Меню

Расчет сложной электрической цепи постоянного тока методом узловых уравнений

Практическая работа «Расчет электрических цепей методом узловых и контурных уравнений»

Практическое занятие №15

Тема: Расчет электрических цепей методом узловых и контурных уравнений

Цель работы : научиться рассчитывать сложные электрические схемы постоянного тока методом узловых и контурных уравнений (МУКУр)

— Записать название работы, тему и цель работы

— рассмотреть и записать в конспект приведенный пример

— решить индивидуальное задание

Методика расчета сложной цепи методом узловых и контурных уравнений

Данный метод является одним из самых простейших методов расчёта электрических цепей постоянного тока любой сложности. Основывается на составлении уравнений по I и II законам Кирхгофа.

1. Определяем число ветвей m, узлов и контуров в электрической цепи. Число токов в цепи равно числу ветвей. Для каждой ветви выбираем условное направление тока и укажем их на схеме.

2. По первому закону Кирхгофа составляем уравнение для узлов в количестве n -1, где n – число узлов.

3. На основании II закона Кирхгофа составляем m – n + 1 уравнений, где m-число ветвей, n-число узлов. Для обхода выбираем контуры с меньшим числом ветвей и содержащих хотя бы одну новую ветвь. Контур обходим по часовой стрелке.

4. Полученные уравнения объединяем в систему и решаем любым способом, известным из математики.

Определить токи во всех ветвях цепи (рисунок 3), если Э.Д.С. источников энергии Е 1 = 150В, Е 2 = 80В, их внутренние сопротивления R 01 = 1 Ом, R 02 =0.5 Ом; сопротивления резисторов R 1 =9 Ом, R 2 =19,5 Ом, R 3 = 25 Ом. Задачу решить методом узловых и контурных уравнений, составленных по законам Кирхгофа. Составить уравнение баланса мощностей.

hello_html_686199e2.png

Рисунок 3 — Электрическая схема

1. На схеме произвольно показываем направления токов ветвей.

2. В задаче три неизвестных тока, для их нахождения необходимо составить систему из трех уравнений.

Первое уравнение составим для узловой точки С по первому закону Кирхгофа:

второе уравнение составим для контура АСDВА по второму закон Кирхгофа; направление обхода контура примем «по часовой стрелке»

третье уравнение составим для контура СК ND С но второму закону Кирхгофа; направление обхода контура примем «по часовой стрелке»:

3. Подставляем исходные данные в полученную систему из трех уравнений и находим значения токов ветвей:

Из второго уравнения получаем:

Из третьего уравнения получаем:

Подставляем выражения I 1 и I 3 в первое уравнение и находим ток I 2 :

I 2 +7 + 2 I 2 — 3,2 + 0,8 I 2 = 0; 3,8 I 2 = — 3,8; I 2 = —

Определяем токи I 1 и I 3 :

I 1 = 7+2 · (-1 )= 5 А; I 3 =3,2—0,8 (- 1) =4 А.

Проверка по первому закону Кирхгофа: I 1 + I 2 — I 3 =0; 5-1-4 = 0.

Ток I 2 получился отрицательным, это значит, что первоначально произвольно принятое направление тока I 2 от точки Dк точке С оказалось неверным и должно быть изменено на противоположное. При этом ток I 2 будет направлен против направления Э.Д .С. Е 2 , следовательно, источник с Э.Д.С. Е 2 находится в режиме потребителя (например, заряд батареи аккумуляторов)

Индивидуальные задания для практической работы №15

Задача На рисунке 4 изображена схема сложной электрической цепи: Е 1 , Е 2 – Э.Д.С. источников энергии; R 01 , R 02 – их внутренние сопротивления; R 1 , R 2 , R 3 – сопротивления резисторов.

Числовые значения этих параметров указаны в таблице 1

Начертить схему цепи; показать направление токов в ветвях. Определить токи ветвей I 1 , I 2 , I 3 методом узловых и контурных уравнений.

Составить уравнение баланса мощностей

Перед решением задачи изучите методические указания к решению задачи и решение типового примера.

В задаче обязательно вычертить электрическую схему, соответствующую условию задачи, и показать на ней заданные и искомые величины, а также направление токов. Привести данные своего варианта.

