Меню

Прохождение электрического тока по проводнику сопровождается или нет переносом вещества

Электрический ток в жидкостях. Закон электролиза

Урок 60. Физика 10 класс ФГОС

Доступ к видеоуроку ограничен

Конспект урока «Электрический ток в жидкостях. Закон электролиза»

Во всех ранее рассмотренных нами случаях перенос заряда не сопровождался переносом вещества. Но существует класс проводников, прохождение электрического тока в которых всегда сопровождается химическими изменениями и переносом вещества. Такими проводниками являются растворы многих солей, кислот и щелочей, а также расплавы солей и оксидов металлов. Эти вещества называют электролитами.

Чтобы понять природу электрического тока в электролитах, соберём электрическую цепь, состоящую из источника тока, лампы накаливания и ванны с дистиллированной водой, в которой находятся два угольных электрода. Замкнём цепь. Лампочка не светится. Следовательно, дистиллированная вода является диэлектриком.

Давайте повторим опыт, предварительно растворив в дистиллированной воде сахар. Лампа не светится и в этом случае. Значит, раствор сахара в воде тоже является диэлектриком.

А теперь растворим в дистиллированной воде небольшое количество соли, например, хлорида меди и повторим опыт. Как видим, в цепи проходит электрический ток, о чём наглядно свидетельствует свечение лампы. Вывод напрашивается сам собой: раствор соли в воде является проводником электрического тока.

При изучении химии вы узнали, что при растворении солей, кислот и щелочей в воде происходит электролитическая диссоциация, то есть распад молекул электролита на ионы.

В проведённом опыте хлорид меди в водном растворе диссоциирует на положительно заряженные ионы меди и отрицательно заряженные ионы хлора, которые при отсутствии электрического поля движутся хаотически:

Однако, стоит создать внешнее электрическое поле, как на хаотическое движение частиц накладывается направленное движение положительно и отрицательно заряженных ионов. При этом положительно заряженные ионы меди движутся к электроду, подключённому к отрицательному полюсу источника тока (то есть к катоду), а отрицательно заряженные ионы хлора — к положительному аноду. На аноде будет происходить процесс окисления ионов хлора до атомов хлора: Cl – – e – = Cl. А нейтральные атомы хлора будут образовывать молекулы хлора, который выделяется на аноде: Cl + Cl = Cl2↑.

На катоде же будет происходить процесс восстановления ионов меди до нейтральных атомов и осаждение металлической меди (о чём и свидетельствует бурый налёт на катоде): Cu 2+ + 2e – = Cu.

Таким образом, свободными носителями электрического заряда в электролитах являются положительно и отрицательно заряженные ионы, образующиеся в результате электролитической диссоциации. Следовательно, проводимость электролитов является ионной.

Давайте изучим сопротивление электролитов. Для этого соберём простую электрическую цепь, состоящую из источника тока, электролитической ванны и амперметра. Поддерживая постоянное напряжение между электродами, приблизим их друг к другу. Нетрудно заметить, что амперметр показывает увеличение силы тока в цепи.

Теперь установим один из электродов так, чтобы его часть выступала над поверхностью раствора, — показания амперметра уменьшились.

Таким образом, при уменьшении расстояния между электродами и площади перекрытия электродов, сопротивление электролита уменьшается.

А сейчас давайте нагреем электролит. Как видим, с ростом температуры показания амперметра увеличиваться. Следовательно, увеличение температуры электролита ведёт к уменьшению его сопротивления.

Теперь давайте будем увеличивать напряжение между электродами в целое число раз. Не трудно заметить, что показания амперметра в этом случае также увеличиваются в целое число раз, пропорционально напряжению. Это свидетельствует о том, что для электролитов выполняется закон Ома:

Отметим также тот факт, что при прохождении электрического тока через электролит проявляется тепловое действие тока, то есть выполняется закон Джоуля—Ленца:

Идём дальше. При изучении химии вы узнали, что процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями, протекающими при прохождении электрического тока через растворы (расплавы) электролитов, называют электролизом.

