Меню

Непосредственные преобразователи постоянного тока

Все виды преобразователей напряжения

Преобразователи напряжения широко используются как в быту, так и на производстве. Для производства и промышленности чаще всего изготавливаются по индивидуальному заказу, ведь там нужен мощный преобразователь и не всегда с напряжением стандартной величины. Стандартные величины выходных и входных параметров применяются зачастую в бытовых условиях. То есть преобразователь напряжения — это электронное устройство, которое предназначено для изменения вида электроэнергии, её величины или же частоты.

По своей функциональности они делятся на:

  1. Понижающие;
  2. Повышающие;
  3. Бестрансформаторные;
  4. Инверторные;
  5. Регулируемые с настройкой частоты и величины выходного переменного напряжения;
  6. Регулируемые с настройкой величины постоянного выходного напряжения.

Некоторые из них могут выполняться в специальном герметичном исполнении, такие типы устройств используются для влажных помещений, или же, вообще, для установки под водой.

Итак, что же из себя представляет каждый вид.

Высоковольтный преобразователь напряжения

Схема 1

Такое электронное устройство, которое предназначено для получения переменного или постоянного высокого напряжения (до нескольких тысяч вольт). Например, такие устройства применяются для получения высоковольтной энергии на кинескопы телевизоров, а также для лабораторных исследований и проверки электрооборудования напряжением, повышенным в несколько раз. Кабеля или же силовые цепи масляных выключателей, рассчитанных на напряжение 6 кВ, испытывают напряжением 30 кВ и выше, правда, такая величина напряжения не обладает высокой мощностью, и при пробое сразу же отключается. Эти преобразователи довольно компактны ведь их приходится переносить персоналу от одной подстанции к другой, чаще всего вручную. Нужно заметить, что все лабораторные блоки питания и преобразователи обладаю почти эталонным, точным напряжением.

Более простые высоковольтные преобразователи применяются для запуска люминесцентных ламп. Сильно повысить импульс до нужного можно за счёт стартера и дросселя, которые могут иметь электронную или же электромеханическую основу.

Промышленные установки, выполняющие преобразование более низкого напряжения в высокое, имеют множество защит и выполняются на повышающих трансформаторах (ПТН). Вот одна из таких схем дающая на выходе от 8 до 16 тысяч Вольт, при этом для его работы необходимо всего около 50 В.

Из-за того, что в обмотках трансформаторов вырабатывается и протекает довольно высокое напряжение, то и к изоляции этих обмоток, а также к её качеству предъявляются высокие требования. Для того чтобы устранить возможность появления коронирующих разрядов, детали высоковольтного выпрямителя должны быть припаяны к плате аккуратно, без заусенцев и острых углов, после чего залиты с обеих сторон эпоксидной смолой или слоем парафина толщиной 2…3 мм, обеспечивающим изоляцию друг от друга. Иногда данные электронные системы и устройства называют повышающий преобразователь напряжения.

Следующая схема представляет собой линейный резонансный преобразователь напряжения, который работает в режиме повышения. Он основан на разделении функций повышения U и его чёткой стабилизации в абсолютно разных каскадах.

При этом некоторые инверторные блоки можно заставить работать с минимальными потерями на силовых ключах, а также на выпрямленном мосте, где появляется высоковольтное напряжение.

Преобразователь напряжения для дома

С преобразователями напряжения для дома обычный человек сталкивается очень часто, ведь во многих устройствах есть блок питания. Чаще всего это понижающие преобразователи, имеющие гальваническую развязку. Например, зарядные устройства мобильных телефонов и ноутбуков, персональные стационарные компьютеры, радиоприёмники, стереосистемы, различные медиапроигрыватели и этот перечень можно продолжать очень долго, так как их разнообразие и применения в быту в последнее время очень широко.

Беперебойник

Бесперебойные блоки питания оснащены накопителями энергии в виде аккумуляторов. Такие устройства применяются также для поддержания работоспособности системы отопления, во время неожиданного отключения электроэнергии. Иногда преобразователи для дома могут быть выполнены по инверторной схеме, то есть подключив его к источнику постоянного тока (аккумулятору), работающего за счёт химической реакции можно получить на выходе обычное переменное напряжение, величина которого будет 220 Вольт. Особенностью данных схем является возможность получить на выходе чистый синусоидальный сигнал.

Одной из очень важных характеристик, применяемых в быту преобразователей, является стабильная величины сигнала на выходе устройства, независимо от того сколько вольт подаётся на его вход. Эта функциональная особенность блоков питания связана с тем, что для стабильной и продолжительной работы микросхем и других полупроводниковых устройств необходимо чётко нормированное напряжение, да ещё и без пульсаций.

Основными критериями выбора преобразователя для дома или квартиры являются:

  1. Мощность;
  2. Величина входного и выходного напряжения;
  3. Возможность стабилизации и её пределы;
  4. Величина тока на нагрузке;
  5. Минимизация нагрева, то есть лучше чтобы преобразователь работал в режиме с запасом по мощности;
  6. Вентиляция устройства, может быть естественная или принудительная;
  7. Хорошая шумоизоляция;
  8. Наличие защит от перегрузок и перегрева.

Выбор преобразователя напряжения дело не простое, ведь от правильно выбранного преобразователя зависит и работа питаемого устройства.

