Меню

Общее сопротивление в цепях переменного тока

Как определить сопротивление цепи

Время на чтение:

Сопротивление – это физическая электротехническая величина, отражающая противодействие движению электрического тока в проводнике или в цепи. Впервые она была обоснована и закреплена в фундаментальной связи с напряжением и силой тока в законе Ома – немецкого физика, который изучал эту взаимосвязь. В честь него и названа единица измерения сопротивления – Ом. Часто при выполнении монтажа какой-либо электросети необходимо найти общее сопротивление цепи при различных способах подключения. О том, как это правильно сделать и расскажет этот материал.

Что такое общее сопротивление цепи

Если говорить простыми словами, общее сопротивление электрической цепи – это такое R, которое она оказывает на напряжение в ее проводниках и приборах. Существует два типа напряжения (исходя из силы тока) – постоянное и переменное. Так же и сопротивление делится на активное и реактивное, которое, в свою очередь, подразделяется на индуктивное и емкостное. Активный тип не зависит от частот сети. Также для него абсолютно не важно, какой ток протекает по проводникам. Реактивный же, наоборот, зависит от частоты, причем емкостная характеристика в конденсаторах и индуктивная в трансформаторах ведут себя по-разному.

Закон Ома

Помимо сопротивления подключенных в сеть электроприборов, на общее состояние оказывают влияние даже промежуточные провода, также имеющие сопротивляемость напряжению.

Резистор – основной элемент сопротивляемости цепи

Как правильно найти и посчитать формулой сопротивление цепи

Сперва следует разобрать понятия и формулы. Индуктивный тип считается так: XL= ωL, где L – индуктивность цепи, а ω – круговая частота переменного тока, равная 2πf (f – частота переменного тока). Чем больше частота сети, тем большим R для нее становится какая-либо катушка индуктивности.

Емкостный тип можно рассчитать по формуле: Xc = 1/ ωC, где С – емкость радиоэлемента. Здесь все наоборот. Если происходит увеличение частоты, то сопротивляемость конденсатора напряжению уменьшается. Из этого исходит то, что для сети постоянного тока конденсатор – бесконечно большое R.

Высчитать характеристику можно и с помощи других величин

Но не только вид сопротивления и радиоэлементы, обеспечивающие его, влияют на общее значение цепи. Особую роль играет также и способ соединения элементов в электроцепь. Существует два варианта:

  • Последовательный;
  • Параллельный.

В последовательном подключении

Это самый простой тип для практического и теоретического рассмотрения. В нем элементы резисторного типа соединяются, очевидно, последовательно, образуя подобие «змейки» после чего электрическая цепь замыкается. Посчитать общее значение в таком случае довольно просто: требуется последовательно сложить все значения, выдаваемые каждым из резисторов. Например, если подключено 5 резисторов по 5 Ом каждый, то общий параметр будет равен 5 на 5 – 25 Ом.

Формула последовательной сети

В параллельном подключении

Немного сложнее все устроено в параллельных сетях. Если при последовательном способе току нужно пройти все резисторы, то тут он вправе выбрать любой. На самом деле он просто будет разделен между ними. Суть в том, что есть характеристика, схожая для всех радиоэлементов, например, величина в 5 Ом означает, что для нахождения общего R необходимо разделить его на количество всех подключенных резисторов: 5/5 = 1 Ом.

Важно! Из-за того, что напряжение на параллельных участках одинаково, а токи складываются, то есть сумма токов в участках равна неразветвленному току, то Rобщ будет высчитываться формуле: 1/R = 1/R1 + 1/R2 + … + 1/Rn.

Как определить формулой общее сопротивление цепи

Из закона Ома исходит то, что общее сопротивление равно общему напряжению, деленному на общую силу тока в цепи. При параллельном подключении напряжение, как уже было сказано, равно везде, поэтому необходимо узнать его значение на любом участке цепи. С током все сложнее, так как на каждой ветке его значение свое и зависит от конкретного R.

Также необходимо помнить, что могут быть параллельные подключения с нулевым значением R. Если в какой-либо ветке нет резистора или другого подобного элемента, но весь ток будет течь через нее и все общее значение для цепи станет нулевым. На практике это случается при выходе резистора из строя или при замыкании. Такая ситуация может навредить другим элементам из-за большой силы тока.

