Меню

Почему сердечник якоря машины постоянного тока набирают из тонких листов электрической стали

Машины постоянного тока

К сожалению, здесь только текст без рисунков и формул.
Лекцию «Основы теории машин постоянного тока» с рисунками и формулами можно найти, если перейти по ссылке Электрические машины, размещенной в конце моей страницы Прозы.ру.

Лекция 5. Основы теории машин постоянного тока
§1 Коллекторный тип машины постоянного тока
П1 Принцип работы машины постоянного тока

Принцип работы генератора постоянного тока рассмотрим на примере простейшего одновиткового генератора с одной парой полюсов и одной парой щеток изображен на рисунке 40 .

Рис.40 Модель генератора постоянного тока

Его коллектор, состоит из двух полуколец. Когда, в процессе вращения якоря, в одновитковой обмотке меняется направление индуцируемой ЭДС, тогда полукольца меняют щетки. Выпрямленное напряжение такого генератора представляет собой пульсирующее напряжение одной полярности составленное из половинок синусоиды. Обычно, коллектор представляет собой цилиндрическую конструкцию, набранную из множества медных пластин — ламелей, расположенных вдоль образующей цилиндра (рисунок 41).

Рис.41 Разрез коллектора. Ламель

Ламели изолированы друг относительно друга. Коллекторные пластины соединены с секциями обмотки якоря. Секцией называется часть обмотки якоря непосредственно соединенная с двумя коллекторными пластинами. (1) Как правило, щетка представляет собой, снабженный гибким токоотводом, графитовый или медно-графитовый параллелепипед, скользящий в процессе вращения якоря по ламелям коллектора. Щетки расположены так, что соприкасаясь со следующими по ходу вращения секциями обмотки, обеспечивают практически постоянное максимальное напряжение между щетками. В этом случае, выпрямленное напряжение состоит из верхушек синусоиды, и, при достаточном числе ламелей коллектора, напряжение между щетками можно считать постоянным.
По свойству обратимости электрических машин, рассмотренная конструкция будет работать в двигательном режиме, если подвести постоянное напряжение к щеткам.
Вспомнив изученное в разделе синхронные машины, можно сделать вывод, что генератор постоянного тока можно определить, как снабженный механическим выпрямителем обращенный синхронный генератор с индуктором на статоре (станине) и обмоткой на роторе (якоре). В обмотке индуктора ( полюсов) протекает постоянный ток. В обмотке якоря, так же, как в обмотке статора синхронного генератора, индуцируется переменный ток. Переменный ток якоря выпрямляется с помощью механического выпрямителя — коллектора.(2)
Аналогично, двигатель постоянного тока может рассматриваться, как обращенный синхронный двигатель с коллектором, преобразовывающим постоянный ток сети в переменный ток в обмотках. Переменный ток в витке простейшего двигателя постоянного тока необходим для того, чтобы направление вращающего момента, действующего на рамку с током в магнитном поле, оставалось неизменным при каждом полуобороте рамки. Таким образом, в двигателе постоянного тока коллектор выполняет функции инвертора, то есть преобразователя постоянного тока в переменный.(3)
П2 Конструкция якоря машины постоянного тока (4)
Обычно, якорь представляет собой конструкцию из двух соосных цилиндров, сидящих на одном валу. Один цилиндр — коллектор, набранный из медных ламелей, второй — сердечник якоря. Ламель коллектора (рисунок 41) представляет собой фигурную конструкцию трапециевидного сечения. Ламели, разделенные слоями миканита, специального изоляционного материала на основе слюды, набираются по окружности вала якоря. Специальные выступы (петушки) на коллекторе служат для присоединения к секциям обмотки якоря. Рядом с коллектором на валу якоря находится сердечник якоря. Так как в обмотке якоря течет переменный ток, то его, для уменьшения потерь на вихревые токи, набирают из штампованных листов электротехнической стали.(рисунок 42).

Рис. 42 Лист стали сердечника якоря

По окружности листов имеются пазы под якорную обмотку, а вокруг центрального отверстия находятся отверстия вентиляционных каналов. В крупных машинах сердечник собирается из пакетов, толщиной 30 -50 миллиметров, разделенных воздушными промежутками, играющих роль вентиляционных каналов. В пазы сердечника якоря, идущие параллельно оси, или с некоторым скосом, укладывается изолированный провод обмотки. Концы секций обмотки со стороны коллектора закрепляются пайкой на петушках. Фрагменты обмотки , выходящие за пределы пазов со стороны противоположной коллектору, называются лобовыми частями. Обычно, сразу за лобовыми частями, на вал якоря насаживается крылатка вентилятора.
П3 Конструкция неподвижной части машины постоянного тока(5)
Неподвижная часть машины постоянного тока, как правило, включает в себя станину 19, главные полюса 11, щеточный аппарат 3,4 и подшипниковые щиты 1,17 (рисунок 43).

Рис.43 Конструкция машины постоянного тока

Станина является конструктивной основой машины, а также выполняет функцию части магнитопровода. К станине крепятся остальные части машины. Она , обычно, выполняется из толстых листов катаной стали и имеет вид полого цилиндра с крепежными лапами. У крупных машин станина делается разъемной.
Главные полюса создают основное магнитное поле машины, то есть являются индуктором. Сердечники главных полюсов (полюсные башмаки) набирают из листов электротехнической стали. Со стороны, обращенной к якорю, сердечник полюса имеет расширение — полюсный наконечник, для облегчения проведения магнитного потока через воздушный зазор машины.
На сердечник главных полюсов укладывается обмотка индуктора.
Подшипниковые щиты удерживают подшипники, в которых вращается якорь, и предохраняют от попадания внутрь машины посторонних предметов. Со стороны коллектора, подшипниковый щит удерживает траверсу (рис 44) со щеточным аппаратом.

Рис. 44 Щеточная траверса и щеткодержатель

Траверса позволяет перемещать щеточный аппарат вдоль или против направления вращения. На траверсе укреплены стержни — щеточные пальцы, к которых закреплены щеткодержатели со щетками. Щетки прижимаются к коллектору пружинами щеткодержателей, и, по мере износа от трения по коллектору, могут перемещаться в обойме щеткодержателя.