Бестрансформаторные преобразователи напряжения

Схема 3

В последнее время они стали очень популярны, так как на их изготовление, а в частности, производство трансформаторов, нужно тратить немалые средства, ведь обмотка их выполняется из цветного металла, цена на который постоянно растёт. Основное преимущество таких преобразователей это, конечно же, цена. Среди отрицательных сторон есть одно существенно отличающее его от трансформаторных блоков питания и преобразователей. В результате пробоя одного или нескольких полупроводниковых приборов, вся выходная энергия может попасть на клеммы потребителя, а это обязательно выведет его из строя. Вот простейший преобразователь переменного напряжения в постоянное. Роль регулирующего элемента играет тиристор.

Проще обстоят дела с преобразователями, в которых отсутствуют трансформаторы, но работающие на основе и в режиме повышающего напряжение аппарата. Здесь даже при выходе одного элемента или нескольких на нагрузке не появится опасной губительной энергии.

Преобразователи постоянного напряжения

Преобразователь переменного напряжения в постоянное является самым часто используемым видом устройства этого типа. В быту это всевозможные блоки питания, а на производстве и в промышленности это питающие устройства:

  • Всех полупроводниковых схем;
  • Обмоток возбуждения синхронных двигателей и двигателей постоянного тока;
  • Катушек соленоидов масляных выключателей;
  • Оперативных цепей и цепей отключения там, где катушки требуют постоянного тока.

Тиристорный преобразователь напряжения — это наиболее часто применяемый для этих целей аппарат. Особенностью этих устройств является полное, а не частичное, преобразование переменного напряжения в постоянное без всякого рода пульсаций. Мощный преобразователь напряжения такого типа обязательно должен включать в себя радиаторы и вентиляторы для охлаждения, так как все электронные детали могут работать долго и безаварийно, только при рабочих температурах.

Регулируемый преобразователь напряжения

Регулируемый преобразотель

Эти устройства направлены на работу как в режиме повышения напряжения, так и в режиме понижения. Чаще всего это всё-таки аппараты, выполняющие плавную регулировку величины выходного сигнала, который ниже входного. То есть на вход подаётся 220 Вольт, а на выходе получаем регулируемую постоянную величину, допустим, от 2 до 30 вольт. Такие приборы с очень тонкой регулировкой применяются для проверки стрелочных и цифровых приборов в лабораториях. Очень удобно когда они оснащены цифровым индикатором. Нужно признать, что каждый радиолюбитель брал за основу своих первых работ именно этот вид, так как питание для определённой аппаратуры может быть разное по величине, а этот источник питания получался весьма универсальным. Как сделать качественный и работающий долгое время преобразователь, вот основная проблема юных радиолюбителей.

Инверторный преобразователь напряжения

инверторный преобразователь

Данный тип преобразователей положен в основу инновационных компактных сварочных устройств. Получая для питания переменное напряжение 220 Вольт аппарат выпрямляет его, после чего снова делает его переменным, но уже с частотой несколько десятков тысяч Гц. Это даёт возможность значительно снизить габариты сварочного трансформатора, установленного на выходе.

Также инверторный способ применяется для питания отопительных котлов от аккумуляторных батарей в случае неожиданного отключения электроэнергии. За счёт этого система продолжает работать и получает 220 вольт переменного напряжения из 12 Вольт постоянного. Мощный повышающий аппарат такого назначения должен эксплуатироваться от батареи большой ёмкости, от этого зависит как долго он будет снабжать котёл электроэнергией. То есть емкость при этом играет ключевую роль.

Высокочастотный преобразователь напряжения

За счёт применения повышающих преобразователей появляется возможность уменьшения габаритов всех электронных и электромагнитных элементов, из которых состоят схемы, а это значит снижается и стоимость трансформаторов, катушек, конденсаторов и т. д. Правда, это может вызывать высокочастотные радиопомехи, которые влияют на работу других электронных систем, да и обычных радиоприёмников, поэтому нужно надёжно экранировать их корпуса. Расчет преобразователя и его помех должен производиться высококвалифицированным персоналом.

Что такое преобразователь сопротивления в напряжение?
Это особый вид, который используется только при производстве и изготовлении измерительных приборов, в частности, омметров. Ведь основа омметра, то есть прибора измеряющего сопротивление, выполнена в измерении падения U и преобразовании его в стрелочные или цифровые показатели. Обычно измерения производятся относительно постоянного тока. Измерительный преобразователь — техническое средство, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации, а также передачи. Он входит в состав какого-либо измерительного прибора.

Преобразователь тока в напряжение

В большинстве случаев все электронные схемы нужны для обработки сигналов, представленных в виде напряжения. Однако иногда приходится иметь дело с сигналом в виде тока. Такие сигналы возникают, например, на выходе фоторезистора или фотодиода. Тогда желательно при первой же возможности преобразовать токовый сигнал в напряжение. Преобразователи напряжения в ток применяются в случае, когда ток в нагрузке должен быть пропорционален входному U и не зависеть от R нагрузки. В частности, при постоянном входном U ток в нагрузке также будет постоянным, поэтому такие преобразователи иногда условно называют стабилизаторами тока.

Ремонт преобразователя напряжения

Ремонт этих устройств для преобразования одного вида напряжения в другой, лучше производить в сервисных центрах, где персонал имеет высокую квалификацию и впоследствии предоставит гарантии выполненных работ. Чаще всего любые современные качественные преобразователи состоят из нескольких сотен электронных деталей и если нет явных сгоревших элементов, то найти поломку и устранить её будет очень сложно. Некоторые же китайские недорогие устройства данного типа, вообще, в принципе лишены возможности их ремонта, чего нельзя сказать об отечественных производителях. Да может они немного громоздкие и не компактные, но зато подлежат ремонту, так как многие из их деталей можно заменить на аналогичные.