Таблица удельной величины для различных проводников

Онлайн-калькулятор расчета сопротивление цепи

Для того чтобы сэкономить свое время и не заниматься скучными пересчетами, рекомендуется пользоваться калькуляторами по расчету сопротивления и многих других величин в режиме онлайн. Большинство из них бесплатные:

  • Сalc.ru (https://www.calc.ru/raschet-elektricheskikh-tsepey.html). Возможен расчет закона Ома для участка цепи, реактивного и активного сопротивления при последовательном и параллельном соединении резисторов;
  • Asutpp.ru (https://www.asutpp.ru/kalkulyator-rascheta-parallelnogo-soedineniya-rezistorov.html). Калькулятор для параллельного соединения. Достаточно указать количество элементов и Ом-характеристику каждого из них;
  • Cxem.net (https://cxem.net/calc/calc.php). Обладает таким же количеством калькуляторов, как и первый вариант, что позволяет радиолюбителю выполнить вычисление любых интересующих параметров сети.

Интерфейс одного из калькуляторов

В статье подробно рассказано, как вычислить общее сопротивление цепи. При разных типах подключения элементов она считается по-разному, но благодаря давно выведенным формулам в любом случае нет ничего сложного.

Источник

Расчёт полного сопротивления цепи под действием переменного тока

Полное сопротивление

Любое вещество, находясь в разнообразных состояниях, обладает определенным сопротивлением. В некоторых случаях возникает необходимость рассчитать полное сопротивление цепи или конкретного участка. В такой ситуации следует воспользоваться формулами. Кроме того, нужно понимать основной смысл сопротивления и электропроводимости, а также зависимость этих понятий от некоторых величин.

  • Физический смысл
  • Зависимость электропроводимости
    • Электрические величины
    • Геометрические параметры и тип вещества
    • Температура проводника
  • Цепь переменного тока
  • Измерение сопротивления

Физический смысл

Все вещества по проводимости электрического тока (ЭТ) делятся на проводники, полупроводники и диэлектрики. Проводниками являются элементы, хорошо проводящие ЭТ. Это обусловлено наличием свободных электронов (СЭ). Полупроводники — особая группа веществ, проводимость которых зависит от внешних факторов, например, от температуры, освещенности и т. д. Диэлектриками являются все вещества, которые не проводят ЭТ из-за отсутствия или недостаточного количества СЭ. Для протекания тока по веществу требуется наличие СЭ, количество которых зависит от электронной конфигурации.

Электронная конфигурация какого-либо элемента берется из таблицы Менделеева. Ток оказывает на проводник тепловое действие, так как происходит взаимодействие СЭ с кристаллической решеткой (КР).Они замедляются, но с течением времени под действием электромагнитного поля снова ускоряются, после чего процесс взаимодействия повторяется много раз.

Процесс взаимодействия свободных заряженных частиц с КР вещества называется электрическим сопротивлением проводника. Обозначается сопротивление или электропроводимость буквой R, единицей измерения этой величины является Ом.

Зависимость электропроводимости

R зависит от внешних факторов окружающей среды, электрических величин, а также характерных особенностей проводника. Эти зависимости используются при расчетах схем и изготовлении радиодеталей. Существует несколько способов нахождения R, а иногда они комбинируются для получения эффективности и точности вычислений.

Электрические величины

Полное сопротивление цепи

К электрическим величинам, от которых зависит величина R, относятся I, U, электродвижущая сила (ЕДС обозначается е) и тип тока. R в электрических цепях рассчитывается по закону Ома для определенного участка цепи: I, протекающая в заданном участке электрической цепи, прямо пропорциональна U на этом участке и обратно пропорциональна R выбранного участка цепи. В виде формулы его можно записать следующим образом: I = U / R.

Исходя из следствия этого закона, можно получить сопротивление участка цепи: R = U / I. Если требуется произвести расчет R на всем участке цепи, то нужно воспользоваться формулой (следствием из закона Ома для полной цепи) с учетом внутреннего R источника питания: R = (e / I) — R внутреннее. Величина электрической проводимости рассчитывается не только при помощи законов Ома, но и с использованием геометрических параметров проводника и температуры. Кроме того, необходимо учитывать и тип тока (постоянный или переменный).

Читайте также:  Удар током по яичках

Геометрические параметры и тип вещества

Формула расчета сопротивления

Если основными носителями заряда являются СЭ, а свойства проводимости прямо пропорционально зависят от их количества и структуры КР, то тип вещества является одним из факторов, влияющих на R проводника. Вещества и их составляющие элементы, имеющие различные электронные конфигурации, согласно таблице Менделеева обладают разными КР, что и обуславливается различным R.

