Меню

Причина колебаний силы тока

Тема 11.

Процессы, происходящие в идеальном

Электромагнитные колебания – это колебания величин заряда, силы тока, напряжения, эдс индукции и характеристик переменного электромагнитного поля.

Электромагнитные колебания создаются в закрытом колебательном контуре, который представляет собой электрическую цепь, содержащую катушку индуктивности и конденсатор (рис. 11.1)

Свободных (собственные) колебания – это ко —

Рис.11.1 лебания, которые совершаются без внешнего воздействия за счет первоначально накопленной энергии.

Рассмотрим идеальный колебательный контур, в котором активное сопротивление (рис.11.2).

Если переведем ключ в положение 1, то конденсатор зарядится от источника тока так, что на его пластинах накопится максималь-ный заряд . Перебросим ключ в положение 2 и рассмотрим процессы, происходящие в контуре, считая, что в момент включения .

Процесс будем рассматривать в течение одного периода (рис.11.3).

1. При мгновенное значение тока .

2. В промежуток времени от до конденсатор начинает разряжаться, заряд будет уменьшаться, напряжение на обкладках конденсатора также будет уменьшаться. В контуре появится электрический ток , который будет возрастать в этот промежуток времени. Проходя по катушке, возрастающий ток образует вокруг нее магнитное поле, которое будет возбуждать в катушке эдс самоиндукции. Эдс самоиндукции замедляет нарастание тока. Величина эдс определяется, как .

В момент времени параметры контура: (конденсатор разрядился),

3. В промежуток времени от до ток начинает убывать, в катушке возникает эдс индукции, замедляющая убывание тока. Под действием индукционного тока конденсатор перезаряжается – на пластинах появляется заряд противоположного знака.

В момент времени

4. В промежутки времени от до и от до процесс повторяется в обратном направлении (рис. 11.3).

Таким образом, в колебательном контуре возникают электромагнитные колебания – колебания заряда, тока, напряжения и эдс индукции.

Незатухающие электромагнитные колебания.

Такие колебания происходят в идеальном колебательном контуре, в котором и не происходит потерь первоначально накопленной энергии на нагревание проводов. Согласно второму правилу Кирхгофа: сумма напряжений на элементах замкнутого контура равна сумме эдс, заключенных в этом контуре

Т.к. , то дифференциальное уравнение, описывающее незатухающие электрические колебания имеет вид:

Его решением являются функции

График этой функции, а также графики напряжения, тока и эдс индукции представлены на рис.11.4:

Напряжение на конденсаторе сила тока

Период колебаний незатухающих колебаний определяется по формуле Томсона:

Рассмотрим свободные колебания в реальном колебательном контуре (рис.11.5). В нём , следовательно, провода катушки будут нагреваться, энергия, первоначально накопленная энергия будет теряться. Такие колебания называются затухающими.

Согласно второму правилу Кирхгофа для данного контура

Дифференциальное уравнение для затухающих колебаний

где и ( — коэффициент затухания).

Его решением является функция

В этих уравнениях величина амплитуда затухающего колебания. Знак минус в показателе степени говорит о том, что амплитуда убывает с течением времени по экспоненте. Само же колебание остаётся гармоническим. График затухающего колебания показан на рисунке (11.6):

Быстрота затухания колебаний характеризуется логарифмически декрементом затухания

Добротность .

Чтобы колебания в контуре были не затухающими, к нему необходимо подать внешнюю эдс (рис.11.7), которая должна быть периодической и должна иметь частоту колебаний , отличную от частоты собственных колебаний: . Источник внешней эдс можно включать как параллельно, так и последовательно (рис.11.7).

Второе правило Кирхгофа для такого контура запишется в виде

Дифференциальное уравнение вынужденных колебаний

Решением этого уравнения является функция

Колебания происходят с частотой внешней эдс. Начальная фаза колебаний меняется на новую фазу , Само же колебание остается гармоническим. Амплитуда вынужденных колебаний зависит от параметров источника внешней эдс

При малых затуханиях, т.е. при

Если , то происходит резкое возрастание амплитуды заряда на пластинах конденсатора и напряжения. Это явление называется резонансом.

