Меню

Подключение двигателя постоянного тока через диодный мост

Подключение двигателя постоянного тока

Клеммник двигателя постоянного тока ЭП-110/245 У3 1Р44 (110В;250Вт) промаркирован в следующей последовательности +Ш1, +Я1, -Я2, -Ш2.Какая схема возбуждения этого двигателя: параллельная,последовательная, или независимая?Как его подключить?
Вот фото

zabj написал :
Клеммник двигателя постоянного тока ЭП-110/245 У3 1Р44 (110В;250Вт) промаркирован в следующей последовательности +Ш1, +Я1, -Я2, -Ш2.Какая схема возбуждения этого двигателя: параллельная,последовательная, или независимая?Как его подключить?
Вот фото

Фото конечно «прекрасно» читаемо.

  1. Подавать на Ш1-Ш2 110v постоянно.
  2. Затем подавать 110v на Я1-Я2.
  3. Для смены направления вращения менять полярность на Я1-Я2.

bu написал :

  1. Для смены направления вращения менять полярность на Я1-Я2.

bu написал :

  1. Подавать на Ш1-Ш2 110v постоянно.
  2. Затем подавать 110v на Я1-Я2.

А если подать сразу на Ш1-Ш2 и Я1-Я2 по 110v ,то чё,пыхнет?

да ну её, эту дугу.

А если подать сразу на Ш1-Ш2 и Я1-Я2 по 110v ,то чё,пыхнет?

Не пыхнет. Варианты разные. Может не стартануть.
Но сначала лучше подать возбуждение и только затем напряжение на якорную обмотку.
А пусковой ток как-то ограничивать собираетесь?

Можно поподробней плиз?

А пусковой ток как-то ограничивать собираетесь?

Не собирался,но предложения буду рад выслушать.

Ну так всё отключить, затем перекидывать

zabj написал :
Не собирался,но предложения буду рад выслушать.

Подавать можно одновременно, но пусковой якорный ток лучше чем-либо ограничить

zabj написал :
Не собирался,но предложения буду рад выслушать.

У ЭП-110/245 номинальный ток 3,3 ампера, сопротивление якоря Rя=1,09 Ом.
При прямом включении на 110 вольт ток якоря в начальный момент Iя = Uя/Rя = 110/1.09 = 100.91 ампер.
Кратковременно конечно, и по мере разгона ток будет падать, но я бы на своем личном двигателе не стал рисковать.
Хотя, если автомат будет соответствующего номинала, то при каждой попытке пуска его будет выбивать.

bu ,
ksiman , Спасибо!Судя по вашим ответам ,-это двигатель с независимым типом возбуждения,поделитесь как это определяется плиз?

Охохох.
Курс электрических машин тяжело в рамках форума излагать.
Никак это не определяется. Всё зависит от того, как подключать обмотку возбуждения и якоря. Соединишь последовательно — будет двигатель последовательного возбуждения, соединишь параллельно — параллельного. Запитаешь обмотку возбуждения от регулируемого источника — будет независимого возбуждения.
По поводу пусковых токов — в инструкции к нему должны быть приведены условия пуска.
А что на валу сидит у него?

Юджин написал :
Охохох.
Курс электрических машин тяжело в рамках форума излагать.
Никак это не определяется. Всё зависит от того, как подключать обмотку возбуждения и якоря. Соединишь последовательно — будет двигатель последовательного возбуждения, соединишь параллельно — параллельного. Запитаешь обмотку возбуждения от регулируемого источника — будет независимого возбуждения.

Во как! Значит я заблуждался . но благодарю вас за разьяснения.

zabj
Про этот двигатель .

Юджин написал :
Охохох.
Курс электрических машин тяжело в рамках форума излагать.
Никак это не определяется. Всё зависит от того, как подключать обмотку возбуждения и якоря. Соединишь последовательно — будет двигатель последовательного возбуждения, соединишь параллельно — параллельного. Запитаешь обмотку возбуждения от регулируемого источника — будет независимого возбуждения.
По поводу пусковых токов — в инструкции к нему должны быть приведены условия пуска.
А что на валу сидит у него?