Зависимость от материала выражается коэффициентом, обозначающимся p. Он характеризует показатель удельного R проводника. Его значение берется из таблицы (при температуре +20 °C). Величина, обратная p, называется удельной проводимостью и обозначается σ. Взаимосвязь σ и p можно выразить формулой p = 1 / σ.

Кроме того, от площади поперечного сечения (S) также зависит R проводника. Эта зависимость обусловлена тем, что при маленьком сечении плотность потока Э протекает через проводник и взаимодействие с КР становится более частым. Площадь поперечного сечения достаточно просто вычислить. Для этого необходимо воспользоваться некоторым алгоритмом, если проводник (П) представляет собой провод цилиндрической формы:

  1. Измерение диаметра проводника при помощи штангенциркуля (ШЦ).
  2. Нахождение S при помощи формулы S = 3,1416 * sqr (d) / 4.

П может из себя представлять многожильный провод, поэтому для точного расчета необходимо найти S одной жилы, воспользовавшись алгоритмом нахождения для цилиндрической формы П, а затем результат умножить на количество жил.

Кроме того, бывают провода в форме квадрата и прямоугольника, но они встречаются редко. Для этого нужно выполнить следующие вычисления:

  1. Для квадратной формы нужно замерить ШЦ одну из сторон и возвести ее в квадрат: S = sqr(a).
  2. Для прямоугольной формы следует измерить две противолежащие стороны при помощи ШЦ, а затем произвести расчет по формуле S = a * b.

Из этих алгоритмов нахождения S можно сделать универсальный (абстрактный алгоритм). Он подходит для нахождения или расчетов величин, независимо от формы П при его разрезе, выполненном строго перпендикулярно относительно П. Алгоритм имеет следующий вид:

  1. Визуально определить геометрическую фигуру при разрезе П.
  2. Найти в справочнике формулу S.
  3. Произвести измерения при помощи ШЦ необходимых величин.
  4. Подставить в формулу и вычислить S.

Еще одной величиной является длина П, при увеличении которой R увеличивается. На основании этих величин можно вывести следующую формулу зависимости от типа вещества, длины (L) и S проводника: R = p * L / S.

Однако это значение R можно определить при температуре +20 °C. Для получения более точных расчетов нужно рассмотреть зависимость от температуры.

Температура проводника

Научно подтвержденным является факт, что p зависит от температуры. Это утверждение можно доказать практическим путем. Для проведения опыта необходимы следующие элементы, изображенные на схеме: спираль из нихрома (используется в нагревательных элементах), соединительные медные провода, источник питания, амперметр (для измерения I), вольтметр (измеряет U) и реостат.

Расчет слпротивления

На схеме нагревательный элемент изображен в виде резистора. При его включении следует внимательно наблюдать за показаниями амперметра. Спираль начинает нагреваться, и показания амперметра уменьшаются по мере нагревания. Согласно закону Ома для участка цепи необходимо сделать вывод, что при росте R ток уменьшается (обратно пропорциональная зависимость). Следовательно, значение R зависит от температуры. При нагревании происходит увеличение ионов в КР нихромовой спирали и Э начинают чаще сталкиваться с ними.

В формуле R = p * L / S можно методом исключения найти показатель, зависящий от температуры. Последняя не оказывает влияния на длину П. По формуле вычисления S зависимость также не прослеживается, поскольку геометрия П не зависит от температуры. Остается p, который зависит от температуры. В физике существует формула зависимости p = p0 * [1 + a * (t — 20)]. Буква а является температурным коэффициентом:

  • для металлов а > 0;
  • для электролитов a

Фотография Валерия Александровича

Ладыжин Валерий

Источник

Полное сопротивление цепи переменного тока

В предыдущих статьях мы узнали, что всякое сопротивление, поглощающее энергию, называется активным, а сопротивление, не поглощающее энергии, безваттным или реактивным. Кроме того, мы установили, что реактивные сопротивления делятся на два вида — индуктивные и емкостные.

Однако существуют цепи, где сопротивление не является чисто активным или чисто реактивным. То есть цепи, где вместе с активным сопротивлением включены в цепь, как емкости, так и индуктивности.