•Идеальный колебательный контур. Процессы, происходящие в нем. •Свободные незатухающие колебания. Дифференциальное уравнение, описывающее их. Решение уравнения. Графики изменения заряда, силы тока, напряжения, ЭДС. Формула Томсона. •Реальный колебательный контур. Затухающие электромагнитные колебания. Дифференциальное уравнение, решение, график. Логарифмический декремент затухания, добротность. •Вынужденные электромагнитные колебания. Дифференциальное уравнение, решение. Резонанс. •Автоколебания. Генератор незатухающих электромагнитных колебаний на примере аппарата УВЧ-терапии.

Апериодический разряд конденсатора

Если конденсатор подключить к источнику постоянного тока (рис. 12.1, а), то пластины конденсатора заряжаются разноименно и в диэлектрике между пластинами возникает электрическое поле. Во внешней цепи появляется кратковременный импульс – ток зарядки конденсатора.

Если заряженный конденсатор отключить от источника напряжения и замкнуть его на сопротивление (рис.12.1 б), то разность потенциалов на его пластинах вызовет движение электронов во внешней цепи в направлении обратном первоначальному. В цепи образуется

кратковременный импульс тока – ток разрядки конденсатора.

Мгновенные значения тока разрядки определяются по формуле

Аналогично изменяется и напряжение на обкладках конденсатора. Графики тока разрядки и напряжения показаны на рис. 12.2

За длительность импульса условно принимается время , такое, что ток уменьшается за это время до величины . Время называется постоянной времени разрядки конденсатора.

Ток зарядки имеет такую же форму, как и ток разрядки, но течет в противоположном направлении (рис.12.3).

Таким образом, импульсы – это кратковременные изменения силы тока и напряжения.

Импульсный ток – это повторяющиеся во времени импульсы. Они могут быть самой различной формы (рис. 12.4):

Характеристики импульсных токов.

1. Длительность импульса — время, при котором напряжение (или сила тока) не меньше (рис.12.5)

2. Крутизна фронта характеризует скорость нарастания напряжения или силы тока

3. Период характеризует период повторения импульсов – это среднее время между началами двух соседних импульсов.

4. Частота повторения импульсов

5. Скважность следования импульсов

6. Коэффициент заполнения

Генераторы импульсных токов.

1. Генератор на неоновой лампе представлен на рис.12.6.

Рис. 12.6 Рис. 12.7

Неоновая лампа зажигается при определенном напряжении , а гаснет при меньшем напряжении . График выходного напряжения приведен на рис.12.7. Меняя и , можно так подобрать эти параметры, что напряжение будет пилообразным (рис.12.8):

3. Блокинг-генератор. Схема его представлена на рис.12.9, (а). На рис. 12.9, б) условно показан график выходного напряжения.

3. Мультивибратор. Схема его представлена на рис.12.10

Мультивибратор содержит два транзистора, два конденсатора и по паре сопротивлений и .

Конденсаторы служат для генерации импульсов (заряжаются от источника постоянного тока и сопротивления , а разряжаются через сопротивления ). Транзисторы играют роль “включателей”. Симметричное их расположение в схеме обеспечивает поочередную зарядку конденсаторов: если открыт транзистор , то заряжается конденсатор , если открыт транзистор , то заряжается конденсатор . Выходное напряжение имеет прямоугольную форму.

Изменение формы импульса.

После мультивибратора получаются импульсы прямоугольной формы. Но для лечения различных заболеваний используют импульсы различной формы. Чтобы изменить форму импульса, на выходе мультивибратора собирают дифференцирующую (рис. 12.11) или интегрирующую цепь (рис.12.13):

1. Дифференцирующая цепь

Её применяют в том случае, если .

На вход цепочки подается входное напряжение прямоугольной формы. Очевидно,

Рис. 12.11 .

Выходное напряжение включено параллельно резистору . Поэтому

Форму выходного напряжения можно получить при графическом вычитании. На рис. 12.12 а) показан импульс входного напряжения. Затем импульс прекраща-ется, конденсатор разряжается (рис. 12.12 б). Вычитая значения функции, представленной на рис. 12.12 б) из значений функции, представленной на рис. 12.12 а), получаем вид функции выходного напряжения (рис. 12.12 в).

Таким образом, на выходе из цепочки получаются два остроконечных импульса противоположного знака.

Рассмотренная цепочка называется дифференцирующей потому, что выходное напряжение пропорционально производной от входного напряжения .

2. Интегрирующая цепь.

Применяется в том случае, если .