Ну я не сказал бы так однозначно.

Независимое возбуждение — питание обмотки возбуждения от независимого источника. Т.е. регулирование напряжения на якоре и формирование напряжения на возбуждения не зависят друг от друга. Возможности регулирования полные: U, Ф, R.

У двигателей параллельного возбуждения обмотка якоря и обмотка возбуждения включены параллельно, что подразумевает их питание от одного источника. Возможности регулирования ограничены изменением сопротивления якорной цепи (R) и/или сопротивления цепи возбуждения (Ф).

Последовательное возбуждение это особая «песня». Двигатель однозначно должен иметь такое исполнение. Т.к. подразумевает формирование магнитного потока в функции тока якоря.
Для двигателя эп-110/245 — нереализуемо в принципе.
Сопротивление обмотки возбуждения Rв=680 Ом. Если включить последовательно с Rя=1.09 Ом, то двигатель под нагрузкой не тронется с места, а если запустить на хх, то будет «падать» в режим кз при приложении нагрузки.

Источник

Способы запуска электродвигателя постоянного тока

Хорошие тяговые характеристики электрических машин постоянного тока сделали их неотъемлемым элементом большинства устройств промышленной и бытовой механизации. Но вместе с тем возникает и существенная проблема значительных пусковых токов, в сравнении с асинхронными электродвигателями, работающих на переменном напряжении. Именно поэтому многие специалисты детально изучают способы запуска электродвигателя постоянного тока, прежде чем включить агрегат.

Прямой пуск

Из всех электродвигателей постоянного тока основная градация при выборе способа их запуска должна учитывать мощность устройства.

В целом выделяют три вида пуска:

  • малой мощности;
  • средней;
  • большой мощности.

Для прямого запуска подойдут только маломощные электродвигатели, которые потребляют до 1кВт электроэнергии в сети. При прямых запусках электродвигателя все напряжение сразу подается на рабочую обмотку. Это обуславливает возникновение максимального пускового тока из-за отсутствия естественной компенсации за счет ЭДС противодействия.

С физической точки зрения ситуация в обмотках ротора будет выглядеть следующим образом: в момент подачи напряжения сила тока в обмотках равна нулю, поэтому его значение будет определяться по формуле:

U – приложенная к выводам номинальное напряжение, Rобм – сопротивление катушки.

Читайте также:  Максимальная сила тока в сети 220 вольт

В этот момент величина токовой нагрузки электродвигателя постоянного тока является максимальной, он может отличаться от номинального значения в 1,5 – 2,5 раза. После этого протекание тока обуславливает генерацию ЭДС противодействия, которая компенсирует пусковую нагрузку до установки номинальной мощности, тогда ток станет:

В мощных устройствах сопротивление обмоток якоря может равняться 1 или 0,5 Ом, из-за чего ток при запуске электродвигателя может достигнуть 200 – 500 А, что в 10 – 50 раз будет превышать допустимые величины. Это, в свою очередь, может привести к термическому отпуску металла, деформации проводников, разрушению колец или щеток скользящего контакта. Поэтому двигатели постоянного тока средней и большой мощности должны вводиться в работу реостатным запуском или путем подачи заведомо пониженного напряжения, прямой пуск для них крайне опасен.

Пуск с помощью пускового реостата

В этом случае в цепь вводится переменное сопротивление, которое на начальном этапе обеспечивает снижение токовой нагрузки, пока вращение ротора не достигнет установленных оборотов. По мере стабилизации ампеража до стандартной величины в реостате уменьшается сопротивление от максимального значения до минимального.

Расчет электрической величины в этом случае будет производиться по формуле:

В лабораторных условиях уменьшение нагрузки может производиться вручную – посредством перемещения ползунка реостата. Однако в промышленности такой метод не получил широкого распространения, так как процесс не согласовывается с токовыми величинами. Поэтому применяется регулировка по току, по ЭДС или по времени, в первом случае задействуется измерение величины в обмотках возбуждения, во втором, на каждую ступень применяется выдержка времени.

Оба метода используются для запуска электродвигателей:

  • с последовательным;
  • с параллельным возбуждением;
  • с независимым возбуждением.