Источник

НЕПОСРЕДСТВЕННЫЕ ПРЕОБРАЗОВАТЕЛИ ПОВЫШАЮЩЕГО И ИНВЕРТИРУЮЩЕГО ТИПОВ

Основные схемы и их характеристики

Схема непосредственного преобразователя повышающего типа представлена на рис. 26.

Рис. 26

Проанализируем работу схемы при идеализации параметров всех элементов и режиме непрерывного тока дросселя. Временные диа­граммы изменения токов и напряжений в схеме для оговоренных усло­вий приведены на рис. 27.

Читайте также:  Что лучше всего проводит электрический ток золото или серебро

В отличие от схемы понижающего преобразователя, в рассмат­риваемой схеме транзистор не может находиться в любом из двух крайних состояний — все время включен или все время выключен. Режим непрерывного включенного состояния здесь соответствует короткому замыканию источника питания.

При некотором установившемся режиме работы на интервале включенного состояния транзистора gТ, который задается управ­ляющим напряжением uy, дроссель L подключен к источнику пита­ния, диод VD закрыт под действием напряжения на конденсаторе С, нагрузка от источника питания отключена и конденсатор поддер­живает уровень выходного напряжения. Напряжение на дросселе равно Uвх, а ток в его обмотке изменяется по линейному закону от минимального значения ILmin до максимального ILmax на величину 2DIL:

, (18)

Рис. 27 Процессы в повышающем преобразователе.

На интервале (1 -g)T транзистор закрыт и энергия, накопленная в дросселе L передается в конденсатор С и нагрузку через открыв­шийся диод VD. Ток в дросселе спадает по линейному закону, при этом к нему приложена разность напряжений выходного и входного. Так как постоянная составляющая падения напряжения на дросселе равна нулю, то можно составить соотношение

, (19)

Из (19) следует, что выходное напряжение в схеме рассматри­ваемого преобразователя при любом значении g больше входного, откуда он и получил название «повышающий».

Для определения величины переменной составляющей выход­ного напряжения рассмотрим характер изменения тока в цепи конденсатора ic. При замкнутом транзисторе происходит разряд конденсатора током нагрузки и к концу интервала напряжение на конден­саторе достигает минимального значения. При размыкании транзисто­ра начинается заряд конденсатора и напряжение на нем увеличивается, в этот промежуток времени величина тока заряда конденсатора определяется уравнением .

На протяжении промежутка времени (1 — g) Т напряжение на конденсаторе монотонно возрастает, достигает максимума в момент замыкания транзистора, после чего вновь происходит разряд конден­сатора. В этом случае двойную амплитуду переменной составляющей выходного напряжения можно представить как перепад напряжения на конденсаторе DUc за время gТ:

.

Считая приближенно, что ток нагрузки неизменен, получим:

, (20)

Из (20) следует, что в схеме повышающего преобразователя вели­чина пульсаций выходного напряжения пропорциональна току нагрузки, не зависит от индуктивности дросселя и может снижаться только увеличением емкости конденсатора.

Расчетное соотношение для определения емкости конденсатора на основании (20) будет следующее:

, (21)

Однако условие (20), т.е. независимость величины пульсации выходного напряжения от индуктивности дросселя, будет обеспечено только при условии, что ILmin > Iн, которое соблюдается при достаточно большой индуктивности дросселя L. Если же индуктив­ность L невелика, то падение тока iL будет происходить быстро и величина ILmin может стать меньше Iн. В этом случае процесс разряда конденсатора начинается не с момента включения транзистора, а раньше, что ведет к увеличению переменной составляющей выходного напряжения.

Минимальное значение индуктивности L, при которой величина переменной составляющей определяется лишь емкостью конденсатора, находится из условия ILmin > Iн. Для удовлетворения этого условия необходимо значение индуктивности выбирать, исходя из следующего соотношения:

Действующий ток конденсатора Ic можно без существенной погрешности определить, если пренебречь пульсациями тока дрос­селя и оперировать средним значением ic на интервале (1-g)T. В результате для максимальной величины ICmax получим:

, (22)

Напряжение, приложенное к транзистору, когда он закрыт, равно выходному напряжению преобразователя.

Амплитуда тока транзистора IVTmax равна максимальному значению тока дросселя ILmax, который, в свою очередь, определяется суммой среднего значения тока дросселя IL и половины полно­го размаха пульсации тока дросселя DIL.

Средние значения токов нагрузки Iн и дросселя IL соответ­ственно равны:

, (23)
, (24)

На основании (23) и (24) выразим ток дросселя через ток нагруз­ки:

, (25)

С учетом (25) и (18) расчетная амплитуда тока транзистора составит величину

, (26)

Среднее значение тока диода IVD равно току нагрузки Iн.

Регулировочная характеристика повышающего преобразователя, рассчитанная по выражению (19), построена на рис. 28 ( кривая, обо­значенная r = 0 ). Из графика характеристики видно, что при g ® 1 выходное напряжение стремится к бесконечности. Реально такого, конечно, быть не может. Дело в том, что для повышающего непосред­ственного преобразователя допущение об отсутствии потерь в эле­ментах схемы, оговоренное в начале раздела, является некорректным.

Наибольшим активным сопротивлением в рассматриваемой схе­ме обычно обладает дроссель. Если по-прежнему считать идеализи­рованными все элементы схемы, но учесть активное сопротивление об­мотки дросселя r (в сопротивление r можно включить и внутреннее сопротивление источника питания), то выражение для регулировоч­ной характеристики примет вид [4]:

, (27)

где относительное сопротивление активных потерь.