Вопросы для самоконтроля.
1 Что такое секция обмотки якоря? (1).
2. Каково назначение коллектора генератора постоянного тока? (2)
3. Каково назначение коллектора двигателя постоянного тока?(3)
4. Расскажите устройство якоря машины постоянного тока (4)
5. Расскажите об устройстве неподвижных частей МПТ. (5)
§2 Обмотки и ЭДС якоря машины постоянного тока
П1 Кольцевые и барабанные якоря.
В зависимости от способа укладки обмотки различают якоря кольцевые и барабанные. В кольцевых якорях обмотка навивается как на кольцо, так что проводники проходят как снаружи, так и внутри кольцевого ферромагнитного каркаса якоря. В барабанных якорях обмотка навивается на сердечник якоря, как на барабан, так что витки проходят только по наружной поверхности сердечника якоря.(1) В настоящее время кольцевые якоря не применяются, ибо проводники, проходящие внутри ферромагнитного каркаса якоря, не работают, так как экранированы от магнитного поля индуктора. Однако, с методической точки зрения, кольцевой якорь очень удобен, так как принцип укладки его обмотки воспринимается значительно легче. Поэтому принято, первоначальные объяснения способов построения якорных обмоток, проводить на примере кольцевых якорей.
П2 Простейшая обмотка кольцевого якоря с одной парой полюсов, шестью пазами и шестью коллекторными пластинами. (2)
Представим себе кольцевой ферромагнитный сердечник с шестью пазами на внешней стороне, равномерно распределенными параллельно оси вдоль окружности. На кольцо наложены шесть витков провода, соединенных один за другим. Наружная (прямая) сторона каждого витка уложена в свой паз и называется активной стороной. Обратная сторона каждого витка не является активной стороной, так как лежит внутри кольца, вне магнитного поля полюсов. Сердечник с обмоткой надет на ось якоря. На оси якоря закреплен коллектор, состоящий из шести ламелей. Сторона витка лежащая в пазу присоединена к своей коллекторной пластине. На рисунке 45 представлен развернутый вид такой конструкции.

Рис. 45 Развернутый вид простой петлевой обмотки кольцевого якоря

Пунктиром отмечено расположение полюсов для фиксированного момента времени. В процессе вращения якоря щетки и полюса перемещаются относительно витков обмотки. Щетки сдвинуты на 90 градусов от плоскости проходящей через центры полюсов и ось машины. В этом случае, для фиксированного момента времени, 1, 2 и 3 секции расположены под северным , а 4, 5 и 6 секции под южным полюсом. Если считать, что проводники относительно полюсов движутся влево, то направление действия ЭДС и знаки щеток соответствуют рисунку. Обмотка якоря состоит из двух параллельных ветвей, показанных на рисунке 45 справа. Если внешняя цепь генератора замкнута, то ось магнитного поля тока якоря сдвинута относительно магнитной оси полюсов на 90 градусов по направлению вращения якоря, размагничивая тот край полюса, на который проводник набегает и намагничивая тот , с которого проводник сбегает.
П3 Звезда ЭДС простейшей петлевой обмотки кольцевого якоря с одной парой полюсов, шестью пазами и шестью коллекторными пластинами
Будем считать, что распределение магнитной индукции вдоль зазора машины постоянного тока от магнитного поля полюсов подчиняется синусоидальному закону. Направление вектора магнитной индукции везде перпендикулярно зазору. Под центром северного полюса вектор магнитной индукции максимален и входит в якорь. Под центром южного полюса — выходит из якоря. В точках, сдвинутых на 90 электрических градусов от магнитной оси полюсов, магнитная индукция равна нулю. Электродвижущие силы, индуцируемые в каждой секции обмотки, изменяются по синусоидальному закону, фаза ЭДС каждой секции зависит от ее расположения относительно магнитной оси.
Будем считать, что секция 1 миновала максимум синусоиды магнитной индукции и уходит из под северного полюса. Секция 2 проходит максимум индукции под северным полюсом, а секция 5 проходит максимум индукции под южным полюсом. Тогда для момента , изображенного на рисунке 45 фаза ЭДС в первой секции равна 150 градусов, фаза ЭДС во второй секции — 90 градусов, в третьей — 30 градусов, в четвертой -330 градусов, в пятой — 270 градусов и в шестой — 210 градусов. Векторная диаграмма ЭДС секций якоря, носящая название звезды пазовых ЭДС, изображена на рисунке 46. (3)