Выходное напряжение включено параллельно конденсатору . Поэтому

Если на вход цепи подан прямоугольный импульс (рис. 12.14 а), то напряжением на выходе является напряжение на пластинах конденсатора (рис.12.14 б). Конденсатор не успевает зарядиться до .

Рассмотренная цепочка называется интегрирующей потому, что выходное напряжение пропорционально интегралу .

Действие импульсного тока на ткани организма

В основе действия электрического тока на ткани организма лежит движение заряженных частиц, преимущественно ионов тканевых электролитов, в результате чего изменяется обычный состав ионов по обе стороны мембраны, в связи, с чем в клетке происходит ряд биофизических и физиологических процессов, вызывающих её возбуждение . Рис. 12.14

Постоянный ток почти не оказывает раздражающего действия на ткани организма. Раздражение вызывается при изменении силы тока и зависит от скорости, с которой это изменение происходит. Это положение известно как закон Дюбуа-Реймона. Сила тока в растворе электролита зависит как от числа движущихся ионов, так и от скорости их перемещения. Скорость изменения силы тока соответствует ускорению движения ионов.

Очевидно, что раздражающее действие зависит от крутизны импульсов.

Формы импульсных токов Применение
Прямоугольные: — электросон — электрокардиостимуляция
Треугольные: — возбуждение мышц, электрогимнастика
Тетанизирующие: Электростимуляция здоровых мышц
Экспоненциальные: Электростимуляция
Экспоненциальные: Электростимуляция пораженных мышц
Диадинамические: Электротерапия

Раздражающее действие прямоугольных импульсов в значительной мере зависит от их длительности , обусловливающей наибольшее смещение ионов за время действия импульса. Эта зависимость описывается уравнением Вейса-Лапика

где — пороговая сила тока (амплитуда импульса), и — коэффициенты, зависящие от природы возбуждаемой ткани и её функционального состояния. Зависимость от показана на рис. 12.16:

При достаточно длительных импульсах раздражающее действие становится независимым от длительности ( ). Значение порогового тока при этом называют реобазой . Точка кривой, ордината которой равна удвоенной реобазе, определяет длительность импульса т называется хронаксией.

Хронаксия и реобаза характеризуют возбудимость органа и могут служить показателями их функционального состояния или диагностического признака их поражения.

•Апериодический разряд конденсатора. Постоянная времени. •Принцип генерации импульсных токов на примере генератора с неоновой лампой и блокинг-генератора. Мультивибратор. •Электрический импульс и его характеристики. Импульсный ток. •Характеристики импульсных токов.•Изменение формы импульса (дифференцирующая и интегрирующая цепи).•Действие импульсных токов на организм. Закон Дюбуа-Реймона. Формула Вейса-Лапика. •Применение импульсных токов в медицине.

Читайте также:  Как посчитать силу тока для сварки

ИМПЕДАНС ТКАНЕЙ ОРГАНИЗМА.

Дата добавления: 2015-04-19 ; просмотров: 1116 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Электромагнитные колебания

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур — это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент: . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же — координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть: . Конденсатор перезаряжается — на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия. Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть: . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Аналогия. Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть: . Ток убывает, конденсатор заряжается (рис. 8 ).

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода: . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Данный момент идентичен моменту , а данный рисунок — рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия. Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

Здесь, как вы уже поняли, — жёсткость пружины, — масса маятника, и — текущие значения координаты и скорости маятника, и — их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона. Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими, если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока — ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной 0)’ alt='(I > 0)’/> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора — это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае — заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если 0′ alt=’I > 0′/> , то заряд левой пластины возрастает, и потому 0′ alt=’\dot > 0′/> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если — функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Читайте также:  Как найти напряжение в физике не зная силу тока

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз — по закону синуса:

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс — резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Источник

Электромагнитные колебания

теория по физике 🧲 колебания и волны

Заставить колебаться можно любую материю. Так, колебаться могут не только физические тела, состоящие из вещества, но и электромагнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Когда происходят колебания в механической системе, говорят, что тело совершает периодически повторяющиеся движения — оно отклоняется от положения равновесия то в одну, то в другую сторону. Когда происходят электромагнитные колебания, говорят, что электромагнитное поле периодически изменяется во времени, то есть его характеристики, то уменьшаются, то увеличиваются относительного некоторого среднего значения, которое является для них «положением равновесия».