Реальные регулировочные характеристики имеют экстремум и стре­мятся к нулю при g ® 1 (см. рис. 28).

Рис. 28

Дифференцируя (27) по g, находим, что максимум выходного напряжения Uвыхmax имеет место при

, (28)
, (29)

При проектировании следует ограничить диапазон изменения g из условия g * .

Соотношения для расчета электрических величин и параметров элементов схемы с учетом r становятся достаточно громоздкими.

Поэтому при проектировании пользуются выведенными выше со­отношениями. Результаты при этом получаются достаточно достоверными с учетом того, что реально значения r относительно неве­лики.

Схема инвертирующего непосредственного преобразователя приведена на рис. 29.

Рис. 29

По сравнению со схемой повышающего преобразователя (см. рис. 26) здесь транзистор и дроссель взаимно поменялись местами. Но по-прежнему на интервале включенного состояния транзистора дроссель L подключается к источнику питания и в нем запасается энергия. Диод VD на этом интервале выключен, так как к нему в запирающей полярности приложена сумма напряжений входного и выходного. На­пряжение на нагрузке поддерживается за счет разряда конденсатора.

На интервале закрытого состояния VT энергия, накопленная в дросселе, поступает в конденсатор С и нагрузку через открывшийся диод VD, а полярность выходного напряжения (указана на конден­саторе С) будет противоположна полярности питающего напряжения.

При тех же допущениях, что были сделаны при анализе процес­сов в повышающем преобразователе, временные диаграммы, иллю­стрирующие характер электромагнитных процессов в инвертирующем преобразователе, в целом идентичны приведенным на рис. 27. Отличия заключаются в следующем: напряжение на закрытом транзисторе рав­но Uвх + Uвых; напряжение на обмотке дросселя при закрытом транзисторе составляет — Uвых.

Из условия равенства нулю постоянной составляющей падения напряжения на дросселе (если не учитывать активных потерь в элементах схемы) можно составить соотношение

,

, (30)

Рассчитанная по (30) регулировочная характеристика приведена на рис. 30 (кривая, обозначенная r = 0 ).

Регулировочная характеристика полностью идеализированного преобразователя, также как и на рис. 28, стремится к бесконечности при g ® 1.

При учете активного сопротивления дросселя получим [4]:

, (31)

Реальные регулировочные характеристики, рассчитанные по (31), подобны характеристикам повышающего преобразователя (см. рис. 30 и рис. 28). Но в инвертирующем преобразователе выходное напряже­ние (по абсолютной величине) может быть как больше, так и меньше входного.

Максимум выходного напряжения имеет место при

, (32)
, (33)

Конденсаторы в обоих рассмотренных в этом разделе схемах работают в одинаковом режиме, поэтому для инвертирующего преобразователя справедливы формулы (20) и (22). Режим работы транзистора по току остался прежним, т.е. справедлива формула (26), но прикладываемое к закрытому транзистору напряжение здесь больше и равно, как уже указывалось выше, Uвх + Uвых. Средний ток диода по прежнему равен среднему току нагрузки, а обратное напряжение диода равно величине напряжения, прикладываемого к транзистору.

Рис. 30

Подробное сравнение трех основных схем непосредственных преобразователей по расчетной мощности элементов при различных условиях функционирования проведено в [4,5]. По результатам сделан вывод, что наиболее эффективной является схема понижающего пре­образователя.

Из двух оставшихся схем выигрывает повышающий преобразо­ватель. Но его практическое применение ограничено случаями, когда нельзя применить понижающий преобразователь, то есть напряжение источника питания меньше требуемого выходного напряжения (а применить другой источник питания, с большим напряжением, не представляется возможным).

Пример области применения инвертирующего преобразователя — стабилизаторы напряжения, у которых диапазон изменения входного напряжения таков, что входное напряжение может быть как больше, так и меньше требуемого уровня выходного напряжения.

Повышающий и инвертирующий преобразователи могут выпол­няться, подобно понижающему преобразователю, на дросселях с от­пайкой. Но сколько-нибудь реальных положительных эффектов такое решение не приносит [5] и здесь не рассматривается.

Источник

Преобразователи постоянного тока

ЛЕКЦИЯ 3

Реверсивные преобразователи постоянного тока. Регулировочные характеристики. Преобразователи частоты с непосредственной связью

Инвертированием в силовой электронике называют процесс преобразования постоянного напряжения в переменное, т.е. процесс, обратный выпрямлению. Устройства, осуществляющие такое преобразование, являются инверторами. Различают два типа инверторов:

• зависимые инверторы, или инверторы, ведомые сетью;

• независимые или автономные инверторы.

Автономный инвертор может работать при условии отсутствия на его выходе каких-либо источников переменного напряжения. При этом частота выходного напряжения автономного инвертора определяется частотой импульсов управления вентилями инвертора, а форма и величина выходного напряжения – характером и величиной нагрузки и в определенной мере – схемой автономного инвертора.

Различают три типа автономных инверторов:

1) инверторы тока;

2) резонансные инверторы;

3) инверторы напряжения.

