминия (АКРВГ) сечением q = 4 мм 2 и длиной L = 14 м.

Сопротивление проводов определяют по формуле (1.2)

Сопротивление вторичной нагрузки ТТ, рассчитанное по формуле (1.3) с учетом сопротивления контактов Rпep = 0,05 Ом, составляет

Z2 = 0,28 + 0,10 + 0,05 = 0,43 Ом,

т.е. превышает номинальное значение, поэтому необходимо проведение мероприятий по снижению вторичной нагрузки.

С этой целью, например, увеличивают сечение провода до 6 мм 2 . Тогда сопротивление провода согласно формуле (1.2) составит

а полное сопротивление вторичной нагрузки ТТ согласно формуле (1.3) будет равно

Z’2 = 0,28 + 0,068 + 0,05 = 0,398 Ом,

т.е. меньше Z2ном = 0,4 Ом.

Полная мощность вторичной нагрузки для I2ном = 5 А согласно формуле (И.6) составит

S2 = 25∙0,398 = 9,95 В∙А,

или (с округлением соответственно),

Таким образом, соблюдены условия по вторичной нагрузке (1.5) и (1.7) для работы ТТ в установленном классе точности.

1.8 Методика определения коэффициента мощности вторичной нагрузки

Согласно ГОСТ 7746 значение номинальной вторичной нагрузки устанавливается для ТТ гарантированного класса точности при коэффициенте мощности нагрузки cosφ2 = 1 или cosφ2 = 0,8 инд.

При проверке вторичной нагрузки ТТ на соответствие требованиям ГОСТ 7746 наряду с измерениями полного сопротивления вторичной нагрузки каждой фазы Z2 необходимо определить и коэффициенты мощности нагрузки фаз cosφ2, которые определяют по формуле

где R2, Z2 — активное и полное сопротивление вторичной нагрузки фазы, Ом, соответственно;

R2 =Р/ I 2 ;

где Р — активная мощность вторичной нагрузки ТТ, Вт;

S — полная мощность, вторичной нагрузки ТТ, В∙А;

I -действующее значение тока на нагрузке фазы, А;

U — действующее значение напряжения на нагрузке фазы, В.

В зависимости от местных условий на энергообъекте выполняют измерения полных сопротивлений Z2, либо аналогичным косвенным методом, но при питании нагрузки от постороннего источника переменного тока согласно инструкции по проверке трансформаторов тока.

Активные сопротивления нагрузки фаз R2 можно измерять непосредственно при помощи моста переменного тока. При этом должна быть отключена первичная цепь ТТ и снято напряжение, а вторичная нагрузка отсоединена от вторичной обмотки ТТ и пофазно разомкнута.

Измеренные значения R2 и Z2 подставляют в формулу (1.15) и определяют cosφ2.

В другом варианте измерений сопротивления R2 и Z2 определяют по показаниям приборов, включенных по схеме на рисунке 1.3, в соответствии с формулами (1.16) и (1.17), а также вычисляют cosφ2 по формуле (1.15), где Р, I, U — соответственно активная мощность, ток и напряжение, определяемые по показаниям приборов: ваттметра, амперметра, вольтметра.

Рисунок 1.3 Вариант схемы измерений коэффициента мощности, активного и полного сопротивления вторичной нагрузки фазы ТТ:

W — ваттметр; А — амперметр; V — вольтметр; Z2 — обозначение полного сопротивления вторичной нагрузки.

Если полученные результаты измерений Z2 и cosφ2 не соответствуют требованиям ГОСТ 7746 или ТУ, проводят мероприятия по приведению этих показателей к норме.

Источник