Введем понятие полного сопротивления цепи переменному току — Z, которое соответствует векторной сумме всех сопротивлений цепи (активных, емкостных и индуктивных). Понятие полного сопротивления цепи нам необходимо для более полного понимания закона Ома для переменного тока

На рисунке 1 представлены варианты электрических цепей и их классификация в зависимости от того какие элементы (активные или реактивные) включены в цепь.

cepi-peremennogo-toka

Рисунок 1. Классификация цепей переменного тока.

Полное сопротивление цепи с чисто активными элементами соответствует сумме активных сопротивлений цепи и рассматривалось нами ранее. О чисто емкостном и индуктивном сопротивлении цепи мы тоже с вами говорили, и оно зависит соответственно от общей емкости и индуктивности цепи.

Рассмотрим более сложные варианты цепи, где последовательно с активным сопротивлением в цепь включено индуктивное и реактивное сопротивление.

Полное сопротивление цепи при последовательном соединении активного и реактивного сопротивления.

В любом сечении цепи, изображенной на рисунке 2,а, мгновенные значения тока должны быть одинаковыми, так как в противном случае наблюдались бы скопления и разрежения электронов в каких-либо точках цепи. Иными словами, фазы тока по всей длине цепи должны быть одинаковыми. Кроме того, мы знаем, что фаза напряжения на индуктивном сопротивлении опережает фазу тока на 90°, а фаза напряжения на активном сопротивлении совпадает с фазой тока (рисунок 2,б). Отсюда следует, что радиус-вектор напряжения UL (напряжение на индуктивном сопротивлении) и напряжения UR (напряжение на активном сопротивлении) сдвинуты друг относительно друга на угол в 90°.

polnoe-soprotivlenie-posledovat-rl

Рисунок 2. Полное сопротивление цепи с активным сопротивлением и индуктивностью. а) — схема цепи; б) — сдвиг фаз тока и напряжения; в) — треугольник напряжений; д) — треугольник сопротивлений.

Для получения радиуса-вектора результирующего напряжения на зажимах А и В (рис.2,а) мы произведем геометрическое сложение радиусов-векторов UL и UR. Такое сложение выполнено на рис. 2,в, из которого видно, что результирующий вектор UAB является гипотенузой прямоугольного треугольника.

Из геометрии известно, что квадрат гипотенузы равен сумме квадратов катетов.

polnoe-soprotivlenie-formula-1

По закону Ома напряжение должно равняться силе тока, умноженной на сопротивление.

Так как сила тока во всех точках цепи одинакова, то квадрат полного сопротивления цепи (Z 2 ) будет также равен сумме квадратов активного и индуктивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-2(1)

Извлекая квадратный корень из обеих частей этого равенства, получим,

polnoe-soprotivlenie-formula-3(2)

Таким образом, полное сопротивление цепи, изображенной на рис 2,а, равно корню квадратному из суммы квадратов активного и индуктивного сопротивлений

Полное сопротивление можно находить не только путем вычисления, но и путем построения треугольника сопротивлений, аналогичного треугольнику напряжений (рис 2,д), т. е. полное сопротивление цепи переменному току может быть получено путем измерения гипотенузы, прямоугольного треугольника, катетами которого являются активное и реактивное сопротивления. Разумеется, измерения катетов и гипотенузы должны производиться в одном и том же масштабе. Так, например, если мы условились, что 1 см длины катетов соответствует 1 ом, то число омов полного сопротивления будет равно числу сантиметров, укладывающихся на гипотенузе.

Полное сопротивление цепи, изображенной на рис.2,а, не является ни чисто активным, ни чисто реактивным; оно содержит в себе оба эти вида сопротивлений. Поэтому угол сдвига фаз тока и напряжения в этой цепи будет отличаться и от 0° и от 90°, то есть он будет больше 0°, но меньше 90°. К которому из этих двух значений он будет более близок, будет зависеть от того, какое из этих сопротивлений имеет преобладающее значение в цепи. Если индуктивное сопротивление будет больше активного, то угол сдвига фаз будет более близок к 90°, и наоборот, если преобладающим будет активное сопротивление, то угол сдвига фаз будет более близок к 0°.

В цепи, изображенной на рис 3,а, соединены последовательно активное и емкостное сопротивления. Полное сопротивление такой цепи можно определить при помощи треугольника сопротивлений так же, как мы определяли выше полное сопротивление активно-индуктивной цепи.

polnoe-soprotivlenie-posledovat-rc

Рисунок 3. Полное сопротивление цепи с активным сопротивлением и емкостью. а) — схема цепи; б) — треугольник сопротивлений .