Решение задачи сопровождается краткими пояснениями.

Текст, формулы, числовые выкладки должны быть четкими без помарок. Цифровая подстановка в уравнении должна даваться один раз без промежуточных сокращений и расчетов. Численное значение каждого символа должно обязательно занимать то же место в формуле, что и сам символ. Все расчеты необходимо вести в системе СИ. Буквенные обозначения единиц измерения ставятся только возле окончательного результата и в скобки не заключаются, например, 120 В, 13 А, 100 Вт.

Источник

Расчёт электрической цепи постоянного тока методом узловых и контурных уравнений.

ads

Этот принцип основан на первом и втором законе Кирхгофа. Он не требует преобразования схемы.

Порядок расчёта:

1. Произвольно задаёмся направлением токов в ветвях.

Важно! При выборе направления токов в ветвях, необходимо выполнения двух условий:
1. Ток должен вытекать из узла через одну или несколько других ветвей;
2. Хотя бы один ток должен входить в узел.

Читайте также:  Потребители электродвигателей переменного тока

Расчёт электрической цепи постоянного тока методом узловых и контурных уравнений

Красным выделены изменения после первого действия

Синим выделены изменения после третьего пункта

2. Используя первый закон Кирхгофа составим уравнения для (n-1) узлов схемы. Где n – число узлов. То есть для схемы с четырьмя узлами, составляем три уравнения. Для этого:

  1. Обозначаем узлы буквами.
  2. Берём один конкретный узел (Например узел А) и смотрим как направлены токи в ветвях образующих узел. Если ток направлен в узел, то записываем его со знаком плюс, если из него то со знаком минус.
    0=I1-I4-I6 (Полученное уравнение)
  3. Повторяем пункт B ещё для двух узлов.
    0=-I3+I4+I5(Узел В)
    0=I3-I1-I2(Узел D)

3. Используя второй закон Кирхгофа составим уравнения для каждого контура схемы. Для этого произвольно зададимся направлением обхода контура (по часовой или против часовой). Для контура ABDA направление обхода контура выберем по часовой стрелке.

3.1 Смотрим, как направлена ЭДС относительно обхода контура. Если направление обхода контура совпадает, то значение ЭДС записываем со знаком плюс (в левой части уравнения), если не совпадает, то со знаком минус (записываем также в левой части уравнения)

3.2 Смотрим, как направлено падение напряжения на сопротивлении контура.(То есть смотрим как направлены токи, только записываем в уравнение произведение тока на сопротивление через которое ток протекает в данном контуре). Если направление обхода контура совпадает, то падение напряжения записываем со знаком плюс (в правой части уравнения), если не совпадает, то со знаком минус (записываем также в правой части уравнения)

3.3 Произвести действия 3.1 и 3.2 для остальных контуров. У вас должна получится система из n уравнений, где n — количество контуров в цепи.

Контур ABDA E1=I1*(R1+R01)+I4*R4+I3*R3

Контур BCDB E2=I2*(R2+R02)+I3*R3+I5*R5

Контур ABCA 0=I6*R6-I4*R4+I5*R5

4. Решаем полученную систему уравнений и находим величины токов во всех ветвях.

Уберём лишние токи из системы используя уравнения полученные во втором пункте поскольку у нас три уравнения поэтому мы оставляем только три любых тока. Для данного примера я рекомендую оставить токи I1 I2 I4.

Выражаем из трёх уравнений токи I3 I5 I6 через токи I1 I2 I4.

I3=I1+I2(Узел D)

I5=I3-I4(Узел В)

I5=I3-I4(Узел В) В этом уравнении сразу не получилось выразить I5 через токи I1 I2 I4, поэтому вместо тока I3 подставим уравнение для узла D и получим:

Заменим токи I3 I5 I6 и получим уравнения с тремя токами :

Раскрываем скобки подставляем значения сопротивлений из условия и получаем например вот такие три уравнения:

40 = 71*I1 + 24*I2 + 14*I4

20 = 55*I1 + 93*I2 — 61*I4

0 = 60*I1 + 16*I2 — 81*I4

Если при решении системы ток получается отрицательным (со знаком —), значит его действительное направление противоположно тому направлению которое мы задали в первом действии.