Рис. 46 Звезда пазовых ЭДС простой петлевой обмотки

Если вспомнить, что ламели отделены одна от другой слоями изоляции, то становится понятно, что первая, вторая и третья секции включены последовательно и образуют одну ветвь. Вторая ветвь состоит из четвертой, пятой и шестой последовательно соединенных секций. Первая и вторая ветви соединены между собой параллельно и подключены, в рассматриваемый момент, к одной паре ламелей 1-4. Первая ламель соединена со щеткой минус, четвертая ламель – со щеткой плюс. Вектор ЭДС ветви может быть получен геометрическим суммированием векторов соответствующих ЭДС секций. По общему правилу, проекция результирующего вектора на ось ординат дает действующее значение ЭДС ветви. Анализируя звезду пазовых ЭДС можно видеть, одну из причин, почему щетки устанавливают по линии геометрической нейтрали: В ветвях ЭДС секций действуют согласно и результирующая ЭДС ветви максимальна. Наоборот, если щетки установлены под центрами полюсов, то проекция результирующего вектора ЭДС ветви на ось ординат равна нулю, а, значит, равно нулю действующее значение ЭДС ветви.
Звезда пазовых ЭДС простой петлевой обмотки с одной парой полюсов, но с другим числом пазов и секций может отличаться только масштабом и числом лучей. Второй причиной установки щеток на нейтрали является желательность иметь переключение секций, при скольжении ламелей возле щеток, когда ток в секции проходит через нуль.
П4 Звезды ЭДС петлевой обмотки многополюсной машины
Число пар полюсов машины постоянного тока равно числу геометрических нейтралей, и машине постоянного тока с простой петлевой обмоткой на кольцевом якоре, имеющей n пар полюсов, требуется n пар щеток. Звезда пазовых ЭДС простой петлевой обмотки кольцевого якоря, установленного в машину с другим числом пар полюсов, будет отличаться от исходной. Например, якорь с 24 пазами и 24 коллекторными пластинами в машине одной парой полюсов будет иметь двадцатичетырехлучевую звезду пазовых ЭДС . Этот же якорь в машине с двумя парами полюсов имеет двойную двенадцатилучевую звезду, а с тремя парами полюсов — тройную восьмилучевую звезду. При четырех парах полюсов векторная диаграмма ЭДС секций обмотки якоря состоит из четырех шестилучевых звезд. Таким образом, машина с n пар полюсов и простой петлевой обмоткой якоря имеет n пар параллельных ветвей.(4) Векторная диаграмма ЭДС секций ее обмотки состоит из n одинаковых звезд пазовых ЭДС. Число лучей для каждой звезды можно получить, разделив число пазов якоря на число пар полюсов.
П5 Волновая обмотка кольцевого якоря
Для многополюсной машины возможно такое построение обмотки, когда после первого витка переходят не к следующему по порядку пазу, а к пазу лежащему под следующей парой полюсов примерно на таком же месте, и только пройдя под всеми одноименными полюсами переходят к пазу соседнему с первым. Для того, чтобы все шаги от одного одноименного полюса к другому были одинаковой длины необходимо, чтобы выполнялось равенство
(5)
Здесь, z — число пазов ротора, n — число пар полюсов, k- целое число, число пазов по ротору между следующими друг за другом по схеме обмотки витками. Если то после обхода по окружности якоря провод обмотки прейдет к следующему от первого по ходу обмотки пазу. В противном случае провод обмотки прейдет к предыдущему пазу.
Каждая секция волновой обмотки состоит из n витков. (6)Так как положение витков одной и той же секции относительно одноименных полюсов не совсем одинаково ( — дробное число), то сложение ЭДС витков в секции следует производить геометрически. Векторная диаграмма ЭДС секций волновой обмотки всегда представляет собой одинарную звезду. Простая волновая обмотка машины постоянного тока имеет одну пару параллельных ветвей и может иметь одну пару щеток. Но если машина большой мощности, то для улучшения условий токосъема ставят n пар щеток, по числу пар полюсов. Для машин малой мощности ограничиваются одной парой щеток
П6 Особенности обмоток барабанных якорей
В настоящее время кольцевые якоря не применяются, так как в них неэкономично используются обмоточный провод.(7) Участвует в процессе преобразования энергии только одна, активная сторона каждого витка обмотки. В барабанных якорях обе половины каждого витка находятся в магнитном поле полюсов, одна под северным, а другая под южным полюсом. Таким образом, в каждом пазу барабанного якоря находится две активных стороны . На рисунке 47 представлена развернутая волновая обмотка барабанного якоря с двенадцатью пазами , двумя парами полюсов и двенадцатью коллекторными пластинами.

Читайте также:  Основные характеристики источников постоянного тока

Рис.47 Простая волновая обмотка барабанного якоря

Сплошной линией показана одна (прямая) сторона витка, пунктирной линией — вторая (обратная). Также как в обмотке кольцевого якоря, каждая прямая половина витка соединена с одноименной коллекторной пластиной. В пятом пазу лежит прямая сторона пятого витка, соединенная с пятой коллекторной пластиной, и обратная сторона второго. Обратная сторона пятого витка лежит в восьмом пазу вместе с прямой стороной восьмого витка, присоединенной к восьмой коллекторной пластине. Обратная сторона восьмого витка лежит в одиннадцатом пазу вместе с прямой стороной одиннадцатого витка, присоединенной с к одиннадцатой коллекторной пластине. Таким образом, обе стороны каждого витка являются активными, поэтому лучи звезды ЭДС обмотки барабанного якоря будут длиннее соответствующих лучей звезды обмотки кольцевого якоря в два раза.

Рис. 48 Схема параллельных ветвей волновой обмотки барабанного якоря

На рисунке 48 представлена схема параллельных ветвей этой обмотки, а на рисунке 49 – звезда пазовых ЭДС.

Рис. 49 Звезда пазовых ЭДС волновой обмотки

П7 Электрическая нейтраль, полезный магнитный поток и ЭДС якоря
Будем считать, что распределение индукции в зазоре машины от магнитного поля полюсов подчиняется синусоидальному закону. Геометрической нейтралью называют линию, повернутую на 90 электрических градусов от оси магнитного полюса.(8) На геометрической нейтрали в зазоре машины магнитная индукция полюсов равна нулю.
Если щетки стоят по линии геометрической нейтрали ( то есть, коммутируют секции обмотки якоря проходящие геометрическую нейтраль), то потокосцепление обмотки якоря с магнитным полем полюсов максимально. При сдвиге щеток с геометрической нейтрали потокосцепление уменьшается и при расположении щеток на магнитной оси машины потокосцепление якоря от магнитного поля полюсов равно нулю. В теории электрических машин принято интерпретировать уменьшение потокосцепления обмотки якоря при сдвиге щеток с нейтрали, как уменьшение полезного магнитного потока полюсов. (9)Электродвижущую силу, индуцируемую в обмотке якоря, определяют по полезному магнитному потоку, используя следующую формулу

Здесь р- число пар полюсов, n — число оборотов якоря в секунду, N — число проводников в пазах обмотки, а — число пар параллельных ветвей, Ф — полезный магнитный поток полюсов. Обозначив, имеем:
(10)
Здесь — частота вращения якоря в радиан в секунду.
Вопросы для самоконтроля.
1. Чем отличаются кольцевые якоря от барабанных? (1)
2. Как устроена простейшая обмотка кольцевого якоря с одной парой полюсов, шестью пазами и шестью коллекторными пластинами? (2)
3. Что такое звезда пазовых ЭДС? (3)
4. Сколько параллельных ветвей имеет четырехполюсная машина с простой петлевой обмоткой? (4)
5. Какое условие должно выполняться для обеспечения равенства шагов волновой обмотки якоря? (5)
6. Сколько витков содержит секция волновой обмотки четырех полюсной машины? (6)
7. Почему кольцевые якоря в настоящее время не применяются? (7)
8. Что такое геометрическая нейтраль машины? (8)
9. Как изменяется полезный магнитный поток при сдвиге щеток с геометрической нейтрали? (9)
10. Запишите формулу ЭДС якорной обмотки в функции частоты вращения якоря и полезного магнитного потока .(10)
§3 Процессы преобразования энергии в машинах постоянного тока
П1 Энергетическая диаграмма генератора постоянного тока
Нарисуем схему замещения генератора постоянного тока в виде идеального источника постоянного напряжения и резистора внутреннего сопротивления (рисунок 50 а).

Рис. 51 Энергетическая диаграмма двигателя постоянного тока

На рисунке стрелками показаны условно положительные направление тока напряжения и ЭДС, выбранные так, что условно положительное направление ЭДС совпадало с истинным направлением этой величины и противоположно напряжению генератора. В соответствии с законом Ома для участка цепи с ЭДС имеем:
Индексы при обозначениях величин задают их условно положительное направление.
Умножим левую и правую части равенства на ток

Или (1)
Мощность, стоящая в левой части равенства (1), называется электромагнитной мощностью, передаваемой через зазор в якорь генератора постоянного тока . Она больше электрической мощности , отдаваемой в сеть на величину электрических потерь от протекания тока по внутреннему сопротивлению генератора. В свою очередь, электромагнитная мощность генератора меньше подводимой к нему механической мощности на величину механических потерь в генераторе. Это иллюстрирует энергетическая диаграмма генератора постоянного тока, изображенная на рисунке 50 б. (1)

Источник

Электрически изолировать

Логическую функцию ИЛИ можно реализовать, например, следующим образом. Если несколько электрически изолированных друг от друга токовых петель наложить одна на другую и сделать независимыми выводы от них, то при подаче импульса тока в любую из петель ЦМД, находящийся по соседству, продвинется под токовые петли.

Сплав эвтектического состава 22% Na 78% К имеет точку плавления Гпл = 262 К. (—11 С). При 100 С его плотность 7 = 0,85-103 кг/м3, удельное сопротивление р = 0,42 • 10

6 Ом-м. Для эвтектики Na —К — Cs точка плавления 7’ПЛ=193К ( —807’С), причем при 100 С ее плотность у а 0,86 • 103 кг/м3, удельное сопротивление р = 0,155 • 10

6 Ом • м. Для эвтектического сплава 67% Ga — 20,5% In -—12,5% Sn точка плавления ГПЛ = 283,7К (+10,6 С), а при 100 С плотность у = 6,48 • 103 кг/м , удельное сопротивление р = 0,33 • 10

6 Ом -м. Включая последовательно несколько пар разнополярных подвижных контактов (ПК) и увеличивая тем самым число взаимно электрически изолированных активных участков якоря УМ, можно существенно повысить напряжение якоря. Однако при этом усложняется конструкция УМ. Характерная особенность ударных УМ состоит в том, что во многих случаях они выполняются по контррогорной схеме, чтобы скомпенсировать реактивный момент, воспринимаемый при разряде ЭМН статором и монтажной плитой. Рассмотрим кратко отдельные установки, в которых используются ЭМН с ударными УГ, а также типичные компоновки УМ и их основные параметры.

Конструкция фоторезистора и технология его изготовления очень просты: на стеклянную пластину / ( 8.2) наносят слой металла — золота, серебра или платины. В металлическом слое прорезают щель для разделения его на два электрически изолированных электрода 3. Затем на поверхность металла наносят полупрозрачный слой полупроводника 2 (толщиной не более сред-‘ ней глубины проникновения света). Для защиты от внешних воздействий фотоэлемент покрывают слоем лака и монтируют в корпус, который оборудован окном для проникновения света и штырьками (или гибкими выводами) для включения в схему.

Для снижения влияния вихревых токов магнитопровод собирают. из отдельных электрически изолированных друг от друга тонких листов. Мощность потерь от вихревых токов

Для уменьшения потерь мощности на гистерезис в качестве материала для магнитопровода используются ферромагнитные металлы, имеющие узкую петлю гистерезиса. Уменьшение потерь мощности на вихревые токи достигается применением для магнитопровода металлов с большим удельным электрическим сопротивлением, это достигается за счет повышенного содержания кремния в металле. При этом магнитопровод набирается из тонких электрически изолированных друг от друга пластин, что способствует уменьшению наводимых в каждой пластине вихревых токов, а следовательно, и снижению потерь мощности от этих токов.

металлы, характеризующиеся узкой петлей гистерезиса. Уменьшение потерь мощности на вихревые токи достигается применением для магнитопровода металлов с большим удельным электрическим сопротивлением за счет повышенного содержания кремния, при этом магнитопровод выполняют из набора тонких электрически изолированных друг от друга пластин, что способствует уменьшению индуцированных в каждой пластине вихревых токов, а следовательно, снижению потерь мощности от них.

Почему сердечник вращающегося якоря машины постоянного тока набирают из тонких листов электротехнической стали, электрически изолированных друг от друга?

Почему сердечники статора и ротора асинхронного двигателя набирают из тонких листов электротехнической стали, электрически изолированных друг от друга лаковым покрытием?

в электрометрах благодаря наличию вспомогательных источников напряжения. В составе его ИМ три электрода: один подвижный и два неподвижных. Неподвижные электроды / могут быть представлены парой сегментов (бинантные электрометры) — 8.17, «либо двумя парами (квадрантные) — 8.17, б, противоположные квадранты которых обычно соединены электрически, места соединения являются клеммами неподвижных электродов. Подвижная часть электрометра крепится с помощью растяжек либо подвеса (металлического либо из кварцевой нити), причем подвижный электрод 2 (бисквит) у бинант-ных электрометров состоит из двух половин, электрически изолированных друг от друга.

Почему сердечник вращающегося якоря машины постоянного тока набирают из тонких листов электротехнической стали, электрически изолированных друг от друга?

Почему сердечники статора и ротора асинхронного двигателя набирают из тонких листов электротехнической стали, электрически изолированных друг от друга лаковым покрытием?

При размещении полупроводниковых приборов на общей подложке возникает необходимость их электрически изолировать друг от друга. Поэтому одной из важнейших проблем при создании ИМС является обеспечение надежной электрической изоляции между отдельными компонентами. В связи с этим структуры ИМС, а также ТП их создания можно классифицировать по способу изоляции (3.2). Как видно из классификационной диаграммы, существует три основных метода выполнения изоляции.