Электромагнитные колебания — периодическое изменение во времени напряженности и индукции электромагнитного поля.

Напомним, что напряженность E представляет собой количественную характеристику электромагнитного поля, а индукция B — силовую. Причем электромагнитное поле — это взаимосвязанные между собой электрическое и магнитные поля. Так, проводник с током создает вокруг себя магнитное поле. Оно тем сильнее, чем выше сила тока в этом проводнике, которая напрямую зависит от напряжения в нем (или количества заряда, прошедшего через него за единицу времени). Поэтому изменения напряжения и силы тока в проводнике вызывают изменения напряженности и индукции магнитного поля. Следовательно, можно сделать вывод, что:

Электромагнитные колебания — периодические или почти периодические изменения во времени заряда, силы тока или напряжения.

Осциллограф

Но если колебания физических тел наблюдать легко, то колебания электромагнитного поля обнаружить без специальных приборов нельзя. Ведь увидеть изменения заряда, силы тока или напряжения невозможно. Использовать для этого электроизмерительные приборы (гальванометры, вольтметры или амперметры) тоже неудобно, поскольку электромагнитные колебания происходят с гораздо большей частотой по сравнению с механическими. Поэтому специально для визуализации электромагнитных колебаний был создан прибор, который называется осциллографом.

Осциллограф, схему которого вы видите ниже, представляет собой электронно-лучевую трубку. Через нее проходит узкий пучок электронов и попадает на экран, который начинает светиться при бомбардировке электронами.

На горизонтально отклоненные пластины трубки подается переменное напряжение развертки up пилообразной формы (см. рисунок ниже). Оно медленно нарастает и быстро падает. Поэтому электрическое поле между пластинами заставляет электронный луч пробегать экран в горизонтальном направлении с постоянной скоростью и затем почти мгновенно возвращаться назад. После этого весь процесс повторяется.

Если же присоединить вертикально отклоняющие пластины трубки к конденсатору, то колебания напряжения при его разрядке вызовут колебания луча в вертикальном направлении. В результате на экране осциллографа образуется временная развертка колебаний. Она напоминает синусоиду или косинусоиду подобно той, с помощью которой можно описать механические колебания.

С течением времени электромагнитные колебания затухают. Такие колебания являются свободными. Напомним, что свободными колебаниями называют такие колебания, которые возникают в колебательной системе после выведения ее из положения равновесия. В нашем случае система выводится из равновесия при сообщении конденсатору заряда. Зарядка конденсатора эквивалента отклонения математического маятника от положения равновесия.

В электрической цепи также можно получить вынужденные колебания, которые будут происходить до тех пор, пока на колебательную систему действует периодическая внешняя сила. Вынужденными электромагнитными колебаниями называют колебания в цепи под действием внешней периодической электродвижущей силы.

Колебательный контур

Колебательный контур — простейшая система, к которой могут происходить свободные электромагнитные колебания.

Колебательный контур состоит из конденсатора и катушки, присоединенной к его обкладкам (см. рисунок выше). Попробуем выяснить, почему в этом контуре возникают электромагнитные колебания. Для этого зарядим конденсатор, присоединив его на некоторое время к батарее с помощью переключателя (см. схему ниже).

При этом конденсатор получит энергию, равную:

W p = q 2 m a x 2 C . .

где q m a x — заряд конденсатора, а C — его электроемкость. Между обкладками конденсатора возникает разность потенциалов U m a x .

Теперь переведем переключатель в положение 2 (см. схему ниже). После этого конденсатор начнет разряжаться, и в цепи появится электрический ток. Сила тока достигнет максимального значения не сразу, а будет увеличиваться постепенно. Это объясняется явлением самоиндукции. При появлении тока возникает переменное магнитное поле. Это переменное магнитное поле порождает вихревое электрическое поле в проводнике. Вихревое электрическое поле при возрастании магнитного поля действует против тока и препятствует его мгновенному увеличению.

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля тока, которая определяется формулой:

где i — сила переменного тока, L — индуктивность катушки.

Полная энергия W электромагнитного контура равна сумме энергий магнитного и электрического полей:

W = L i 2 2 . . + q 2 2 C . .

В момент, когда конденсатор полностью разрядится (q = 0), энергия электрического поля станет равной нулю. Но согласно закону сохранения энергии, максимальное значение обретет энергия магнитного поля. Сила тока в этот момент примет максимальное значение Imax.