Запуск ДПТ с параллельным возбуждением

Такой запуск электродвигателя осуществляется посредством включения и обмотки возбуждения, и якорной к напряжению питания электросети, друг относительно друга они располагаются параллельно. То есть каждая из обмоток электродвигателя постоянного тока находятся под одинаковой разностью потенциалов. Этот метод запуска обеспечивает жесткий режим работы, используемый в станочном оборудовании. Токовая нагрузка во вспомогательной обмотке при запуске имеет сравнительно меньший ток, чем обмотки статора или ротора.

Для контроля пусковых характеристик сопротивления вводятся в обе цепи:

Запуск ДПТ с параллельным возбуждением

Рис 1. Запуск ДПТ с параллельным возбуждением

На начальном этапе вращения вала позиции реостата обеспечивают снижение нагрузки на электродвигатель, а затем их обратно выводят в положение нулевого сопротивления. При затяжных запусках выполняется автоматизация и комбинация нескольких ступеней пусковых реостатов или отдельных резисторов, пример такой схемы включения приведен на рисунке ниже:

Ступенчатый пуск двигателя параллельного возбуждения

Рис. 2. Ступенчатый пуск двигателя параллельного возбуждения

  • При подаче напряжения питания на электродвигатель ток, протекающий через рабочие обмотки и обмотку возбуждения, за счет магазина сопротивлений Rпуск1, Rпуск2, Rпуск3 нагрузка ограничивается до минимальной величины.
  • После достижения порогового значения минимума токовой величины происходит последовательное срабатывание реле K1, K2, K3.
  • В результате замыкания контактов реле K1.1 шунтируется первый резистор, рабочая характеристика в цепи питания электродвигателя скачкообразно повышается.
  • Но после снижения ниже установленного предела замыкаются контакты K2.2 и процесс повторяется снова, пока электрическая машина не достигнет номинальной частоты вращения.

Торможение электродвигателя постоянного тока может производиться в обратной последовательности за счет тех же резисторов.

Запуск ДПТ с последовательным возбуждением

Запуск ДПТ с последовательным возбуждением

Рис. 3. Запуск ДПТ с последовательным возбуждением

На рисунке выше приведена принципиальная схема подключения электродвигателя с последовательным возбуждением. Ее отличительная особенность заключается в последовательном соединении катушки возбуждения Lвозбуждения и непосредственно мотора, переменное сопротивление Rякоря также вводится последовательно.

По цепи обеих катушек протекает одинаковая токовая величина, эта схема обладает хорошими параметрами запуска, поэтому ее часто используют в электрическом транспорте. Такой электродвигатель запрещено включать без усилия на валу, а регулирование частоты осуществляется в соответствии с нагрузкой.

Пуск ДПТ с независимым возбуждением

Подключение электродвигателя в цепь с независимым возбуждением производится путем ее запитки от отдельного источника.

Запуск ДПТ с независимым возбуждением

Рис. 4. Запуск ДПТ с независимым возбуждением

На схеме приведен пример независимого подключения, здесь катушка Lвозбуждения и сопротивление в ее цепи Rвозбуждения получают питание отдельно от обмоток двигателя током независимого устройства. Для обмоток двигателя также включается регулировочный реостат Rякоря. При этом способе запуска машина постоянного тока не должна включаться без нагрузки или с минимальным усилием на валу, так как это приведет к нарастанию оборотов и последующей поломке.

Пуск путем изменения питающего напряжения

Одним из вариантов снижения токовой нагрузки при запуске электродвигателя является уменьшение питающего номинала посредством генератора постоянного напряжения или управляемого выпрямителя.

С физической точки зрения установка реостата обеспечивает тот же эффект, но с увеличением мощности электродвигателя возрастает и постоянная токовая нагрузка, существенно повышаются потери на реостатах. Поэтому снижение постоянного напряжения выполняет отдельное устройство на базе микросхемы, пример которого приведен на рисунке ниже:

Схема пуска с изменением питающего напряжения

Рис. 5. Схема пуска с изменением питающего напряжения

Источник

Что такое диодный мост, принцип его работы и схема подключения

От энергоснабжающей организации до потребителей доставляется переменное напряжение. Это связано с особенностями транспортировки электроэнергии. Но большая часть бытовых (и, частично, производственных) электроприемников требует питания постоянным напряжением. Для его получения требуются преобразователи. Во многих случаях их строят по схеме «понижающий трансформатор – выпрямитель – сглаживающий фильтр» (за исключением импульсных блоков питания). В качестве выпрямителя используются диоды, включенные по мостовой схеме.