Читайте также:  Ток это головной убор

В схеме на 5.31, а диоды включены во вторичную цепь трансформатора так, что ток через измерительный механизм в течение любого полупериода всегда проходит в одном направлении. Трансформатор позволяет электрически изолировать цепь измерительного механизма от цепи измеряемого переменного тока или напряжения. Недостатком схемы является зависимость коэффициента трансформации трансформатора от частоты.

напряжения электрически изолировать измерительный прибор от высокого напряжения. Это необходимо для защиты обслуживающего персонала, а также для сохранения изоляции измерительного прибора. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения и осуществлять дистанционные измерения.

Какой магнитный усилитель позволяет электрически изолировать обмотку питания потребителя от обмотки питания усилителя? Дроссельный 168

Измерительные трансформаторы служат для включения измерительных приборов в цепях переменного тока. Прежде всего эти трансформаторы нужны для того, чтобы в сетях высокого напряжения электрически изолировать измерительный прибор от высокого напряжения. Это необходимо для защиты обслуживающего персонала, а также для сохранения изоляции измерительного прибора. Кроме того, измерительные трансформаторы дают возможность расширять пределы измерения и осуществлять дистанционные измерения.

В аппаратах находят также применение полупроводниковые приборы, управляемые светом: фотодиоды, фототранзисторы, оптронные тиристоры. В оптронных приборах управляющий сигнал подается на светоизлучающий диод, свечение которого вызывает открытие полупроводникового прибора: диода, транзистора или тиристора. Управление светом позволяет электрически изолировать цепь управления от силовой, что в ряде случаев упрощает систему. Существуют также приборы, например АОД-111А — оптрон диодный с одним излучателем и двумя фотоприемниками, которые используются в качестве датчиков положения близких предметов, отражающих излучение диода.

Изоляционные материалы имеют основное назначение электрически изолировать токопроводящие части от остальных деталей машины.

Д. Изоляционные материалы [Л. 72]. В электрических машинах применяется большое количество различных изоляционных материалов. Основное их назначение — электрически изолировать токо-ведущие части. Поэтому главнейшее требование к изоляционным материалам — высокая диэлектрическая прочность. Так как изоляция машин работает при повышенных температурах, механических напряжениях и воздействиях атмосферной влаги и в некоторых случаях различных химических агентов, то диэлектрическая прочность должна сочетаться с теплостойкостью, теплопроводностью, влагостойкостью, химостойкостью и определенной механической прочностью. В зависимости от комбинации требований меняются исходные изоляционные материалы и их технологическая обработка.

Измерительные трансформаторы служат для включения измерительных приборов в цепях переменного тока. Прежде всего эти трансформаторы нужны для того, чтобы, в сетях высокого напряжения электрически изолировать измерительный прибор от высокого напряжения. Это необходимо для защиты обслуживающего персонала, а также для сохранения изоляции измерительного прибора. Кроме того, измерительные трансформаторы дают возможность

Тепловое сопротивление корпус—охладитель ftThCs зависит от типа корпуса, площади контактной поверхности, силы прижатия корпуса к охладителю. Для уменьшения теплового сопротивления ftrhcs и улучшения качества контакта корпуса с охладителем используют теплопроводящую смазку. Во многих случаях желательно электрически изолировать корпус силового ключа от теплоотвода. Для дискретных приборов специально выпускаются электроизолирующие прокладки, материалом для которых служит слюда, пластик, оксид бериллия ВеО и др. Данные прокладки изготавливаются в виде шайб, которые создают электрическую изоляцию между двумя по-

При монтаже термоэлементов необходимо их электрически изолировать от электропроводных нагревателей и холодильников ( III.11). Если Ti и Тг — температуры нагревателя и холодильника, Л0 — толщина изоляции, хнз — ее теплопроводность, то

в) Вносимые паразитные электрические напряжения можно сделать весьма малыми, заземляя объект измерения и применяя во всех случаях экранированный кабель. У измерительных преобразователей с полупроводниковыми тензорезисторами корпус преобразователя соединен с экраном кабеля уже на заводе-изготовителе и, следовательно, заземлен через прибор. При этом во избежание возможной утечки тока через «землю» измерительные преобразователи следует электрически изолировать от заземленного объекта измерения.

Источник

Принцип действия электрического двигателя постоянного тока

Принцип действия электрического двигателя постоянного тока основыва­ется на законе электромагнитной силы, т. е. если взять проводник с активной длиной l (см) и по нему пропустить ток величиной iо (А) и поместить его в магнитное поле с индукцией В (В с/см 2 ), то на проводник будет действовать электромагнитная сила fэл (кгс) (рис. 1.9):

Рисунок 8– Искажение внешнего магнитного поля проводником, помещенным в это поле и создающим по обе стороны сгущение и разряжение силовых линий

При рассмотрении рис. 1.10 видно, что на каждый проводник якоря будет действовать элементарная электромагнитная сила fэл.На рис. 1.10 также показаны: d-d — продольные оси; ОВ — обмотка возбуждения, установленная на главных полюсах; Х-Х— поперечная ось ЭМ; 1а ток нагрузки; Da — диаметр якоря.

Ток в каждом проводнике якоря определяется так:

При нагрузке ЭМ на якорной обмотке проходит ток,намагничивающий сердечник. Поэтому приближенно сердечник простейшей двухполюсной ма­шины с расположенной на нем якорной обмоткой можно рассматривать как электромагнит, имеющей полюса Na и Sa, магнитные потоки которых взаимо­действуют с магнитными полями главных полюсов N я S (см. рис. 1.9).

Магнитный поток якоря Фа называется поперечным полем, а магнитный поток главных полюсов Фо — продольным (см. рис. 1.9).

Возникновение элементарной электромагнитной силы fm является результатом взаимодействия магнитных силовых линий поперечного потока Фа с упругими силовыми линиями продольного магнитного потока Фо. В результате этого взаимодействия силовые линии продольного магнитного поля искажаются и возникает fэл. Таким образом, взяв произведение /ш на диаметр якоря по­полам, получаем электромагнитный момент Мэл, т. е. Мэл = fэл Da /2. В результате этого якорь начинает вращаться. В двигателе Мэл является ускоряющим скорость якоря вращающим моментом, а в генераторах является тормозящим моментом (рис. 1.10).