К этому моменту разность потенциалов на концах катушки становится равной нулю. Но, несмотря на это, электрический ток не может исчезнуть сразу. Этому снова препятствует явление самоиндукции. Как только сила тока и созданное им магнитное поле начнут уменьшаться, возникает вихревое электрическое поле, которое поддерживает ток.

Конденсатор будет перезаряжаться до тех пор, пока сила тока, постепенно уменьшаясь, не станет равной нулю. Энергия магнитного поля в этот момент тоже будет равна нулю, а энергия электрического поля конденсатора опять будет максимальной. После этого конденсатор снова начнет перезаряжаться, и система вернется в исходное состояние.

Из-за частичных потерь энергии электромагнитные колебания являются затухающими. Если бы потерь не было, полная энергия система была бы постоянной и была бы равной:

W = L i 2 2 . . + q 2 2 C . . = q 2 m a x 2 C . . = L I 2 m a x 2 . .

Пример №1. После того как конденсатору колебательного контура был сообщен заряд q = 10 –5 Кл, в контуре возникли затухающие колебания. Какое количество теплоты выделится в контуре к тому времени, когда колебания в нем полностью затухнут? Емкость конденсатора C = 0,01 мкФ.

0,01 мкФ = 10 –8 Ф

Поскольку с каждым колебанием колебательный контур теряет часть энергии в виде выделения тепла, ко времени, когда колебания полностью затухнут, выделится полная электромагнитная энергия системы. Ее можно определить формулой:

Сходство электромагнитных колебаний в контуре со свободными механическими колебаниями

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями (к примеру, колебаниями тела, закрепленного на пружине). Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.

Соответствие между механическими и электрическими величинами при колебательных процессах

Механическая величина Электрическая величина
Координата x Заряд q
Скорость v x Сила тока i
Масса m Индуктивность L
Жесткость пружины Величина, обратная емкости 1 C . .
Потенциальная энергия растянутой пружины k x 2 2 . . Энергия электрического поля q 2 2 C . .
Кинетическая энергия m v 2 x 2 . . Энергия магнитного поля L i 2 2 . .

Уравнение, описывающее процессы в колебательном контуре

Рассмотрим колебательный контур, сопротивлением R которого можно пренебречь (см. схему ниже).

Полная электромагнитная энергия равна сумме энергий магнитного и электрического полей:

W = L i 2 2 . . + q 2 2 C . .

Если его сопротивление равно 0, то полная механическая энергия с течением времени не меняется. А производная константы равна нулю. Следовательно, сумма производных от каждой составляющей этой энергии также равна нулю.

Читайте также:  Цепь переменного тока с активным сопротивлением как основным параметром

( L i 2 2 . . ) ′ + ( q 2 2 C . . ) ′ = 0

( L i 2 2 . . ) ′ = − ( q 2 2 C . . ) ′

Первая производная по времени характеризует скорость изменения физической величины. Следовательно, эта формула позволяет сделать вывод о том, что скорость изменения энергии магнитного поля равна скорости изменения электрического поля. Знак «минус» указывает на то, что, когда энергия электрического поля возрастает, энергия магнитного поля уменьшается (и наоборот).

Вычислив обе производные, получим:

Но производная заряда по времени представляет собой силу тока в данный момент времени:

i = lim Δ t → 0 . Δ q Δ t . . = q ′

Поэтому мы можем записать уравнение иначе:

Производная силы тока по времени представляет собой вторую производную заряда по времени:

Подставив это равенство в уравнение, и преобразовав его путем деления на величину Li, получим основное уравнение, описывающее свободные электрические колебания в контуре:

Формула Томсона

Когда мы рассматривали механические колебания, то вводили величину, постоянную для конкретной колебательной системы — коэффициент k m . . . Он представляет собой квадрат собственной частоты колебаний. По аналогии в случае с электромагнитными колебаниями этот коэффициент равен 1 L C . . . Он также представляет собой квадрат циклической частоты свободных электрических колебаний:

Следовательно, период свободных колебаний в контуре равен:

T = 2 π ω 0 . . = 2 π √ L C

Эта формула называется формулой Томсона.