Читайте также:  Заграждающие фильтры пропускают токи с частотами

Схема диодного моста.

Для чего нужен диодный мост и как он работает

Диодный мост используется в качестве схемы выпрямления, преобразующей переменное напряжение в постоянное. Принцип его действия основан на односторонней проводимости — свойстве полупроводникового диода пропускать ток только в одном направлении. Простейшим выпрямителем может служить и одиночный диод.

Схема простейшего выпрямителя с одним диодом.

При подобном включении нижняя (отрицательная) часть синусоиды «срезается». Такой способ имеет недостатки:

  • форма выходного напряжения далека от постоянной, требуется большой и громоздкий конденсатор в качестве сглаживающего фильтра;
  • мощность источника переменного тока используется максимум наполовину.

Форма выходного напряжения схемы с одним диодом.

Ток через нагрузку повторяет форму выходного напряжения. Поэтому лучше использовать двухполупериодный выпрямитель в виде диодного моста. Если включить четыре диода по указанной схеме и подключить нагрузку, то при подаче на вход переменного напряжения блок будет работать так:

Схема работы диодного моста с четырьмя диодами.

При положительном напряжении (верхняя часть синусоиды, красная стрелка) ток пойдет через диод VD2, нагрузку, VD3. При отрицательном (нижняя часть синусоиды, зеленая стрелка) через диод VD4, нагрузку, VD1. В итоге за один период ток дважды проходит через нагрузку в одном направлении.

Форма выходного напряжения схемы с четырьмя диодами.

Форма выходного напряжения гораздо ближе к прямой, хотя уровень пульсаций довольно высок. Мощность источника используется полностью.

Если имеется источник трехфазного напряжения необходимой амплитуды, можно сделать мост по такой схеме:

Схема диодного моста для трёхфазного источника переменного напряжения.

В нём на нагрузке будут складываться три тока, повторяющие форму выходного напряжения, со сдвигом фаз в 120 градусов:

Форму синусоид выходного напряжения, со сдвигом фаз в 120 градусов.

Выходное напряжение будет огибать верхушки синусоид. Видно, что напряжение пульсирует гораздо меньше, чем в однофазной схеме, его форма более близка к прямой. В этом случае ёмкость сглаживающего фильтра будет минимальной.

И еще один вариант моста – управляемый. В нём два диода заменены тиристорами – электронными приборами, которые открываются при подаче сигнала на управляющий электрод. В открытом виде тиристоры ведут себя практически как обычные диоды. Схема принимает такой вид:

Схема управляемого диодного моста с тиристорами.

Сигналы включения подаются от схемы управления в согласованные моменты времени, отключение происходит в момент перехода напряжения через ноль. Потом напряжение усредняется на конденсаторе, и этим средним уровнем можно управлять.

Вид выходного напряжения после управляемого диодного моста.

Обозначение диодного моста и схема подключения

Так как мост из диодов может быть построен по различным схемам, а элементов в нём содержится немного, то в большинстве случаев обозначение выпрямительного узла производят, просто рисуя его принципиальную схему. Если это неприемлемо – например, в случае построения блок-схемы – то мост указывается в виде символа, которым указывают любой преобразователь переменного напряжения в постоянное:

Блок схема диодного моста.

» означает цепи переменного тока, символ «=» – цепи постоянного тока, а «+» и «-» – выходную полярность.

Если выпрямитель построен по классической мостовой схеме из 4 диодов, то допускается немного упрощенное изображение:

Упрощённое изображение диодного моста.

Подключается вход выпрямительного блока к выходным терминалам источника переменного тока (в большинстве случаев им служит понижающий трансформатор) без соблюдения полярности – любой выходной вывод подключается к любому входному. Выход моста подключается к нагрузке. Она может требовать соблюдения полюсности (включая стабилизатор, сглаживающий фильтр), а может и не требовать.