Инвертор тока – исторически первый тип автономного инвертора – ха-рактеризуется двумя отличительнымиэнергетическими признаками. Во-первых, входная цепь инвертора тока есть цепь со свойствами источника по-стоянного тока, а функция вентилей инвертора сводится к периодическому переключению направления этого тока в выходной цепи инвертора. Значит, на выходе вентильного коммутатора будет переменный ток (или, образно говоря, периодически переключаемый по направлению постоянный ток), т.е. цепь со свойствами источника переменного тока. Во-вторых, нагрузкой инвертора тока должна быть цепь со свойствами, близкими к источнику напряжения, т.е. с близким к нулевому внутренним динамическим сопротивлением, допускающим протекание через него скачкообразно меняющегося тока. Практически это обеспечивается включением на выход вентильного коммутатора конденсатора, что позволит уже подключить после него любую реальную нагрузку с индуктивностью, не допускающей скачков тока. Условная схема инвертора тока с механическим коммутатором показана на рис. 2.1.1,а, а диаграммы напряжений и токов на входе и выходе коммутатора – на рис. 2.1.1,б.

Переменный прямоугольный ток I2 на выходе коммутатора порождает переменное линейно изменяющееся напряжение на конденсаторе С. Коммутатор при этом выполняет функцию преобразования постоянного тока в переменный, т.е. в соответствии с (1.4.3) части 1

где ψк – коммутационная функция коммутатора (вентильного комплекта), имеющая здесь вид прямоугольного колебания единичной амплитуды. Кроме того, в соответствии со вторым уравнением (1.4.3) части 1

т.е. коммутатор еще выполняет и обратную функцию, т.е. преобразование переменного напряжения U2 на конденсаторе С в постоянное (выпрямленное) напряжение U1 в звене постоянного тока источника тока I. При этом в связи с отсутствием в примере потребления активной мощности с выхода инвертора среднее значение входного напряжения инвертора U1 равно нулю.

Читайте также:  Заправки с постоянным током

ПАРАЛЛЕЛЬНЫЙ ИНВЕРТОР ТОКА

Принципиальная схема однофазного инвертора тока показана на рис. 2.1.2. Здесь функцию коммутатора выполняет однофазная мостовая схема на тиристорах. Режим источника тока на входе инвертора, получающего питание от источника напряжения Uвх, создан включением в цепь постоянного тока дросселя Ld с индуктивностью, достаточной для подавления возможных пульсаций входного тока. Нагрузка инвертора состоит из сопротивления R.

Диаграммы токов и напряжений элементов инвертора показаны на рис. 2.1.3. Конденсатор С, помимо отмеченной функции энергетического буфера (по току) между выходом инвертора с разрывным током и нагрузкой, не допускающей в общем случае скачков тока в ней, имеет еще одну функцию.
Он обеспечивает искусственную коммутацию тиристоров инвертора, т.е. вы­ключение тиристоров под действием напряжения заряженного конденсатора, прикладываемого к тиристорам в обратном направлении. Так, при проводя­щих тиристорах Т1 и Т4 диагонали моста конденсатор С заряжается от источ­ника входного напряжения Uвх в полярности «плюс» слева конденсатора и «минус» справа. Тогда при включении тири­сторов Т2, Т4 второй диагонали моста через них

к тиристорам Т 1 и Т2 скачком приложится обрат­ное напряжение и они выключатся. Конденсатор С теперь начнет перезаряжаться в обратную полярность, как видно из диаграмм на рис. 2.1.3, а за время действия tсх на тиристоре обратного напряжения он должен успеть восстановить свои управляющие свойства.

Для получения внешних и регулировочных характеристик инвертора тока построим модель преобразователя в рамках метода АДУ(1). Зависимость выходного напряжения ин­вертора тока от частоты импульсов управления вентилями ω, которая может быть названа регулировочной характеристикой, т.е. здесь имеет место частот­ный способ регулирования величины

переменного напряжения, что не всегда приемлемо.

В инверторе тока показательна еще его входная характеристика, опреде­ляемая здесь как зависимость относительного среднего значения входного тока инвертора Id от относительной проводимости нагрузки, т.е. I * d = f где за базовый ток по-прежнему принят ток, равный отношению базового на­пряжения к базовому сопротивлению: График этой зависимости построен на рис. 2.1.5б.

Таким образом, на основании выполненного анализа можно заключить, что инвертор тока:

.не допускает режимов холостого хода и имеет ограничение по пре­дельному значению тока нагрузки;

.имеет внешнюю характеристику с участком резкого спада напряжения;

.имеет форму выходного напряжения, зависящую от величины нагрузки (треугольная форма в режимах, близких к холостому ходу, и синусоидаль­ная — в режимах предельных нагрузок);

.является инерционным преобразователем, так как скорость изменения режима определяется скоростью изменения тока в реакторе с большой индук­тивностью Ld;

.не рационален для получения низких частот выходного напряжения, так как при этом возрастают массогабаритные показатели реактора и конден­сатора.

Для ослабления этих недостатков или даже устранения некоторых из них модифицируют классическую схему [13] так называемого параллельного ин­вертора тока за счет [14-22]:

.введения дополнительных конденсаторов на выходе инвертора;

.введения отсекающих вентилей;

. введения вентилей обратного тока;

.введения тиристорно-индуктивного регулятора;

Таким образом, автономные инверторы тока имеют следующие свойства:

• сильную зависимость величины и формы выходного напряжения от величины и характера нагрузки в классическом варианте инвертора. Ограничение на минимум нагрузки диктуется допустимой степенью возрастания напряжения на выходе инвертора. Ограничения на максимум нагрузки обусловлены требованием восстановления управляющих свойств тиристоров. Влияние изменения частоты выходного напряжения на его величину такое же, как влияние изменения нагрузки;

• большую величину индуктивности реактора в звене постоянного тока для реализации режима источника тока, что ухудшает массогабаритные показатели инвертора тока;

• большую инерционность регулирования величины выходного напряжения за счет регулирования входного напряжения инвертора из-за большой электромагнитной постоянной времени реактора в звене постоянного тока;

• возможность уменьшения пределов изменения напряжения на внешней характеристике инвертора модифицированной схемы инвертора путем применения или выпрямителя обратного тока, или тиристорно-индуктивного регулятора; возможность снижения величины (а значит, и массогабаритных показателей) коммутирующей емкости за счет применения отсекающих вентилей; возможность улучшения гармонического состава выходного напряжения инвертора, особенно при низких частотах, методом широтно-импульсного формирования токов вентилей;

• благоприятный с позиций электромагнитной совместимости режим нагрузки источника входного напряжения постоянным током со входа инвертора тока.