Пример №2. Колебательный контур состоит из катушки индуктивностью L = 0,003 Гн и плоского конденсатора емкостью C = 13,4 пФ. Определите период свободных колебаний в контуре.

13,4 пФ = 13,4∙10 –12 Ф

Гармонические колебания заряда и тока

Заряд конденсатора меняется с течением времени подобно тому, как координата при механических колебаниях изменяется со временем по гармоническому закону (в случае, когда в начальный момент времени отклонение от положения равновесия максимально):

q = q m a x cos . ω 0 t

где q m a x — амплитуда колебаний заряда.

Сила тока также совершает гармонические колебания:

i = q ‘ = − ω 0 q m a x sin . ω 0 t = I m a x cos . ( ω 0 t + π 2 . . )

где I m a x — амплитуда колебаний силы тока, равная произведению циклической частоты на амплитуду колебаний заряда:

I m a x = q m a x ω 0

Колебания силы тока опережают по фазе на π 2 . . колебания заряда, что хорошо видно на рисунке ниже.

Пример №3. В двух идеальных колебательных контурах с одинаковой индуктивностью происходят свободные электромагнитные колебания, причём период колебаний в первом контуре 9⋅10 −8 с, во втором 3⋅10 −8 с. Во сколько раз амплитудное значение силы тока во втором контуре больше, чем в первом, если максимальный заряд конденсаторов в обоих случаях одинаков?

Максимальная сила тока равна:

I m a x = q m a x ω 0

Так как максимальный заряд конденсаторов одинаков в обоих контурах, отношение силы тока во тором контуре к силе ток в первом контуре равно:

I 2 m a x I 1 m a x . . = q m a x ω 02 q m a x ω 01 . . = ω 02 ω 01 . .

Циклическую частоту выразим из формулы Томсона:

Автоколебания

Незатухающие вынужденные колебания поддерживаются в цепи действием внешнего периодического напряжения. Но существует способ создания незатухающих колебаний, при котором колебательная система сама регулирует поступление энергии в колебательный контур для компенсации потерь энергии на резисторе.

Автоколебательные системы — системы, в которых генерируются незатухающие колебания за счет поступления энергии от источника тока внутри системы.

Автоколебания — незатухающие колебания, существующие в системе без воздействия на нее внешних периодических сил.

Самый простой пример автоколебательной системы — это генератор на транзисторе. Транзистор представляет собой полупроводниковое устройство, состоящее из эмиттера, базы и коллектора и имеющее 2 p–n перехода. Колебания тока в контуре вызывают колебания напряжения между эмиттером и базой, которые, в свою очередь, управляют силой тока в цепи колебательного контура (обратная связь). От источника напряжения в контур поступает энергия, компенсирующая потери энергии в контуре на транзисторе.

Схема автоколебательной системы представлена ниже.

Преимуществом такой схемы является то, что конденсатор при этом подключается к источнику тока только тогда, когда присоединенная к положительному источнику тока пластина конденсатора заряжена положительно (рис. а). Только в этом случае конденсатор восполняет потери энергии, выделенной на резисторе.

Если бы источник тока был включен всегда, восполнения потерь не происходило бы. Поскольку конденсатор разряжался бы в момент, когда он соединен с источником тока пластиной, заряженной отрицательно (рис. б).

В двух идеальных колебательных контурах происходят незатухающие электромагнитные колебания. Максимальное значение заряда конденсатора во втором контуре равно 6 мкКл. Амплитуда колебаний силы тока в первом контуре в 2 раза меньше, а период его колебаний в 3 раза меньше, чем во втором контуре. Определите максимальное значение заряда конденсатора в первом контуре.

Источник



Причина колебаний силы тока

Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями .

Вынужденные колебания, в отличие от собственных колебаний в электрических цепях, являются незатухающими . Внешний источник периодического воздействия обеспечивает приток энергии к системе и не дает колебаниям затухать, несмотря на наличие неизбежных потерь.

Особый интерес представляет случай, когда внешний источник, напряжение которого изменяется по гармоническому закону с частотой ω, включен в электрическую цепь, способную совершать собственные свободные колебания на некоторой частоте ω.

Если частота ω свободных колебаний определяется параметрами электрической цепи, то установившиеся вынужденные колебания всегда происходят на частоте ω внешнего источника .

Для установления вынужденных стационарных колебаний после включения в цепь внешнего источника необходимо некоторое время Δ. Это время по порядку величины равно времени τ затухания свободных колебаний в цепи.