Схема диодного моста с источником переменного напряжения.

Диодный мост может быть подключен к источнику постоянного напряжения. В этом случае получается схема защиты от непреднамеренной переполюсовки – при любом подключении входов моста к выходу блока питания, полярность напряжения на его выходе не изменится.

Основные технические характеристики

При выборе диодов или готового моста в первую очередь надо смотреть на наибольший рабочий прямой ток. Он должен с запасом превышать ток нагрузки. Если эта величина неизвестна, а известна мощность, её надо пересчитать в ток по формуле Iнагр=Pнагр/Uвых. Для увеличения допустимого тока полупроводниковые приборы можно соединять параллельно – наибольший ток нагрузки делится на количество диодов. Диоды в одной ветви моста в этом случае лучше подобрать по близкому значению падения напряжения в открытом состоянии.

Второй важный параметр – прямое напряжение, на которое рассчитан мост или его элементы. Оно не должно быть ниже выходного напряжения источника переменного тока (амплитудного значения!). Для надежной работы устройства надо взять запас в 20-30%. Для увеличения допустимого напряжения диоды можно включать последовательно – в каждое плечо моста.

Этих двух параметров достаточно для предварительного решения об использовании диодов в выпрямительном устройстве, но надо обратить внимание и на некоторые другие характеристики:

  • максимальная рабочая частота – обычно несколько килогерц и для работы на промышленных частотах 50 или 100 Гц значения не имеет, а если диод будет работать в импульсной схеме, этот параметр может стать определяющим;
  • падение напряжения в открытом состоянии у кремниевых диодов составляет около 0,6 В, что неважно для выходного напряжения, например, в 36 В, но может быть критичным при работе ниже 5 В – в этом случае надо выбирать диоды Шоттки, которые характеризуются низким значением этого параметра.

Разновидности диодных мостов и их маркировка

Диодный мост можно собрать на дискретных диодах. Чтобы соблюсти полярность, надо обратить внимание на маркировку. В некоторых случаях метка в виде рисунка нанесена прямо на корпус полупроводникового прибора. Это характерно для изделий отечественного производства.

Внешний вид дидного маста отечественного производства.

Зарубежные (и многие современные российские) приборы маркируются точкой или кольцом. В большинстве случаев так обозначается анод, но гарантии нет. Лучше посмотреть справочник или воспользоваться тестером.

Читайте также:  Расчет номинального тока для генераторов

Внешний вид диода.

Можно сделать мост из сборки – четыре диода объединены в одном корпусе, а соединение выводов можно выполнить внешними проводниками (например, на печатной плате). Схемы сборок могут быть разнообразными, поэтому для правильного соединения надо смотреть даташиты.

Диодная сборка BAV99S.

Например, у диодной сборки BAV99S, содержащей 4 диода, но имеющей только 6 выводов, внутри имеется два полумоста, соединенных следующим образом (на корпусе около вывода 1 имеется точка):

Схема диодной сборки BAV99S.

Чтобы получить полноценный мост, надо соединить внешними проводниками соответствующие выводы (красным показана трассировка дорожек в случае использования печатного монтажа):

Соединение внешними проводниками сборки BAV99S, для получения полноценного диодного моста.

В этом случае переменное напряжение подводится к выводам 3 и 6. Положительный полюс постоянного снимается с вывода 5 или 2, а отрицательный – 4 или 1.

И самый простой вариант – это сборка с готовым мостом внутри. Из отечественных изделий это могут быть КЦ402, КЦ405, существуют мосты-сборки зарубежного производства. Маркировка выводов во многих случаях нанесена прямо на корпус, и задача сводится только к корректному выбору по характеристикам и к безошибочному подключению. Если наружного обозначения выводов нет, придется обратиться к справочнику.

Диодная сборка с диодным мостом КЦ405.

Преимущества и недостатки

Преимущества диодного моста общеизвестны:

  • отработанные десятилетиями схемы;
  • простота сборки и подключения;
  • несложная диагностика неисправности и простота ремонта.