Правильность решения можно проверить с помощью баланса мощностей.

Источник

Расчёт электрических цепей по методу узловых потенциалов: методика

В дополнение к выводу метода рассмотрим методику расчёта электрических цепей по методу узловых потенциалов.

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Последовательность расчёта следующая.

  1. Пронумеровать все узлы и задать произвольное направление токов в схеме.
  2. Стянуть узлы с одинаковым потенциалом. Узлы будут иметь одинаковый потенциал, если между ними находится чистая ветвь с нулевым сопротивлением – закоротка (ветви между узлами 2 − 4 и 3 − 5 на рис. 1). Перерисовывать схему со стянутыми узлами не обязательно, но тогда следует учесть, что потенциалы узлов по концам закоротки будут одинаковыми.


Рис. 1. Пример объединения узлов с одинаковым потенциалом

  1. Выбрать базисный узел (рис. 2) и приравнять его потенциал нулю $ \underline<\varphi>_ <3>= 0 \space \textrm <В>$. В качестве базисного узла можно выбрать любой, за исключением случая, когда имеются особые ветви. Если в схеме есть хотя бы одна особая ветвь, то за базисный узел следует принимать один из концов одной из таких ветвей. При этом потенциал другого конца будет равен ЭДС $ \underline<\varphi>_ <1>= \underline_ <1>$, если источник напряжения направлен в этот узел, и равен минус ЭДС $ \underline<\varphi>_ <6>=- \underline_ <2>$, если источник направлен к базисному узлу.


Рис. 2. Выбор базисного узла

Примечание. Зачастую для обозначения базисного узла используют символ заземления, так как принято считать, что «земля» имеет нулевой потенциал.

  1. Составить уравнения для узлов без особых ветвей, потенциалы которых неизвестны. Уравнения записываются по следующему принципу:
  • потенциал рассматриваемого узла умножается на сумму проводимостей всех примыкающих к нему ветвей;
  • вычитаются потенциалы узлов, находящихся на противоположных концах примыкающих ветвей, умноженные каждый на свою проводимость соединяющей их ветви;
  • приравнивается алгебраической сумме примыкающих к данному узлу источников тока и источников ЭДС, последние умножаются на проводимость ветви, в которой они расположены.
    Под алгебраической суммой подразумевается необходимость учёта направленности источников, если источник направлен в рассматриваемый узел, то он записывается со знаком «+», в противном случае со знаком «-».

В случае, если имеется более одной особой ветви, и они не имеют общие узлы, то уравнения для узлов, в состав которых входит особая ветвь, не примыкающая к базисному узлу, записываются следующим образом:

  • потенциал рассматриваемого узла умножается на сумму проводимостей всех примыкающих к нему ветвей и проводимостей ветвей, примыкающих к узлу противоположного конца особой ветви;
  • вычитаются потенциалы узлов, находящихся на противоположных концах примыкающих ветвей к узлам особой ветви, умноженные каждый на свою проводимость примыкающей ветви;
  • приравнивается алгебраической сумме примыкающих к узлам особой ветви источников тока и источников ЭДС, последние умножаются на проводимость ветви, в которой они расположены, за исключением источника ЭДС особой ветви, который умножается на сумму проводимости ветвей, примыкающих к узлу противоположного конца особой ветви.
  • При составлении уравнения проводимость особой ветви не учитывается ( 1 /=∞). Следует также учитывать, что направление ЭДС особой ветви и соответственно её знак учитываются относительно рассматриваемого узла.
  1. Рассчитать токи в ветвях по закону Ома как алгебраическую сумму разности потенциалов и ЭДС в ветви с искомым током, делённую на сопротивление этой ветви. Вычитаемым будет тот потенциал, в который направлен ток, а знак ЭДС выбирается в зависимости от направления: в случае сонаправленности с током ЭДС берётся со знаком «+», в противном случае со знаком «-». Ток в закоротке следует искать по первому закону Кирхгофа, составленному для одного из узлов рассматриваемой ветви в исходной схеме, после расчета всех остальных токов в схеме.
  2. Правильность расчёта по методу узловых потенциалов проще всего проверить по первому закону Кирхгофа для уникальных узлов без особых ветвей, подставив полученные значения токов. Под уникальными узлами подразумеваются те узлы, при рассмотрении которых имеется хотя бы одна ветвь, не примыкающая к другим из рассмотренных узлов.

Пример решения. В качестве примера рассмотрим схему с двумя особыми ветвями и источником тока (рис. 3). Количество уравнений составляемых для нахождения узловых потенциалов равно

6 (всего узлов) – 1 (базисный узел) – 2 (узла особых ветвей) = 3.

Произвольно обозначим узлы и токи на схеме. Один из узлов одной из особой ветви (1-4 и 3-6) примем за базисный, к примеру узел 4, в таком случае $ \underline<\varphi>_ <4>= 0 $, а $ \underline<\varphi>_ <1>= \underline_ <1>$.


Рис. 3. Пример расчёта электрической схемы

В ветви 3-6 необходимо найти потенциал только одного из узлов (рассчитаем для узла 6), так как второй (потенциал узла 3) будет отличаться на значение ЭДС, т.е. $ \underline<\varphi>_ <3>= \underline<\varphi>_<6>— \underline_ <2>$. Далее необходимо составить уравнения для нахождения оставшихся потенциалов в узлах 2, 5 и 6. Следует отметить, что ёмкость ветви с источником тока не повлияет на расчёты, поскольку проводимость этой ветви бесконечно большая, а ток задаётся самим источником.

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- \underline<\varphi>_ <4>\cdot \underline_<7>— \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline<\varphi>_ <1>\cdot \underline_<2>— \underline<\varphi>_ <5>\cdot \underline_<5>— \underline<\varphi>_ <3>\cdot \underline_ <3>= 0 \\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_<3>— \underline<\varphi>_ <1>\cdot \underline_ <1>= \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Подставим известные значения потенциалов, сократив количество неизвестных:

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- 0 \cdot \underline_<7>— \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline_ <1>\cdot \underline_<2>— \underline<\varphi>_ <5>\cdot \underline_<5>— (\underline<\varphi>_<6>— \underline_<2>) \cdot \underline_ <3>= 0 \\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_<3>— \underline_ <1>\cdot \underline_ <1>= \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Перенесём все свободные составляющие в правую часть равенств и получим конечную систему уравнений с тремя неизвестными узловыми потенциалами:

$$ \begin \underline<\varphi>_ <5>\cdot (\underline_ <7>+ \underline_ <5>+ \underline_<8>)- \underline<\varphi>_ <2>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <8>= 0 \\ \underline<\varphi>_ <2>\cdot (\underline_ <2>+ \underline_ <5>+ \underline_<3>)- \underline<\varphi>_ <5>\cdot \underline_<5>— \underline<\varphi>_ <6>\cdot \underline_ <3>= \underline_ <1>\cdot \underline_<2>— \underline_ <2>\cdot \underline_ <3>\\ \underline<\varphi>_ <6>\cdot (\underline_ <8>+ \underline_ <3>+ \underline_<1>)- \underline<\varphi>_ <5>\cdot \underline_<8>— \underline<\varphi>_ <2>\cdot \underline_ <3>= \underline_ <1>\cdot \underline_ <1>+ \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Для решения системы уравнений с неизвестными узловыми потенциалами, можно воспользоваться Matlab. Для этого представим систему уравнений в матричной форме:

$$ \begin \underline_ <7>+ \underline_ <5>+ \underline_ <8>& -\underline_ <5>& -\underline_ <8>\\ -\underline_ <5>& \underline_ <2>+ \underline_ <5>+ \underline_ <3>& -\underline_ <3>\\ -\underline_ <8>& -\underline_ <3>& \underline_ <8>+ \underline_ <3>+ \underline_ <1>\end \cdot \begin \underline<\varphi>_ <5>\\ \underline<\varphi>_ <2>\\ \underline<\varphi>_ <6>\end = \\ = \begin 0 \\ \underline_ <1>\cdot \underline_<2>— \underline_ <2>\cdot \underline_ <3>\\ \underline_ <1>\cdot \underline_ <1>+ \underline_ <2>\cdot (\underline_ <3>+ \underline_<1>) + \underline_ <1>\end $$

Запишем скрипт в Matlab для нахождения неизвестных:

Примечание. Для решения в численном виде необходимо заменить символьное задание переменных реальными значениями проводимостей, ЭДС и тока источника.