Резонансными называются инверторы, у которых периодический характер электромагнитных процессов в нагрузке обусловлен колебательными свойствами LC-контура инвертора. При этом возможны три варианта композиции LC-контура и нагрузки:

• последовательное включение нагрузки в последовательный LC-контур – последовательные резонансные инверторы;

• параллельное подключение нагрузки к L или С LC-контура;

• подключение нагрузки параллельно к части С контура.

Эти три вида подключения нагрузки определяют три вида резонансных инверторов:

параллельный;

последовательно-параллельный;

последовательный.

Кроме того, различают резонансные инверторы с закрытым входом, у которых индуктивность резонансного контура находится в цепи постоянного тока (на входе) инвертора, и с открытым входом, у которых эта индуктивность находится на стороне переменного тока инвертора (в выходной цепи).

ПАРАЛЛЕЛЬНЫЙ И ПОСЛЕДОВАТЕЛЬНО-ПАРАЛЛЕЛЬНЫЙ

РЕЗОНАНСНЫЕ ИНВЕРТОРЫ С ЗАКРЫТЫМ ВХОДОМ

Схема параллельного резонансного инвертора аналогична схеме параллельного инвертора тока на рис. 2.1.2 и отличается только параметрами индуктивности реактора в звене постоянного тока. Из этой индуктивности и емкости на выходе инвертора образуется LC-контур, индуктивность и емкость которого разделены вентильным комплектом. Параметры колебательного контура и частота импульсов управления вентилями моста выбраны так, что ток во входном реакторе имеет прерывистый характер. Это обеспечивает естественное отключение тиристоров при спаде тока в них до нуля. Действительно, при включении в момент t0 тиристоров Т1, Т4 конденсатор стремится зарядиться через индуктивность реактора до напряжения, превышающего напряжение входного источника (рис. 2.2.1).

В момент t1, когда колебательная полуволна тока реактора спадет до нуля, тиристоры Т1 и Т4 окажутся под обратным напряжением, равным разности напряжения на конденсаторе и напряжения входного источника. До момента времени t2 конденсатор разряжается только током нагрузки. В момент времени t2 включаются тиристоры Т2, Т3 второй диагонали моста. Если к этому моменту времени конденсатор не успел разрядиться до уровня напряжения входного источника, то тиристоры Т1, Т4 останутся под обратным напряжением до момента t3 смены полярности напряжения на конденсаторе.

РЕЗОНАНСНЫЕ ИНВЕРТОРЫ С ОТКРЫТЫМ ВХОДОМ

КЛАССИЧЕСКИЕ СХЕМЫ ПОСЛЕДОВАТЕЛЬНЫХ РЕЗОНАНСНЫХ

ИНВЕРТОРОВ (БЕЗ ОБРАТНЫХ ВЕНТИЛЕЙ)

Нулевая, полумостовая и мостовая схемы последовательных резонансных инверторов показаны на рис. 2.2.2. Все они работают, как и параллельные резонансные инверторы, в режиме прерывистого входного тока. Типовые диаграммы входного тока инвертора, напряжения на конденсаторе и тока нагрузки приведены на рис. 2.2.3.

В отличие от параллельных инверторов здесь напряжение на конденсаторе колебательного контура не спадает во время нулевой паузы, но ток нагрузки имеет прерывистый характер. Аналитическое исследование прерывистого режима работы последовательного резонансного инвертора осложнено теми же трудностями, что и у параллельного резонансного инвертора, и поэтому здесь не приводится. С ним можно ознакомиться по монографиям [15] и прежним учебникам [9]. Да и сами эти схемы утрачивают свое доминирующее значение для создания преобразователей повышенной частоты из-за невозможности режима холостого хода и существенной зависимости режима работы от параметров нагрузки. Их потеснили схемы резонансных инверторов с вентилями обратного тока на тиристорах или на транзисторах, у которых нет ограничений, связанных с обеспечением времени на восстановление их управляющих свойств после интервала проводимости ими тока.

РЕЗОНАНСНЫЕ ИНВЕРТОРЫ С ВЕНТИЛЯМИ

Тиристорные инверторы.Схема полумостового последовательного ре-зонансного инвертора на тиристорах с диодами обратного тока приведена на рис.2.2.4, а для случая доступности средней точки источника входного напря-жения и на рис. 2.2.4,б – вариант с расщепленным фильтровым (коммутирующим) конденсатором, когда средняя точка источника недоступна.

Работают схемы аналогично. Сначала рассмотрим случай, когда частота импульсов управления тиристорами ниже частоты резонанса контура LкCк и он работает в режиме прерывистого тока (рис 2.2.5).

В момент времени t1 включается тиристор Т1 и конденсатор Ск заряжается в колебательном режиме до напряжения, близкого к двойному напряжению источника входного напряжения Uвх/2. В момент времени t2 зарядная полуволна тока через тиристор спадает до нуля и он закрывается. Конденсатор на интервале t2t3 заряжается также в колебательном режиме через диод обратного тока D1 на источник входного напряжения Uвх. Величина остаточного напряжения на конденсаторе в момент времени t3 зависит от соотношения волнового сопротивления колебательного контура ρк с сопротивлением нагрузки и в установившемся режиме равна взятому с обратным знаком начальному напряжению на конденсаторе в момент времени t1.

В момент времени t2 включается тиристор Т2 и происходят аналогичные процессы перезаряда конденсатора в отрицательную полярность через тиристор Т2 и диод D2 до момента времени t6. С момента времени t7 начинается новый период формирования напряжения на конденсаторе.

В рассмотренном режиме прерывистого тока нагрузки включение и выключение тиристоров и диодов происходит при нулевых токах в них, что снижает потери на коммутацию. Время, предоставляемое на восстановление управляющих свойств тиристоров, равно времени протекания тока через диоды обратного тока (интервалы t2t3 и t5t6). Действующее или среднее по модулю выходное напряжение регулируют длительностью бестоковых пауз t3t4, t6t7, что достигается изменением частоты импульсов управления тиристорами. Такое регулирование связано с ухудшением качества выходного напряжения и обычно приемлемо, только если выходное напряжение инвертора подвергается дальнейшему преобразованию, обычно выпрямлению и фильтрации постоянного тока.

Качество выходного напряжения можно улучшить при режиме работы с непрерывным током нагрузки, временные диаграммы для этого случая показаны на рис. 2.2.6. Здесь включение тиристора Т2 в момент t3 происходит раньше спада тока до нуля в диоде D1, что возможно, так как к тиристору Т2 при проводящем диоде D1 приложено прямое напряжение Uвх. Уменьшение временного интервала t2t3 приводит к увеличению остаточного напряжения на конденсаторе в момент его перезаряда в обратную полярность, что, естественно, вызовет рост амплитуды напряжения на конденсаторе. Значит, и в режиме непрерывного тока нагрузки регулирование частоты выходного напряжения инвертора будет регулировать величину выходного напряжения без того искажения формы, которое присуще режиму прерывистого тока. Другая возможность регулирования выходного напряжения инвертора при выполнении его по однофазной мостовой схеме, вентильный комплект которой подобен реверсивному ШИП на рис. 1.1.6,б, связана с однополярным широтно-импульсным регулированием выходного напряжения вентильного комплекта. Подробнее о широтно-импульсном регулировании см. в разделе 2.3.

В практических схемах таких инверторов нагрузка (обычно выпрямитель для получения постоянного напряжения другого уровня, чем Uвх) подключается через выходной трансформатор Тр, как показано на рис. 2.2.7,а. В первом случае роль индуктивности колебательного контура будет практически выполнять суммарная индуктивность рассеивания обмоток трансформатора, если пренебречь влиянием индуктивности намагничивания трансформатора по сравнению с нагрузкой.

Читайте также:  Методические указания по техническому обслуживанию реле тока нулевой последовательности ртз 50

Во втором случае (рис. 2.2.7,б) приведенное сопротивление нагрузки ока-зывается включенным параллельно конденсатору. Ниже для этого случая включения нагрузки найдем внешнюю и регулировочную характеристики резонансного инвертора и качество его выходного напряжения, воспользовавшись методом АДУ. Для упрощения анализа сначала расчет сделаем по первой гармонике методом АДУ(1), а затем оценим методом АДУ2 степень искажения реальной кривой напряжения по коэффициенту гармоник напряжения.

По этому соотношению можно построить как внешние характеристики резонансного инвертора при , так и регулировоч-

ные характеристики. Семейства этих характеристик показаны соответственно на рис. 2.2.9 и 2.2.10.

Необходимо иметь в виду, что рабочие участки на этих характеристиках ограничиваются условием, чтобы время проводимости диода обратного тока (интервал t2t3 на рис. 2.2.6) было больше времени, требуемого на восстановление управляющих свойств тиристоров tв, определяемого их типом и равного для высокочастотных тиристоров порядка 10…40 мкс.

Графики зависимости коэффициента гармоник от относительной частоты управления при показаны на рис. 2.2.11.

Параллельный резонансный инвертор критичен к максимальной нагрузке, но работоспособен на холостом ходу. Последовательный резонансный инвертор критичен к минимальной нагрузке, но сохраняет работоспособность при коротком замыкании нагрузки. Поэтому наилучшими свойствами в допустимом диапазоне изменения нагрузки априори должен обладать последовательно-параллельный резонансный инвертор, полумостовой вариант которого показан на рис. 2.2.12.

В отличие от LC колебательной цепи в ранее рассмотренных резонансных инверторах, здесь LCC колебательная цепь дает одну дополнительную степень свободы для формирования характеристик инвертора помимо обеспечения требуемых значений собственной частоты колебательного контура и его волнового сопротивления. Но опять остается проблема обеспечения времени, предоставляемого схемой на восстановление управляющих свойств тиристоров, анализ которого может быть сделан в общем случае только численно.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Преобразователи частоты

В данной статье мы рассмотрим что такое частотный преобразователь, сферы применения преобразователей частоты, их плюсы и минусы, а также схемы частотников.

  1. Виды преобразователей частоты
  2. Способы управления преобразователем
  3. Режимы управления частотными преобразователями
  4. Преимущества частотных преобразователей
  5. Сферы применения

Преобразователи частоты (или частотники) – электротехническое оборудование для регулирования частоты переменного напряжения. Основная сфера применения этих устройств – изменение частоты вращения и крутящего момента электрических машин асинхронного типа. Принцип действия управления и регулирования основан на зависимости скорости вращения магнитного поля от частоты питающего напряжения.