В качестве недостатков надо упомянуть рост габаритов и веса схемы при увеличении мощности, а также необходимости использования радиаторов для мощных диодов. Но с этим сделать ничего нельзя – физику не обмануть. Когда эти условия станут неприемлемыми, надо решать вопрос о переходе к импульсной схеме источника питания. Кстати, мостовое включение диодов может быть использовано и в ней.

Также надо отметить форму выходного напряжения, далекую от постоянной. Для работы с потребителями, предъявляющими требования к стабильности питающего напряжения, надо использовать мост совместно со сглаживающими фильтрами, а при необходимости и стабилизаторами на выходе.

Источник



Подключение двигателя постоянного тока через диодный мост

Текущее время: Вс апр 25, 2021 18:41:09

Часовой пояс: UTC + 3 часа

DC двигатель постоянного тока 220v к розетке AC 220v

Страница 1 из 2 [ Сообщений: 38 ] На страницу 1 , 2 След.

Здравствуйте помогите кто нибудь со схемой. У меня есть один мотор который мне нужно подключить к розетки 220в, хотя там стабильные 230в. Так вот как мотор 220в постоянного тока подключить к розетке переменного 220в? Диодным мостом прокатит? Мотор нужен для домашнего токарного станка по дереву. К сожалению альтернатив нету есть только этот мотор

Изображение

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Ни чего что напряжение после диодного моста U*1.4

Компания «Компэл» и Analog Devices приглашают всех желающих 27/04/2021 принять участие в вебинаре, посвященном решениям Analog Devices для гальванической изоляции. В программе вебинара: технологии гальванической изоляции iCoupler, цифровые изоляторы, технология isoPower, гальванически изолированные интерфейсы (RS-485, CAN, USB, I2C, LVDS) и другое. Вебинар будет интересен разработчикам промышленной автоматики и медицинской техники.

_________________
Мудрость приходит вместе с импотенцией.

Широкий ассортимент винтовых клеммников Degson включает в себя различные вариации с шагом выводов от 2,54 до 15 мм, с числом ярусов от одного до трёх и углами подключения проводника 45°, 90°, 180°. К тому же Degson предлагает довольно большой выбор клеммных винтовых колодок кастомизированных цветов.

Двигатель на постоянных магнитах. Один электрик сказал если его брать как генератор то с него можно спокойно машинный аккумулятор зарядить. Сам я не знаю даже как в 220 подключить. Мне нужна какая нибудь рабочая схема и с номиналами.
За любой ответ с наводкой буду премного благодарен.

Изображение
Вот так наверное не пойдёт да?

_________________
i’ll be back

ПРИСТ расширяет ассортимент

_________________
«То, что я понял, — прекрасно, из этого я заключаю, что остальное, что я не понял, — тоже прекрасно». Сократ.

после выпрямителя идёт синусоидальный пульсирующий ток, но никак не постоянный. Постоянный ток по определению не изменяется по величине и направлению.

_________________
«То, что я понял, — прекрасно, из этого я заключаю, что остальное, что я не понял, — тоже прекрасно». Сократ.

Я вообще никогда ни с кем не спорю, но это выражение бессмысленно, как «воздушная скорость подводной лодки». В том, что получается после подачи синусоидального сигнала 50Гц на мост, нет не только синусоиды, но и вообще 1-й гармоники 50Гц.

Амплитуда для данной формы сигнала — это фиксированное число, пульсировать которое не может. Правильнее было бы говорить об мгновенном значении.

Блин, никогда преподом и нормоконтролем не работал, но за долгую инженерскую жизнь отдел стандартизации приучил к точности формулировок. Иногда из-за этого прогрессивка страдала

отнюдь. Летающая подводная лодка Ушакова имела скорость полёта почти 200 км/ч. Всё в нашей жизни имеет смысл.

насчёт «синусоидальный» я написал лишнее, но вот просто «пульсирующий ток» наиболее подходящее определение.

_________________
«То, что я понял, — прекрасно, из этого я заключаю, что остальное, что я не понял, — тоже прекрасно». Сократ.

Источник

Различные счетчики © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.