Разница между обоими случаями состоит лишь в том, что треугольник сопротивлений для активно-емкостной цепи будет повернут в другую сторону (рис 3,б) вследствие того, что ток в емкостной цепи не отстает от напряжения, а опережает его.

Для данного случая:

polnoe-soprotivlenie-formula-4(3)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 4,а), сначала определяется реактивное сопротивление этой цепи, а затем уже полное сопротивление цепи.

polnoe-soprotivlenie-posledovat-rlc

Рисунок 4. Полное сопротивление цепи содержащей R, L и C. а) — схема цепи; б) — треугольник сопротивлений .

Реактивное сопротивление этой цепи состоит из индуктивного и емкостного сопротивлений. Так как эти два вида реактивного сопротивления противоположны друг другу по своему характеру, то общее реактивное сопротивление цепи будет равно их разности, т. е.

polnoe-soprotivlenie-formula-5(4)

Общее реактивное сопротивление цепи может иметь индуктивный или емкостный характер, в зависимости от того, какое из этих двух сопротивлений (XL или XC преобладает).

После того как мы по формуле (4) определили общее реактивное сопротивление цепи, определение полного сопротивления не представит затруднений. Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е.

polnoe-soprotivlenie-formula-6(5)

polnoe-soprotivlenie-formula-7(6)

Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Полное сопротивление цепи при параллельном соединении активного и реактивного сопротивления.

Полное сопротивление цепи при параллельном соединении активного и реактивного элемента.

Для того чтобы вычислить полное сопротивление цепи, составленной из активного и индуктивного сопротивлений, соединенных между собой параллельно(рис. 5,а), нужно сначала вычислить проводимость каждой из параллельных ветвей, потом определить полную проводимость всей цепи между точками А и В и затем вычислить полное сопротивление цепи между этими точками.

parallelnoe-soedinenie

Рисунок 5. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) — параллельное соединение R и L; б) — параллельное соединение R и C .

Проводимость активной ветви, как известно, равна 1/R, аналогично проводимость индуктивной ветви равна 1/ωL , а полная проводимость равна 1/Z

Полная проводимость равна корню квадратному из суммы квадратов активной и реактивной проводимости, т. е.

polnoe-soprotivlenie-formula-8(7)

Приводя к общему знаменателю подкоренное выражение, получим:

polnoe-soprotivlenie-formula-9(8)

polnoe-soprotivlenie-formula-10(9)

Формула (9) служит для вычисления полного сопротивления цепи, изображенной на рис. 5а.

Нахождение полного сопротивления для этого случая может быть произведено и геометрическим путем. Для этого нужно построить в соответствующем масштабе треугольник сопротивлений, и затем произведение длин катетов разделить на длину гипотенузы. Полученный результат и будет соответствовать полному сопротивлению.

Аналогично случаю, рассмотренному выше, полное сопротивление при параллельном соединении R и С (рис 5б) будет равно:

polnoe-soprotivlenie-formula-11(10)

Полное сопротивление может быть найдено также и в этом случае путем построения треугольника сопротивлений.

В радиотехнике наиболее часто встречается случай па¬раллельного соединения индуктивности и емкости, например колебательный контур для настройки приемников и передатчиков. Так как катушка индуктивности всегда обладает кроме индуктивного еще и активным сопротивлением, то эквивалентная (равноценная) схема колебательного контура будет содержать в индуктивной ветви активное сопротивление (рис 7).

kolebatelnyj-kontur

Рисунок 6. Эквивалентная схема колебательного контура.

Формула полного сопротивления для этого случая будет:

polnoe-soprotivlenie-formula-12(11)

Так как обычно активное сопротивление катушки (R) бывает очень мало по сравнению с ее индуктивным сопротивлением (ωL), то мы имеем право формулу (11) переписать в следующем виде:

polnoe-soprotivlenie-formula-13(12)

В колебательном контуре обычно подбирают величины L и С таким образом, чтобы индуктивное сопротивление равнялось емкостному, т. е. чтобы соблюдалось условие

polnoe-soprotivlenie-formula-14(13)

При соблюдении этого условия полное сопротивление колебательного контура будет равно:

polnoe-soprotivlenie-formula-15(14)

где L—индуктивность катушки в Гн;

С—емкость конденсатора в Ф;

R—активное сопротивление катушки в Ом.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник



Сопротивления в цепях переменного тока

Цепь переменного тока с активным сопротивлением. Сопротивления в цепях переменного тока бывают активными и реактивными. Активные сопротивления расходуют энергию, реактивные — не расходуют.