Первый закон электролиза был экспериментально установлен Фарадеем в 1833 году. Согласно ему, масса вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду, прошедшему через электролит: m = kq.

Коэффициент пропорциональности k в формуле называют электрохимическим эквивалентом данного вещества. Он численно равен массе вещества, выделившегося на одном из электродов при прохождении через электролит единичного электрического заряда.

В СИ электрохимический эквивалент измеряют в килограммах на кулон: [k] = [Кл/кг].

Но вернёмся к первому закону электролиза и вспомним, что заряд, прошедший через поперечное сечение проводника (в нашем случае, через раствор электролита) за единицу времени, можно найти, как произведение силы тока на время его прохождения: q = It.

Читайте также:  Идеи для оформления дома в тока бока

Массу вещества, выделившегося на электроде при прохождении через электролит электрического заряда, можно определить, зная массу одного иона и число осевших на этом электроде ионов: m= mN.

А массу одного иона легко найти, зная молярную массу вещества и число Авогадро:

Выразим из последних двух формул число ионов:

Теперь вспомним, это же число ионов мы можем определить, как отношение заряда, прошедшего через электролит, к заряду одного иона, который кратен элементарному заряду:

В записанной формуле n — это валентность иона.

Прировняв правые части последних двух равенств, найдём массу выделившегося на катоде вещества.

Сравнивая полученное выражение с первым законом электролиза легко получить формулу для определения электрохимического эквивалента вещества:

Произведение двух универсальных постоянных называют постоянной Фарадея:

А отношение молярной массы вещества к валентности иона называют химическим эквивалентом вещества:

Отсюда вытекает второй закон Фарадея для электролиза: электрохимические эквиваленты веществ пропорциональны их химическим эквивалентам:

А теперь давайте подставим выражение для электрохимического эквивалента вещества в первый закон электролиза:

Полученное выражение называют объединённым законом Фарадея для электролиза. Согласно этому закону масса вещества, выделившегося на каждом из электродов, пропорциональна молярной массе ионов этого вещества, силе тока и времени его прохождения через электролит и обратно пропорциональна валентности ионов вещества.

Используя закон электролиза, можно определить значение заряда электрона:

В 1874 году именно таким путём и было впервые получено значение элементарного электрического заряда.

А теперь, для закрепления материала решим с вами такую задачу. Хромирование тонкой прямоугольной пластинки размерами а = 5,0 см и b = 8,0 см в большой гальванической ванне осуществляется в течение трёх часов при силе тока 1,5 А. Определите толщину образовавшегося на пластинке слоя хрома.

В заключении урока отметим, что электролиз нашёл широкое применения в технике. Так, например, английский химик и один из основателей электрометаллургии сэр Гемфри Дэви разработал методику получения металлов с наименьшим количеством примесей.

С помощью электролиза наносят защитные и декоративные покрытия на металлические изделия (это называется гальваностегией).

В 1836 году русский академик Борис Семёнович Якоби разработал метод для производства идеальных копий исходного предмета. Его назвали гальвванопластикой.

Первым изделием, полученным с помощью гальванотехники, стала монета. Якоби сначала использовал монету для получения матрицы-негатива, а с неё создал копию, находящейся в обороте, монеты. Осознав, что он открыл новый метод фальшивомонетничества, учёный уничтожил полученное изделие. Технология быстро распространилась в Российской империи. В частности, таким способом были созданы скульптуры на нефах Исаакиевского собора в Санкт-Петербурге.

С помощью электролиза также получают электронные платы, служащие основой всех электронных изделий. На диэлектрик наклеивают тонкую медную пластину, на которую наносят особой краской сложную картину соединяющих проводов. Затем пластину помещают в электролит, где вытравливаются не закрытые краской участки медного слоя. После этого краска смывается, и на плате появляются детали микросхемы.

Источник

Большая Энциклопедия Нефти и Газа

Прохождение — электрический ток

Прохождение электрического тока сопровождается непрерывным расходованием энергии на преодоление сопротивления. Эту энергию доставляет источник электрической энергии, в котором происходит процесс преобразования механической, химической, тепловой или других видов энергии в электрическую. [16]

Прохождение электрического тока по проводнику или катушке сопровождается появлением магнитного поля. Рассмотрим электрическую цепь переменного тока ( рис. 57, а), в которую включена катушка индуктивности, имеющая небольшое количество витков проволоки сравнительно большого сечения, активное сопротивление которой можно считать практически равным нулю. [17]

Прохождение электрического тока через раствор электролита заключается в том, что составные части электролита — разноименно заряженные ионы — передвигаются в противоположных направлениях к электродам. На электродах ионы разряжаются и выделяются в виде нейтральных атомов или атомных групп, которые часто тут же вступают во взаимодействие между собой, или с молекулами растворителя, или же с веществом электрода. [18]

Прохождение электрического тока всегда сопровождается выделением тепла. [19]

Читайте также:  Номинальный ток вторичной обмотки трансформатора тока формула

Прохождение электрического тока ( движение электрических зарядов) через раствор существенно отличается от движения электрических зарядов по металлическому проводнику. [20]

Прохождение электрического тока по проводнику возможно лишь в том случае, когда в последнем имеются положительно или отрицательно заряженные частицы, способные свободно двигаться. Такими частицами могут быть электроны или ионы. [21]

Прохождение электрического тока через электролит связано с перемещением вещества электролита, составные части которого выделяются на электродах. [23]

Прохождение электрического тока через константановую обмотку биметаллической пластины вызывает деформацию пластины, в результате чего она будет периодически размыкать контакты. Пока контакты замыкаются слабым усилием, пластина быстро нагревается и деформируется, но остывает и возвращается к первоначальной форме после размыкания контактов медленно. Соответственно в обмотку биметаллической пластины приемника будут проходить слабые кратковременные импульсы, под действием которых эта пластина деформируется мало, а стрелка перемещается из крайнего левого положения лишь к нулевой отметке. [24]

Прохождение электрического тока через электролиты связано с явлением электролиза. При этом электрические заряды переносятся вместе с ионами. Такую электропроводность называют ионной. [25]

Прохождение электрического тока через растворы электролитов сопровождается разрядкой ионов па электродах. [26]

Прохождение электрического тока через тело человека вызывает электрические травмы различного характера: электрические ожоги, электрический удар, электрические знаки-метки. Одновременно в организме человека может происходить электролитическое разложение крови и других жидкостей. [27]

Прохождение электрического тока можно для ясности уподобить движению потока воды, — тогда силе тока J будет соответствовать количество воды, проходящее через сечение данного канала в единицу времени, напряжению Е будет соответствовать величина напора воды или высота падения водного потока, наконец, сопротивлению R будет соответствовать сопротивление, оказываемое воз. Поэтому как количество воды, проходящее через сечение канала в единицу времени прямо пропорционально высоте падения водяного потока и обратно пропорционально сопротивлению, оказываемому стенками канала, так, по закону Ома, количество электричества, протекающее через данное сечение в единицу времени ( сила тока), прямо пропорционально электродвижущей силе ( напряжению) и обратно пропорционально сопротивлению проводника. [28]

Прохождение электрического тока через проводники первого рода не сопровождается переносом вещества в виде ионов. Примером могут служить металлы и полупроводники. Растворы электролитов являются проводниками второго рода. Прохождение через них электрического тока вызывает передвижение вещества в виде ионов и его химические превращения. Ток к проводникам второго рода подводится через проводники первого рода. При прохождении постоянного тока в местах, где изменяется механизм переноса электричества, ионы электролита разряжаются, а нейтральные атомы приобретают заряд. [29]

Прохождение электрического тока через гальванический элемент выводит электроды из состояния равновесия. [30]

Источник

Прохождение электрического тока по проводнику сопровождается или нет переносом вещества

Вопрос по физике:

В каких средах прохождение электрического тока сопровождается переносом

Ответы и объяснения 1

Прохождение электрического тока в жидкостях (электролитах) и газах связано с переносом вещества.

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Источник



Прохождение электрического тока по проводнику сопровождается или нет переносом вещества

§ 39. ЭЛЕКТРИЧЕСКИЙ ТОК И ЕГО ДЕЙСТВИЯ. СИЛА ТОКА.

Заряженные частицы, двигаясь по проводнику, могут нагревать его, намагничивать и изменять его химический состав.

Читайте также:  Назначение трансформаторов тока электрика

Упорядоченное движение заряженных частиц в проводнике называют электрическим током. Кратковременный электрический ток, например, возникает в металлическом проводнике М, соединяющем два разноименно заряженных тела, А и Б (рис. 39а), когда под действием электрического поля его свободные электроны перемещаются от тела Б к А. Однако поток электронов между телами Б и А будет уменьшать заряды этих тел, и в конце концов, они станут незаряженными, и поле, вызвавшее электрический ток, исчезнет.

Электрический ток является результатом направленного движения свободных зарядов (электронов или ионов) в проводнике. В результате хаотичного (теплового) движения этих заряженных частиц направленного переноса заряда не происходит, а значит, электрический ток не возникает. Чтобы каждый раз не упоминать, какие частицы – ионы или электроны, переносят заряд в электрическом токе, за направление электрического тока условно принимается то направление, в котором бы двигались под действием данного электрического поля положительно заряженные частицы (см. голубую стрелку на рис. 39а).

Прохождение электрического тока сопровождается многочисленными явлениями или действиями, по которым можно судить о его существовании. По характеру воздействия эти явления можно разделить на тепловые, магнитные и химические:

(1) Электрический ток нагревает проводник, по которому он протекает (тепловое действие). При этом некоторые проводники, например, вольфрамовая спираль осветительной лампы нагревается так сильно (до 2500 о С), что начинает даже светиться. Другие проводники, например, медные провода, по которым ток течёт к лампе, практически не нагреваются. Тепловое действие тока не зависит от направления тока, а определяется его величиной и свойствами проводника.

(2) Электрический ток действует на намагниченные тела, например, поворачивает магнитную стрелку, первоначально ориентированную вдоль проводника с током, перпендикулярно направлению тока (магнитное действие). Следует отметить, что магнитное действие тока зависит от величины тока и его направления и не зависит от вещества, из которого сделан проводник. Поэтому считают, что магнитное действие электрического тока – это его наиболее характерная черта, которая проявляется во всех проводниках.

(3) Электрический ток, проходя через растворы или расплавы электролитов, может разлагать их на составные части в результате процесса, называемого электролизом (химическое действие). Например, при пропускании тока через воду она разлагается на водород и кислород, и пузырьки этих газов образуются на электродах, между которыми пропускают электрический ток. В металлических проводниках электрический ток не вызывает никаких химических изменений.

Чем больше электрический ток, тем большее действие на проводник он оказывает. Чтобы охарактеризовать величину тока, предположим, что проводник имеет форму цилиндра с поперечным сечением S (см. рис. 39б). Силой тока I называют отношение заряда D q , переносимого этим током через поперечное сечение проводника за интервал времени D t , к величине этого интервала:

Единицей силы тока в СИ является ампер (А). При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл. Силу тока измеряют с помощью амперметров, в устройстве которых использовано магнитное действие электрического тока.

Если сила тока не изменяется со временем, то такой электрический ток называют постоянным. Условием существования постоянного электрического тока является наличие неизменного электрического поля в проводнике, или, другими словами, постоянного напряжения между концами проводника. Чтобы электрический ток через металлический проводник не прекращался, необходимо иметь устройство, перемещающее свободные электроны, пришедшие из Б в А, обратно в Б (см. рис. 39в). Такое устройство называют источником тока. Источник тока перемещает заряды на участке АБ против действующих на них электростатических сил.

Вопросы для повторения:

· Что такое электрический ток, и какое направление он имеет?

· Какие действия может оказывать электрический ток?

· Почему магнитное действие тока считают его самым характерным действием?

· Что называют силой тока, и в каких единицах её измеряют?

Рис. 39. (а) – кратковременный электрический ток между заряженными телами; (б) – к определению силы тока; (в) –п оддержание постоянного тока в металлическом проводнике М, соединяющем два заряженных тела.

Источник