В результате получим вектор-столбец $ \underline<\boldsymbol<\varphi>> $ из трёх элементов, состоящий из искомых узловых потенциалов, при этом токи в ветвях через потенциалы узлов:

Для проверки правильности расчёта можно воспользоваться уравнениями по первому закону Кирхгофа: если суммы токов в узлах 2 и 5 равны нулям, значит расчёт выполнен верно:

$$ \underline_ <5>+ \underline_<3>— \underline_ <2>= 0, $$

$$ \underline_ <5>+ \underline_<7>— \underline_ <8>= 0. $$

Итак, метод узловых потенциалов позволяет рассчитывать меньшее количество сложных уравнений для расчёта электрической цепи в сравнении с другими методами при меньшем числе узлов в сравнении с количеством контуров.

Рекомендуемые записи

Наряду с решением электрических схем по законам Кирхгофа и методом контурных токов используется метод узловых…

При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной…

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник



Примеры решения задач. Рекомендации для студента

Рекомендации для студента

Метод контурных токов

Примеры решения задач

Рекомендации для студента

Метод узловых и контурных уравнений

Расчеты сложных электрических цепей методом узловых и контурных уравнений сводится к составлению уравнений по законам Кирхгофа. Общее число уравнений должно быть равно числу неизвестных токов в ветвях электрической цепи. Порядок расчета:

1.Произвольно задаем направления токов в цепи;

2.Составляем (n-1) уравнение по первому закону Кирхгофа, где n – число узловых точек в схеме;

3.Остальные уравнения составляются по второму закону Кирхгофа;

4.Решаем систему уравнений, находим искомые токи. Если значение тока имеет знак «минус», это означает, что на схеме задано его противоположное значение.

Определить методом узловых и контурных уравнений токи: ( I1 , I2, I3) в электрической цепи (рисунок 1.11) при следующих исходных данных: Е1=100В, Е2= 40В, R1=20Ом, R2=40Ом, R3=50Ом.

1.Составляем уравнения по законам Кирхгофа:

Е1= R1 I1+ R3 I3 (б)

Е2= R3 I3 R2 I2 (в)

2. I1 заменяем в соответствии с уравнением (а):

Е1= R1 (I2+ I3)+ R3 I3

3.Выражаем из полученного уравнения I2

4.Подставляем полученное значение I3 в уравнение (в), получим значение I2

I3= 2R1+ Е1R2 )/(R3 R1 +R2 (R1 +R3))

I3= (40*20+100*40)/(50*20+40*(20+50))=4800/3800=1,26 А

Расчет методом узловых и контурных уравнений достаточно сложен из-за большого количества уравнений в системе. Поэтому часто используют метод контурных уравнений. Суть этого метода состоит в следующем:

1.Во всех ветвях произвольно задается направление токов;

2.В схеме выделяют m независимых контуров (контуры называются независимыми, если они отличаются хотя бы одной ветвью);

3.В каждом контуре произвольно задают направление контурного тока;

4.Записывают соотношение токов в ветвях с контурными токами;

5.Составляют систему уравнений по второму закону Кирхгофа для всех независимых контуров, находят контурные токи;

6.Находят токи в ветвях.

Определить методом контурных токов токи ( I1 , I2 , I3) в электрической цепи (рисунок 1.12) при следующих исходных данных: Е1=100В, Е2= 40В, R1=20Ом, R2=40Ом, R3=50Ом.

Записываем соотношение токов в ветвях с контурными токами: I1 = I11

I3= I11 I22

Составляем систему уравнений по второму закону Кирхгофа для всех независимых контуров, находим контурные токи:

Из второго уравнения (б) выразим I11:

Подставим I11 в уравнение (а), получим I22:

I22= (100*50-40*(20+50))/ ((20+50)(40+50)-50 2 )=0,58 А

Источник