Реактивными сопротивлениями, включенными в цепь переменного тока, являются сопротивления ка­тушки индуктивности L и конден­сатора С. Сопротивление катушки называется индуктивным сопротив­лением (Xj), сопротивление кон­денсатора — емкостным (Хс).

На рис. 1.5 показана цепь пере­менного тока с активным сопротив­лением и векторная диаграмма, из которой видно, что ток и напряже­ние совпадают по фазе. Они изменя­ются по одному и тому же закону, следовательно, можно записать:

i = IMsin t, (1.12)

u = U m sin t. (1.13)

Действующее значение силы тока в цепи с активным сопротив­лением равно:

I= (1.14)

где U— действующее значение напряжения на сопротивлении; R — значение активного сопротивления.

Это выражение является выражением закона Ома для цепи с активным сопротивлением. Мощность, расходуемая в цепи на ак­тивном сопротивлении, равна:

где ф — угол сдвига фаз между током и напряжением.

Так как ток и напряжение совпадают по фазе, то угол сдвига Ф = 0°, a cos ф = 1. Мощность же в цепи равна произведению дей­ствующих значений тока и напряжения:

Р = IU, Р = I 2 R. (1,16)

Переменный ток в цепи с индуктивным сопротивлени­ем. Если катушку индуктив­ности, активное сопротивле­ние которой равно нулю, i подключить к источнику переменного тока (рис. 1.6), то и катушке потечет синусоидально изменяющийся пере­менный ток.

Согласно правилу Ленца, индуцированная, в катушке ЭДС противодействует изменениям силы тока. Это значит, что при увели­чении силы тока в катушке ЭДС самоиндукции стремится создать ток, направленный навстречу вызывавшему ее току, а при умень­шении силы тока она, наоборот, стремится создать ток, совпада­ющий по направлению с ним.

Из векторной диаграммы видно, что ЭДС самоиндукции отста­ет по фазе от тока на 90°.

Напряжение на катушке ил на источнике тока равно:

UL = U = 2п fLI = LI. (1.17)

Произведение угловой скорости на индуктивность катушки называется индуктивным сопротивлением Х.

XL= L. (1.18)

Энергия в катушке индуктивности не расходуется. В первую чет­верть периода она запасается в ее магнитном поле, а во вторую — отдается источнику тока. Произведение напряжения UL на величи­ну силы тока в цепи называется реактивной мощностью.

В рассмотренной цепи активная мощность равна нулю, так как энергия в ней не расходуется, сдвиг по фазе между векторами тока /и напряжением U равен 90° и cosy = 0.

Переменный ток в цепи с последовательными активным и индук­тивным сопротивлениями. Теперь рассмотрим цепь с реальной ка­тушкой, которую можно представить как цепь с последовательно включенными индуктивностью L и активным сопротивлением R (рис. 1.7). Если в цепи с последовательными активным и индуктив­ным сопротивлениями протекает переменный синусоидальный ток, то напряжение на индуктивности, как было установлено ранее, опережает ток на 90°, а напряжение на активном сопротивлении

Рис. 1.7. Схема цепи с последовательными активным и индуктивным сопротивлениями (а) и векторная диаграмма напряжений (б) совпадает с ним по фазе. Так как напряжения UL, UR по фазе не совпа­дают, то напряжение, приложенное ко всей цепи, равно их геомет­рической сумме. Сложив векторы ULn UR, нахо­дим величину вектора U, который сдвинут по фазе относительно вектора тока / на угол φ 2 R+U 2 . (1.19)

Из треугольника напряжений можно получить подобный ему треугольник сопротивлений со сторонами R, XL и Z. Из этого треу­гольника полное сопротивление цепи равно:

Так как сдвиг по фазе между током и напряжением меньше 90°, то энергия в такой цепи расходуется лишь на активном со­противлении R.