Рисунок 10– К объяснению возникновения электромагнитного момента: а — направление поля возбуждения; б — направление поля якорной обмотки; в — направления поля машины при нагрузке

Устройство основных конструкционных узлов электрической машины.

Любой генератор постоянного тока состоит из двух частей: ротора и статора. Ротор тягового двигателя преобразует энергию одного вида в энергию другого вида. Основными частями его являются вал, сердечник, нажимные шайбы, обмотка, коллектор, опорно-осевые подшипники и втулка(коробка). У некоторых тяговых двигателей сердечник якоря насажен непосредственно на вал. Статор в свою очередь состоит из станины, электромагнитов и щёточного аппарата. Рассмотрим части электрической машины более подробно.

Сердечник. Сердечник якоря представляет собой часть магнитной системы тягового двигателя, вращающуюся относительно остальных элементов магнитной цепи. Вращающий момент якоря развивается за счет касательных усилий, возникающих в зубцах сердечника. При вращении происходит постоянное перемагничивание с высокой частотой пакета сердечника якоря, что создает в сердечнике потери на гистерезис. Кроме того, от наводимых в сердечнике э. д. с. появляются вихревые токи, которые также приводят к потере энергии, т. е. снижают к. п. д. двигателя.

Чтобы снизить эти потери, сердечник якоря набирают из отдельных листов электротехнической стали Э-12 толщиной 0,5 мм. Наличие в стали кремния улучшает ее электротехнические свойства, но делает ее более хрупкой, поэтому электротехническая сталь, применяемая для сердечника якорей, является стабилизированной

Рисунок 11–Сердечник якоря с обмоткой

Листы сердечника покрыты слоем лака № 302 толщиной 0,012—0,014 мм для уменьшения потерь в собранном пакете. С этой же целью через каждые 50 мм длины пакета проложен лист электрокартона толщиной 1 мм. Листы сердечника изготавливают штамповкой в виде неразрезных дисков по форме поперечного сечения якоря. По окружности листы имеют пазы для размещения обмотки якоря. Внутреннее отверстие имеет шпоночный паз, посредством которого фиксируются якорные листы.

В листах сердечника якоря имеется три ряда отверстий диаметром 20 мм для прохождения охлаждающего воздуха. Пакет из листов якоря спрессовывают под давлением 45—50 кгс/см2 (4,5—5,0 МПа), после чего на вал напрессовывают втулку коллектора, коллектор и нажимной конус.

Втулка коллектора запирается специальной гайкой, которая удерживает втулку от осевого сдвига. В механическом отношении сердечник монолитен, не имеет распущенных и ослабших листов.

Коллектор.Коллектор — один из основных и наиболее ответственных узлов тягового двигателя постоянного тока. Он служит для изменения направления тока в проводниках обмотки якоря двигателя в момент, когда проводники проходят нейтральную линию .Коллектор наиболее нагружен в электрическом отношении, и условиями его надежной работы ограничиваются предельные мощности тяговых двигателей. Диаметр коллектора современных тяговых двигателей превышает 800 мм, число пластин достигает 600.

Медные пластины коллектора имеют в сечении форму клина. Одна от другой они изолированы прокладками из коллекторного миканита. Миканит изготовляют из лепестков слюды, обладающей очень высокими электрической прочностью и теплостойкостью, а также влагостойкостью. Склеивают лепестки специальными лаками или смолами.

В нижней части коллекторные и изоляционные пластины имеют форму так называемого «ласточкиного хвоста». «Ласточкины хвосты» пластин и прокладок надежно зажаты между коробкой коллектора и нажимной шайбой, стянутыми болтами. Такое крепление обеспечивает сохранение строго цилиндрической формы коллектора, что очень важно, так как к поверхности коллектора все время прижимаются щетки. Стоит хотя бы одной пластине выйти за очертания окружности коллектора, как щетки начнут подпрыгивать, искрить, что может привести к повреждению двигателя! То же самое может произойти при недостаточно высоком качестве обработки коллектора, а также в случае образования на его поверхности вмятин и выступов.

От коробки и нажимной шайбы коллекторные пластины изолируют, прокладывая конусы и цилиндр, изготовленные из миканита. Коллекторные пластины имеют выступы, называемые петушками. В петушках сделаны прорези, куда впаивают концы секций обмотки якоря.

Во время работы двигателя щетки истирают поверхность коллектора. Миканит более износостоек, чем медь, поэтому в процессе работы поверхность коллектора может стать волнистой. Чтобы этого не произошло, изоляцию в промежутках между медными пластинами после сборки коллектора делают меньшей высоты — продороживают коллектор специальными фрезами.

Остов. В современных электрических машинах остов отливают из стали. Он составляет часть магнитной системы машины и служит для укрепления полюсов с катушками и выводных зажимов, а также для поддержания боковых щитов, несущих подшипники якоря.

Остовы тяговых двигателей (рис.13) обычно выполняют восьмигранными или цилиндрическими. В них имеются приспособления для монтажа двигателя на тележке, люки для осмотра коллектора и щеток, отверстия для подвода и выхода наружу охлаждающего воздуха и пр. Внутри остова предусмотрены обработанные приливы для установки полюсов, обеспечивающие строго симметричное расположение их на машине. В торцовых стенках остова имеются горловины для установки и крепления подшипниковых щитов.

Полюсы. В современных стационарных и тяговых машинах постоянного тока устанавливают главные и добавочные полюсы.

Рисунок 14– Главный (а) и добавочный (б) полюсы: 1 – сердечник главного полюса; 2 – катушка главного полюса; 3 – корпусная изоляция катушки; 4 – установочные болты; 5 – опорный угольник; 6 – сердечник добавочного полюса; 7 – катушка добавочного полюса

Главные полюсы (рис.14, а), на которых расположены катушки обмотки возбуждения, служат для создания в машине магнитного потока возбуждения. Часть сердечника главного полюса со стороны, обращенной к якорю, выполнена более широкой и называется полюсным наконечником. Эта часть служит для поддержания катушки, а также для лучшего распределения магнитного потока по поверхности якоря.

Читайте также:  Электрические машины постоянного тока схема обмоток

Сердечники главных полюсов для уменьшения вихревых токов изготовляют шихтованными — из отдельных стальных листов толщиной 0,5—1,5 мм. Электрические машины могут иметь два, четыре, шесть и в общем случае 2р главных полюсов. Главные полюсы укрепляют на остове болтами

Рисунок 14– Сердечники главных полюсов: 1 — заклепки; 2 — установочный болт; 3 — сердечник полюса; 4 отверстие под установочные болты; 5— полюсный наконечник; 6— установочный стержень; 7 – боковина

Добавочные полюсы (см. рис13, б) обеспечивают уменьшение искрения, возникающего при работе машины. По своим размерам они меньше главных. Число добавочных полюсов обычно равно числу главных. В машинах постоянного тока сердечники добавочных полюсов изготовляют из стали. Они имеют монолитную конструкцию, так как значение индукции под добавочными полюсами выбирается обычно небольшим и при вращении якоря индуцирования вихревых токов в их наконечниках практически не происходит.

Катушки полюсов изготовляют из изолированного медного провода круглого или прямоугольного сечения или из шинной меди. Площадь поперечного сечения проводников и число витков катушек зависят от типа, мощности и напряжения машины.. Катушки всех главных полюсов обычно соединяются последовательно и составляют обмотку возбуждения машины. Катушки добавочных полюсов также соединяют последовательно.

Компенсационная обмотка, применяемая в тяговых мощных двигателях постоянного тока, служит для компенсации реакции якоря. Обмотку располагают в пазах наконечника главных полюсов и соединяют последовательно с обмоткой якоря. В отечественных тяговых двигателях применена хордовая компенсационная обмотка из мягкой прямоугольной медной проволоки, выполняемая катушками, которые можно устанавливать и снимать независимо от других обмоток. Крепят компенсационную обмотку в пазах клиньями.

Щеточный аппарат. Щетки предназначены для соединения коллектора с внешней цепью. Они представляют собой прямоугольные призмы шириной 4—32 мм (рис. 15 а). Рабочую поверхность щеток пришлифовывают к коллектору, чтобы обеспечить надежный контакт. Каждая щетка имеет определенную марку. Щетки различных марок различаются составом, способом изготовления и физическими свойствами.

Рисунок 15– Неразрезные (а) и разрезные (б) щетки электрических машин: 1 – кабельный наконечник; 2 щеточный канатик; 3 — щетка; 4 — резиновый гаситель; 5 — нажимной палец; 6 — разрезная щетка; 7— обойма

Щетки, применяемые для электрических машин, подразделяются на четыре основные группы: угольно-графитные, графитные, электро-графитированные и металлографитные. Для каждой машины, работающей в определенных условиях, нужно применять щетки только соответствующих марок. Эти марки подбираются заводом — изгото­вителем машин; при замене изношенных щеток нужно брать щетки той же марки. В тяговых электрических машинах применяют исключительно электрографитированные щетки, которые обладают хорошими коммутирующими свойствами, значительной механической прочностью и способностью выдерживать большие перегрузки.

Щетки устанавливают в специальные обоймы, называемые щеткодержателями (рис.16, а). Для отвода тока от щетки к ней прикрепляют медный гибкий проводник (щеточный канатик), который присоединяют к щеткодержателю. Одним из основных условий хорошей работы щеток является плотный, надежный контакт между щеткой и коллектором. Он достигается при помощи нажимного устройства, смонтированного на щеткодержателе. Нажим на щетку осуществляется пружиной (спиральной, цилиндрической или пластинчатой), упирающейся одним концом в щетку, а другим — в щеткодержатель. В тяговых двигателях нажимная пружина воздействует на специальный палец, прижимаемый к верхней торцовой поверхности щетки (рис.16.б).

Рисунок–16. Щеткодержатели вспомогательных машин (а) и тяговых двигателей (б): 1 — изолятор; 2 — пружина; натяжное устройство; 4 — обойма; 5 — щетка; 6 — щеточный палец; 7 — нажимной малец; 8 — щеточный канатик; 9 – кронштейн

Кроме описанных выше частей, в электрических машинах имеется ряд конструктивных деталей: подшипники, подшипниковые щиты (крышки), смазочные и маслозащитные устройства, система охлаждения и т. п.

Дата добавления: 2018-05-02 ; просмотров: 428 ; Мы поможем в написании вашей работы!

Источник



Сердечники электрических машин

Сердечники электрических машин, по которым проходит переменный магнитный поток, собирают (шихтуют) из изолированных друг от друга листов электротехнической стали толщиной 0,5 мм. Этим достигается значительное снижение потерь от вихревых токов.
Сердечники статоров и роторов машин переменного тока и якорей машин постоянного тока при наружном диаметре до 990 мм выполняют из листов в виде колец (рис. 1, а), а при большем диаметре— из сегментов (рис. 1, б), которые при сборке образуют магнитную систему кольцевой формы. В кольцах и сегментах выштампованы пазы под обмотку. В сегментах, кроме того, имеются пазы для крепления их к станине или на ободе ротора.

Рис. 1. Лист сердечника в виде кольца (а) и сегмента (б)

Тонколистовую электротехническую сталь изготовляют в виде рулонов, листов и ленты. Обозначения марок стали в соответствии с ГОСТ 214270—75 состоят из четырех цифр.
Первая цифра обозначает класс по структурному состоянию и виду прокатки: 1—горячекатаная изотропная; 2 — холоднокатаная изотропная; 3—холоднокатаная анизотропная. В анизотропных сталях магнитные свойства вдоль прокатки и в направлении, перпендикулярном прокатке, различные.

Вторая цифра обозначает содержание кремния в данной марке стали. Добавка этого элемента увеличивает электрическое сопротивление стали и улучшает ее магнитные свойства. По содержанию кремния стали подразделяют на шесть групп: 0 — с содержанием кремния до 0,4% (нелегированная); 1 — от 0,4 до 0,8; 2— от 0,8 до 1,8; 3— от 1,8 до 2,8; 4 — от 2,8 до 3,8; 5 — от 3,8 до 4,8%.
Третья цифра в обозначении марки характеризует удельные потери и магнитные индукции, четвертая — порядковый номер типа стали.

Рис. 2. Статорный сердечник, скрепленный скобами (а) и набранный в станину (б)
В асинхронных двигателях единых серий А-АО и А2—А02 была применена горячекатаная листовая сталь марки 1211, в двигателях серии 4А при высотах до 160 мм применяется холоднокатаная рулонная сталь 2013, а при высотах выше 160 мм — 2212. Стали, примененные в новой серии, имеют индукции на 4—8% большие при том же намагничивающем токе и на 20—30 % меньшие удельные потери.
Изоляцию листов выполняют в виде лаковой или оксидной пленки. Лаковая пленка наносится на листы специальными машинами. Оксидная пленка имеет незначительную толщину и образуется на листах путем выдержки их в камере при температуре 560°С с подачей водяного пара.
Сердечники статоров машин переменного тока мощностью до 100 кВт опрессовывают между нажимными шайбами 1 (рис. 2, а) и скрепляют скобами 2 по спинке. Зубцы, не имея опоры, могут на торцах отгибаться. Размер 1Х по ним может быть больше размера I по спинке на 1—2 мм и более в зависимости от высоты зубца. Это явление называется распушением или веером зубцов. Изоляция обмоток может быть нарушена из-за перемещения листов при недостаточной прессовке или распушении сердечника.
Распушение уменьшают установкой с торцов сердечника крайних утолщенных или сваренных друг с другом точечной сваркой или склеенных листов. Монолитный сердечник получают склейкой всех его листов.
Сердечники статоров микромашин и малых машин в спрессованном состоянии заливают алюминиевым сплавом. Заливка частично захватывает торцы сердечника, благодаря чему он оказывается закрепленным в алюминиевой оболочке, которая является одновременно и корпусом машины.

Сердечники статоров с наружным диаметром более 400—500 мм шихтуют непосредственно в станину. Посадку обычно осуществляют на ребра 7 (рис. 2, б) станины 6. Сердечник спрессовывают между двумя массивными нажимными шайбами 1, которые закрепляют в корпусе в осевом направлении шпонками 3. Шпонки приваривают, чтобы предохранить их от выпадания, к станине или шайбам. Давление при спрессовке сердечника передается через нажимные пальцы 4, которые крепят к крайним листам точечной сваркой или расклепкой специальных выступов на них. входящих в отверстия зубцов крайних листов. Нажимные пальцы ликвидируют веер зубцов.
Сердечники статоров крупных машин для лучшего охлаждения изготовляют из нескольких пакетов 8, разделенных вентиляционными каналами. Каналы образуются установкой дистанционных распорок 5 — ветрениц, которые по конструкции аналогичны нажимным пальцам. Распорки крепят к крайним листам пакетов сваркой или расклепкой.
Сердечники роторов 4 (рис. 3, а) при наружном диаметре до 300—400 мм насаживают непосредственно на вал 1. Для передачи вращающего момента на валу в месте посадки сердечника устанавливают шпонку 5. В машинах малой мощности вместо шпонки применяют накатку. Сердечники спрессовывают между нажимными шайбами 3. С одной стороны ротора шайба упирается в буртик вала, с другой — фиксируется в осевом направлении втулкой 2, насаженной по прессовой посадке, или пружинным стопорным кольцом 6 (рис. 3, б), устанавливаемым в канавку на валу.

Рис. 3. Крепление сердечника на валу втулкой (а) и пружинным кольцом (б)
Нажимная шайба имеет выточку на глубину 3—4 мм, которая предохраняет кольцо от разгибания под действием центробежных сил. Пружинные кольца могут быть установлены с обеих сторон сердечника.
В якорях машин постоянного тока и фазных роторах асинхронных двигателей нажимные шайбы совмещаются с обмоткодержателями, которые выполняются в виде кольцевых приливов на шайбе и служат для опоры лобовых частей. При коротких и жестких лобовых частях в тихоходных машинах обмоткодержатели не предусматривают.
Сердечники роторов при наружном диаметре от 300—400 мм до 900 мм насаживают обычно на промежуточную втулку с отверстиями или ребрами для уменьшения массы. Втулку напрессовывают на вал.
Главные полюса машин постоянного тока пронизываются постоянным магнитным потоком. Потерн у них возникают только на внутренней поверхности наконечников, обращенной к воздушному зазору, вследствие пульсаций магнитного потока при поочередном прохождении под участком наконечника зубцов и пазов. Полюса для уменьшений потерь набирают из листов толщиной 1—2 мм. При больших толщинах затрудняется штамповка листов и увеличиваются поверхностные потери, при меньших толщинах увеличиваются затраты труда вследствие увеличения количества листов, а также уменьшается коэффициент заполнения сердечника сталью.

Рис. 4. Крепление листов сердечника полюса заклепками (а) и стержнем (б)
Листы полюсов 2 скрепляют заклепками 3 (рис. 4, а). Для получения монолитного полюса крайние листы 1 делают из более толстой стали. Полюса к корпусу крепят болтами, которые ввертывают в резьбовые отверстия, нарезанные в теле сердечника.
Заклепки, стягивающие полюса, имеют отверстия на концах и развальцовываются в конические зенковки в крайних листах, выполняемые обычно с углом 60°.
В крупных тяжелых полюсах скрепление листов с помощью одних только заклепок оказывается недостаточным: полюс деформируется при подтягивании его к станине. В этом случае в сердечник 4 запрессовывают стальной стержень 5 (рис. 4, б) с резьбовыми отверстиями для крепления полюса к корпусу 6 болтами 7.
У одного и того же листа статора или ротора угол между осями пазов и сами размеры пазов получаются неодинаковыми. Это происходит потому, что при изготовлении штампов всегда неизбежны погрешности. Стенки пазов получаются неровными. Чтобы уменьшить эти неровности, сердечники собирают из листов, вырубленных одним и тем же штампом и расположенных в таком же положении, в каком они штамповались.
Для выполнения этого условия листы изготовляют с шихтовочными знаками в виде скругленных выемок (см. рис. 1, а). У статорных листов знаки располагаются на наружной поверхности, у роторных — на внутренней. Обычно на листе выполняют два знака с таким расчетом, чтобы при смещении или перевертывании листов они не совпадали. Полюсные листы для обеспечения гладкой поверхности и плотного прилегания к станине также выполняют с шихтовочным знаком (см. рис. 4, б).

Источник