Электрические цепи, в которых происходят установившиеся вынужденные колебания под действием периодического источника тока, называются цепями переменного тока .

Рассмотрим последовательный колебательный контур, то есть -цепь, в которую включен источник тока, напряжение которого изменяется по периодическому закону (рис. 2.3.1):

,

где – амплитуда, ω – круговая частота.

Предполагается, что для электрической цепи, изображенной на рис. 2.3.1, выполнено условие квазистационарности. Поэтому для мгновенных значений токов и напряжений можно записать закон Ома:

Величина – это ЭДС самоиндукции катушки, перенесенная с изменением знака из правой части уравнения в левую. Эту величину принято называть напряжением на катушке индуктивности .

Уравнение вынужденных колебаний можно записать в виде

,

где , и – мгновенные значения напряжений на резисторе, конденсаторе и катушке соответственно. Амплитуды этих напряжений будем обозначать буквами , и . При установившихся вынужденных колебаниях все напряжения изменяются с частотой ω внешнего источника переменного тока. Для наглядного решения уравнения вынужденных колебаний можно использовать метод векторных диаграмм .

На векторной диаграмме колебания определенной заданной частоты ω изображаются с помощью векторов (рис. 2.3.2).

Длины векторов на диаграмме равны амплитудам и колебаний, а наклон к горизонтальной оси определяется фазами колебаний φ1 и φ2. Взаимная ориентация векторов определяется относительным фазовым сдвигом . Вектор, изображающий суммарное колебание, строится на векторной диаграмме по правилу сложения векторов:

Для того, чтобы построить векторную диаграмму напряжений и токов при вынужденных колебаниях в электрической цепи, нужно знать соотношения между амплитудами токов и напряжений и фазовый сдвиг между ними для всех участков цепи.

Рассмотрим по отдельности случаи подключения внешнего источника переменного тока к резистру с сопротивлением , конденсатору с емкостью и катушки с индуктивностью . Во всех трех случаях напряжение на резисторе, конденсаторе и катушке равно напряжению источника переменного тока.

1. Резистор в цепи переменного тока

Фазовый сдвиг между током и напряжением на резисторе равен нулю.

Физическая величина называется активным сопротивлением резистора .

2. Конденсатор в цепи переменного тока

Ток опережает по фазе напряжение на угол

Физическая величина называется емкостным сопротивлением конденсатора .

3. Катушка в цепи переменного тока

Ток отстает по фазе от напряжения на угол

Физическая величина называется индуктивным сопротивлением катушки .

Теперь можно построить векторную диаграмму для последовательного -контура, в котором происходят вынужденные колебания на частоте ω. Поскольку ток, протекающий через последовательно соединенные участки цепи, один и тот же, векторную диаграмму удобно строить относительно вектора, изображающего колебания тока в цепи. Амплитуду тока обозначим через . Фаза тока принимается равной нулю. Это вполне допустимо, так как физический интерес представляют не абсолютные значения фаз, а относительные фазовые сдвиги. Векторная диаграмма для последовательного -контура изображена на рис. 2.3.2.

Векторная диаграмма на рис. 2.3.2 построена для случая, когда или В этом случае напряжение внешнего источника опережает по фазе ток, текущий в цепи, на некоторый угол φ.

Сдвиг фаз φ между приложенным напряжением и током в цепи при резонансе обращается в нуль. Резонанс в последовательной -цепи называется резонансом напряжений . Аналогичным образом с помощью векторной диаграммы можно исследовать явление резонанса при параллельном соединении элементов , и (так называемый резонанс токов ).

При последовательном резонансе () амплитуды и напряжений на конденсаторе и катушке резко возрастают:

В § 2.2 было введено понятие добротности -контура:

Таким образом, при резонансе амплитуды напряжений на конденсаторе и катушке в раз превышают амплитуду напряжения внешнего источника.

Рис. 2.3.4 иллюстрирует явление резонанса в последовательном электрическом контуре. На рисунке графически изображена зависимость отношения амплитуды напряжения на конденсаторе к амплитуде напряжения источника от его частоты ω для различных значений добротности . Кривые на рис. 2.3.3 называются резонансными кривыми .

Можно показать, что максимум резонансных кривых для контуров с низкой добротностью несколько сдвинуты в область низких частот.

Источник