Активная мощность при этом равна:

P = IU coscp. (1.21)

Цепь переменного тока с емкостью. Если к источнику перемен­ного тока подключить конденсатор, то в цепи появится ток. Спо­собность конденсатора пропускать переменный ток объясняется тем, что под действием переменного синусоидального напряже­ния конденсатор периодически заряжается и разряжается, вслед­ствие чего происходит перемещение электрических зарядов в про­водниках, соединяющих конденсатор с источником тока. Соотно­шение фаз тока и напряжения представлено на рис. 1.8. В цепи с емкостью ток опережает по фазе напряжение на 90°. Закон Ома для цепи переменного тока с емкостью определяет действующее зна­чение силы тока:

(1.22)

Величина Хс= называется емкостным сопротивлением. Она

обратно пропорциональна частоте тока в цепи и емкости конден­сатора. Измеряется в омах (Ом).

Мощность переменного тока

Для цепей переменного тока различают активную, полную и реактивную мощности.

Активная мощность представляет собой действительную мощ­ность переменного тока, аналогичную мощности, развиваемой постоянным током. Она производит полезную работу; может быть преобразована с помощью электродвигателей в механическую мощ­ность, механическую энергию; измеряется в ваттах (Вт) и опреде­ляется по формуле

Р = IU cos ф. (1.23)

Полной мощностью называют максимально возможную величи­ну активной мощности, развиваемую переменным током при за­данных значениях напряжения и силы тока и при наиболее благо­приятных условиях, а именно, когда coscp = 1. Полная мощность обозначается латинской буквой 5 1 и измеряется в вольт-амперах (В-А). Из определения полной мощности следует выражение

Сравнивая между собой формулы (1.23) и (1.24), находим со­отношение между активной и полной мощностями:

(1.26)

Полной мощностью (кВА) принято измерять мощность гене­раторов переменного тока, машин, производящих электроэнер­гию, и трансформаторов, аппаратов, предназначенных для преоб­разования электрической энергии одного напряжения в электри­ческую энергию другого напряжения. Полная мощность этих ма­шин определяется произведением номинальных (нормальных) ве­личин их напряжения и силы тока (т.е. величин этих параметров, на которые рассчитаны машины). А активная их мощность зависит от коэффициента мощности, при котором они работают (Р.= Scoscp). В свою очередь этот коэффициент мощности зависит от соотноше­ния величин активного и реактивного сопротивления, включен­ных в цепь, иными словами, от характера электроприемников, питаемых данным генератором или трансформатором.

Реактивная мощность. Для рассмотрения реактивной мощнос­ти необходимо иметь представление об активной и реактивной со­ставляющих переменного тока. Сравнивая между собой формулы для определения мощности переменного и постоянного тока, мож­но видеть, что на месте полной величины силы тока I в формуле мощности стоит выражение Icosφ, где cosφ — величина, меньше единицы (и только в отдельных случаях равная ей). Отсюда следует, что в цепях переменного тока не весь ток создает полезную, активную мощность, а только некоторая его часть, которая на­зывается активной составляющей тока.

Проекция вектора тока на горизонтальное направление, перпендикулярное вектору напряжения, равная Isincp, называется ре­активной составляющей переменного тока. Реактивная составляющая тока не участвует в создании активной мощности.

Произведение действующего в цепи на­пряжения на реактивную составляющую тока носит название реактивной мощности и обо­значается латинской буквой Q. Реактивная мощность измеряется в единицах, называе­мых «вар». Из приведенного определения ре­активной мощности вытекает соотношение

где Q — реактивная мощность, вар; U— напряжение, В; /— сила тока, A; sinφ — числовой коэффициент, зависящий от угла сдвига фаз в данной цепи.

Реактивная мощность, так же как и реактивная составляющая тока, характеризует собой ту энергию, которая идет на создание магнит­ного поля индуктивности или электрического поля конденсатора (если последний включен в данную цепь). Эта энергия в процессе протека­ния переменного тока в цепях со сдвигом фаз совершает непрерыв­ные колебания между источником энергии и ее потребителем.

Активная, реактивная и полная мощности переменного тока связаны между собой соотношением

S 2 =P 2 +Q 2 . (1.28)

Это соотношение можно представить как векторную диаграм­му, получаемую на основании диаграммы напряжений или токов, носящую название «треугольника мощностей» (рис. 1.9). Два катета этого треугольника представляют собой в том или ином масштабе активную и реактивную мощности (соответственно в кВт и квар), а гипотенуза — полную мощность (кВ А). Угол φ численно равен углу сдвига фаз тока и напряжения в цепи. Значение косинуса это­го угла называют коэффициентом мощности.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник