Меню

Пусковой ток жесткого диска

Пусковой ток жесткого диска

блок из нескольких дисков/блинов (Disks), по поверхностям (Sides) которых перемещаются (плавают в воздушном потоке) головки (Heads). Позиционируются головки по концентрическим дорожкам/трекам (Tracks) , каждый из которых разделен на сектора (Sectors). Сектор является минимальным адресуемым блоком данных для диска и его размер равен 512 байтам. Дорожки, равноудаленные от центра диска и образующие как бы цилиндрическую поверхность, называют цилиндрами (Cylinders).

Логическое строение жесткого диска отличается от его настоящей (физической) геометрии и это необходимо учитывать при восстановлении информации. Как правило, современные диски (в режиме адресации LBA) представляют собой несколько сот цилиндров имеющих 63-254 поверхностей по 63 сектора данных на каждой. Это конечно не соответствует фактической геометрии и следует различать абсолютные адреса секторов и относительные.

В самом начале диска (в секторе 0/0/1, где 0-сектор 0-трек 1-цилиндр) находится PT (Partition Table) — таблица разделов и MBR (Master Boot Record) — главная загрузочная запись. Часто весь 0-й трек называют MBR, т.к. зачастую в секторах этого трека записаны коды загрузчиков различных менеджеров загрузки и им подобных программ. Там же могут располагаться и коды закрузочных вирусов при заражении компьютера.

Как правило на следующем треке в первом секторе (начиная с 0/1/1) расположена BA (Boot Area) — загрузочная область операционной системы и BR (Boot Record) — загрузочная запись OC. Далее на этом же треке расположена 1-я копия FAT (File Allocation Table) — таблица размещения файлов. Сразу за ней — 2-я копия FAT. Размер копии FAT (в секторах) определяется размером раздела диска. После 2-й копии FAT расположены сектора ROOT (Root directory) — корневого каталога , за которой начинается DA (Data Area) — область данных. Следует учитывать особенности файловой структура FAT32, которая позволяет часть секторов ROOT располагать не только в одном месте, а и внутри области данных.

  • PT — состоит из 4-х строк описывающих 4-е возможных раздела диска. Описание каждого раздела диска содержит информацию о типе файловой системы, признаке того, что раздел является загрузочным, о первых и последних головках, дорожках, секторах раздела, количестве секторов смещения начала раздела от начала диска и об общем количестве секторов в разделе.
  • MBR — находится в том же секторе что и PT. Данные в MBR представляют собой код процессора необходимый для дальнейшей загрузки операционной системы. В последних двух байтах сектора MBR находится сигнатура 55AAh, которую можно использовать как маску при поиске PT и MBR.
  • BR — содержит массу данных и служит для описания параметров файловой системы. В отличие от диска, минимальным адресуемым блоком данных для операционной системы служит кластер, объединяющий определенное количество секторов. В BR нам интересны такие данные как размер кластера, размер и количество копий FAT. BR для раздела FAT16 размещается в одном секторе, в случае FAT32 BR состоит из нескольких секторов.
  • FAT — Состоит из 12, 16 или 32 битных элементов, описывающих номера кластеров или их признаки (BAD). Количество элементов соответствует количеству кластеров раздела диска. Из этих элементов образуются цепочки номеров кластеров, описывающих расположение файлов на диске.
  • ROOT — Корневой каталог диска. Содержит записи описывающие файлы (дескрипторы файлов) в корневом каталоге. Такая запись описывает имя, тип, дату создания, размер, атрибуты файла, и т.п., а так же содержит указатель на первый кластер файла.
  • Каталоги(папки, директории) представляют собой сектора идентичные по структуре корневому каталогу. Каталог, кроме описаний файлов, в самом начале содержит две записи, первая из которых содержит указатель на первый кластер самого каталога, вторая на первый кластер родительского каталога.
Читайте также:  Последовательность тока крови через почку

Источник

Какое энергопотребление используют жесткие диски при разных объемах?

Всем привет! Тема сегодняшнего поста — энергопотребление HDD. Разберем, сколько ватт потребляет жесткий диск и как узнать это, если нет данных.

Немного об устройстве винчестера

Как вы уже знаете, HDD — это один или несколько магнитных дисков, данные с которых считываются с помощью специальной головки. Она парит над поверхностью, но не касается ее.

Падение головки на намагниченную поверхность — такая же поломка, как, например, выход из строя электропривода. Технически это похоже на виниловую пластинку: данные записаны вдоль своеобразных дорожек.

Разница в том, что дорожки идут не от края к центру, как у пластинки, а от центра к краю. Для того, чтобы вращать магнитный диск, подставляя сектора с информацией под головку, используется шпиндель, который оборудован электромотором.

Именно этот мотор — основной потребитель электрической энергии в харде. Все прочие компоненты (сама считывающая головка, кеш-память, микросхемы управления и т. д.) потребляют ее существенно меньше.

Об энергопотреблении

Вопреки распространенному заблуждению, потребляемая мощность не зависит от объема накопителя. Так, HDD на 500gb, на 1 тб, на 2 TB, на 4 TB и даже на 6 тб, если они одного бренда и из одной линейки, будут потреблять одинаковое количество электрической энергии.

На этот показатель также влияет скорость вращения шпинделя. У винчестеров с 5400 оборотами в минуту энергопотребление меньше, так как электромотору приходится приложить меньше усилий. Впрочем, сегодня такие накопители почти не попадаются: почти все современные харды имеют скорость вращения 7200 RPM.

Ну, и теперь сами цифры. В среднем, хард размером 3,5 дюйма потребляет в режиме записи/чтения около 5 Вт, а в холостом режиме 2–3 Вт. Больше всего энергии в компьютере расходуется на старте, во время загрузки операционной системы. Потребление может доходить до 15–20 Вт.

Повторяю, речь идет о современных оптимизированных накопителях. У старых моделей эти показатели могут быть выше.

HDD форм-фактора 2,5 дюйма, которые используются в ноутбуке, потребляют меньше энергии: магнитный диск меньшего диаметра имеет меньшую массу, поэтому для приведения его в движение следует приложить меньшее усилие.

В среднем, в режиме чтения/записи расходуется 3–4 Вт, а на холостом ходу 1–2 Вт. При загрузке ОС потребление редко превышает величину 10–15 Вт.

Как снизить

Как видите, магнитный накопитель — один из наименее энергоемких комплектующих. Закономерный вопрос: можно ли это энергопотребление еще как то снизить?

Увы, но нет. В нормальном режиме работы — при запуске программ и игр, просмотре фильмов и прослушивании музыки, процессор постоянно будет обращаться к накопителю, чтобы получить хранимые на нем данные.

Впрочем, при таком потреблении хард — не тот компонент, благодаря которому получится значительно снизить расход энергии. «Плясать» нужно немного в другом направлении — снижать энергопотребление процессором и видеокартой.

Напоминаю, что подписавшись на новостную рассылку, вы будете в числе первых получать уведомления о публикации новых материалов. До скорых встреч, друзья!

Читайте также:  Источник питания постоянного тока описание

Источник

Винчестеры. 2,5″ WD BEKT, BEVT. 3,5″ Seagate. HdTach, энергопотребление, шум.

Тест Эвереста на задержку чтения. (тоже самое что на предыдущих картинках, только более наглядно)

Температура
В покое, практически необдуваемые, в теплой комнате (около 25 С), по показаниям Эвереста, винчестеры показывают следующую температуру:
WD5000BEVT — 36 С.
WD2500BEKT — 36 С.
ST3250410AS — 46 С.
Замечание: 2,5″ винчестеры прикручены болтиками к тонкой железной пластине размером как раз с два винчестера. Когда лежали по отдельности на поролонке, BEKT на пару градусов был теплей BEVT.
Пластина же — половина нижней пластины от старого СД-рома. Сделано так с целью проверить, не улучшится ли время поиска, когда винчестер будет хоть как-то закреплен. Заметных изменений обнаружено не было.

p.p.s. совсем упустил из виду один момент, но лучше поздно, чем никогда. Спасибо участнику конференции FFRip за некоторые ценные замечания. С его помощью, заметка появилась быстрее чем могла бы появиться.

Маленький бонус: потребление SSD от Интел.
При старте мультиметр показал по линии 5В — 0,3А, в реальности до 0.5А, имхо.
При покое — 0,14А.
При дефрагментации — до 0,5А, в среднем около 0,4А.
На сайте Интел указано что в покое потребляет 0,15Вт. Но так возможно, если активируется режим DIPM. Только на некоторых чипсетах Интел при соответствующих драйверах.

Источник



Диета НЖМД 2: потребление и тепловыделение жестких дисков класса Enterprise

Энергопотребление и тепловыделение современных накопителей на жестких магнитных дисках, имеющих, как правило, значительно меньший диапазон рабочих температур (от +5 до +55 градусов Цельсия, реже от 0 до +60 С), чем большинство других компьютерных компонентов — это одна из проблем, на которую пользователи все чаще обращают внимание. Производительность жестких дисков растет, как и скорость процессоров или графических ускорителей. Но, к счастью, здесь нет того бурного роста тепловыделения (с увеличением быстродействия), который наблюдается у центральных и графических процессоров в последние лет десять. Тем не менее, общие требования по экономии электропитания и по лимитированной нагрузочной и охлаждающей способности конкретных компьютерных шасси все чаще заставляют пользователей задумываться и о том, сколько «кушают» их винчестеры. Причем, данные вопросы задаются не только пользователями (и производителями) ноутбуков, где каждые полватта способны повлиять не только на температуру накопителя в узком и плохо вентилируемом пространстве, но и на время автономной работы всего ноутбука (за которое обычно всеми силами борются). И не только потребителями и сборщиками настольных персональных компьютеров, где вследствие резкого роста прожорливости процессоров и видеокарт на винчестеры остается лишь крупица мощности бюджетных блоков питания.

Но вопросы потребления и тепловыделения накопителей все настойчивее волнуют и тех, кто по долгу службы работает с высокопроизводительными профессиональными средствами хранения данных на жестких дисках, принадлежащих к так называемому сегменту Enterprise, то есть дискам для корпоративных применений. Помимо прочего, здесь играет роль и то, что надежность и долговечность работы этих накопителей существенно зависит от их рабочей температуры — исследования показывают, что повышение температуры жесткого диска на 5 градусов оказывает такое же влияние на надежность, как переход от 10-процентной к 100-процентной загрузке диска работой! А каждый градус его температуры вниз эквивалентен 10-процентному росту времени жизни накопителя. Применение же мощных охлаждающих систем не всегда оправдано ввиду их большого шума и немалой стоимости. В целом же, экономия и экономичность — это те факторы, о которых никогда не следует забывать при принятии решений. Поэтому наша попытка в очередной раз обратиться к теме энергопотребления и тепловыделения жестких дисков в практической плоскости носит не только «познавательный», но и чисто прикладной характер.

Читайте также:  Виды изоляторов электрического тока

Напомню, что ранее мы уже рассматривали на систематизированной основе вопросы энергопотребления и тепловыделения трехдюймовых жестких дисков для настольных компьютеров и производительных двухдюймовых накопителей для ноутбуков. И будем возвращаться к этой теме еще не раз. Но сегодня пришла пора поговорить о наиболее дорогих и критичных к отказам (в том числе, из-за перегрева или проблем с питанием) накопителям Enterprise-сегмента, к коим мы вслед за производителями причисляем жесткие диски форм-факторов 3,5 и 2,5 дюйма со скоростью вращения 10 и 15 тысяч оборотов в минуту и интерфейсами Ultra320 SCSI и Serial Attached SCSI (SAS) (Fibre Channel пока оставим в стороне). А также определенные профессиональные модели со скоростью вращения 7200 об./мин, интерфейсом Serial ATA (позднее SATA 2.5) и высокой емкостью (400-500 Гбайт, пока недоступной SCSI-моделям), выполненные на базе существующих настольных винчестеров этих же производителей, но слегка модернизированных по конструкции и управляющей микропрограмме с целью повысить надежность и улучшить работу в профессиональных задачах. К последним, то есть к профессиональным жестким дискам с интерфейсом Serial ATA и скоростью вращения 7200 об./мин., мы отнесем традиционные серии Maxtor MaXLine III и MaXLine Pro 500 (а также более раннюю MaXLine II), недавно появившуюся Seagate NL35 (проф. аналог старших моделей Barracuda 7200.8 и 7200.9), а также Western Digital Caviar RE и RE2 (в частности, недавно появившуюся 400-гигабайтную модель WD4000YR). К сожалению, Hitachi GST не выделяет свои диски Deskstar 7K400 и 7K500 (объемом 400 и 500 Гбайт соответственно) в «профессиональную» линейку, хотя по многим характеристикам они могут быть к ней причислены. Поэтому мы в данном обзоре привлечем к рассмотрению и их, наряду с вышеперечисленными семитысячниками и всеми текущими SCSI-сериями, обзор которых сделан нами, например, в недавней статье. Кроме того, здесь примет участие и первый (из реально появившихся в России) из дисков с SAS-интерфейсом — Seagate Cheetah 15K.4 SAS.

Подробные обоснования нашего подхода к анализу энергопотребления и тепловыделения жестких дисков (и почему в единицах мощности это практически одно и то же) вы можете найти в нашем предыдущем обзоре на эту тему. Поэтому без лишних слов переходим к цифрам. Напомню лишь, что мы сознательно не будем использовать температуру жестких дисков как меру их тепловыделения, поскольку, на наш взгляд, делать это в типичных случаях просто бесполезно, то есть почти не имеет практического смысла (обоснование нашего подхода см. по лику выше). Кроме того, измеряя энергопотребление (вместо температуры), мы получаем ряд полезной дополнительной информации.

Спецификации энергопотребления жестких дисков

Чтобы нам было, от чего оттолкнуться, в таблице 1 приведу данные по энергопотреблению основных серий профессиональных дисков, указанные в их спецификациях.

Таблица 1. Мощность энергопотребления (ватт) жестких дисков для профессиональных применений (согласно спецификациям)

Источник