Асинхронные электродвигатели широко используются в качестве приводов промышленного оборудования, насосных агрегатов, регулирующей арматуры и других устройств. Основным недостатком этих электрических машин являются постоянная скорость вращения, большие пусковые токи. При помощи частотных преобразователей возможно устранить эти недостатки и существенно расширить сферу применения электродвигателей переменного тока.

Виды преобразователей частоты

Частотные преобразователи различаются по конструкции, принципу действия, способу управления. По конструктивному исполнению преобразователи частоты разделяют на две большие группы:

Электромашинные частотники.

Электромашинные или индукционные преобразователи частоты представляют собой двигатели переменного тока, включенные в режим генератора. Применяются такие электротехнические устройства относительного редко, в условиях, где затруднено или невозможно применение электронных частотных преобразователей.

Электронные преобразователи.

Полупроводниковые ЧП состоят из силовой части, выполненной на транзисторах или тиристорах, и схемы управления на базе микроконтроллеров. Это электротехническое оборудование пригодно для трехфазных и однофазных приводов любого назначения. Различают ЧП с непосредственной связью с питающей сетью и устройства с промежуточным звеном постоянного тока.

Непосредственные преобразователи частоты

Такие частотники построены на базе быстродействующих тиристорных преобразователей, включенных по мостовым, перекрестным, нулевым и встречно-параллельным схемам.

Устройства такого типа включаются непосредственно в питающую сеть.

Плюсы непосредственных преобразователей частоты:

  • Возможностью рекуперации электроэнергии в сеть при работе в режиме торможения двигателя. Непосредственное включение обеспечивает двусторонний обмен электричеством.
  • Высоким к.п.д. за счет однократного преобразования частоты.
  • Возможностью наращивания мощности за счет присоединения дополнительных преобразователей.
  • Широким диапазоном низких частот. Непосредственные преобразователи обеспечивают стабильную работу привода на малых скоростях.

Минусы непосредственных преобразователей частоты:

  • Аппроксимированная форма выходного напряжения с наличием постоянных составляющих и субгармоник. Такая форма переменного напряжения на выходе устройства вызывает дополнительный нагрев двигателя, снижает момент, создает помехи.
  • Частота напряжения на выходе преобразователя не превышает аналогичную характеристику сетевого напряжения. Таким образом, при помощи этих устройств можно только снижать скорость вращения двигателей.
  • Основная сфера непосредственных преобразователей – электроприводы на базе асинхронных и синхронных двигателей большой и средней мощности.

Преобразователи частоты с промежуточным звеном постоянного тока.

Частотные преобразователи этого типа выполнены на базе схемы двойного преобразования. Питающее сетевое напряжение преобразуется в постоянное, затем сглаживается и инвертируется в переменное выходное напряжение заданной частоты.

Плюсы преобразователей с промежуточным звеном постоянного тока:

  • Возможностью получения выходного напряжения с частотой как выше, так и ниже аналогичного параметра сети питания. Частотники на базе схемы двойного преобразования используют для высоко- средне- и низкоскоростных электроприводов.
  • Чистой синусоидальной формой напряжения на выходе. Схема преобразователя позволяет получать переменное напряжение с минимальным отклонением от синусоидальной формы.
  • Возможностью построения простых и сложных силовых и управляющих схем для приводов с различными требованиями к скорости реагирования, диапазону скоростей.
  • Возможностью адаптации к сетям постоянного тока. Преобразователи данного типа можно приспособить для питания от резервных и аварийных источников постоянного тока без дополнительных устройств. Это позволяет применять такие частотники в приводах ответственного оборудования с резервными источниками электроэнергии.
  • Разнообразием алгоритмов управления. Преобразователи со звеном постоянного тока можно запрограммировать и адаптировать практически ко всем электроприводам, в том числе и претенциозным, где требуется особо точное регулирование скорости и момента.

Минусы преобразователей с промежуточным звеном постоянного тока:

  • Относительно большую массу и габариты, что обусловлено наличием выпрямительного, фильтрующего и инверторного блоков.
  • Повышенные потери мощности. Схема двойного преобразования несколько уменьшает общий к.п.д.

Устройство преобразователей с промежуточным звеном постоянного тока

Состоят такие преобразователи из нескольких основных блоков:

  • Выпрямителя. Для ЧП используются диодные и тиристорные преобразователи постоянного тока. Первые отличаются высоким качеством постоянного напряжения практически с полным отсутствием пульсации, низкой стоимостью и надежностью. Однако диодные выпрямители не позволяют реализовать возможность рекуперации электроэнергии в сеть при торможении двигателя. Выпрямители на тиристорах обеспечивают возможность протекания тока в обоих направлениях и позволяют отключать преобразователь от сети без дополнительной коммутирующей аппаратуры.
  • Фильтра. Выходное напряжение тиристорных управляемых выпрямителей имеет значительную пульсацию. Для ее сглаживания используют реакторы, емкостные или индуктивно-емкостные фильтры.
  • Инвертора. В ЧП используют инверторы напряжения и тока. Последние обеспечивают рекуперацию электроэнергии в сеть и применяются для управления электрическими машинами с частым пуском, реверсом и остановкой, например, крановыми двигателями.
  • Частотники на базе инверторов напряжения выдают на выходе напряжение формы “чистый синус”. Благодаря этому преобразователи такого типа получили наиболее широкое распространение.
  • Микропроцессора. Этот блок осуществляет управление входным выпрямителем, прием и обработку сигналов с датчиков, взаимодействие с автоматизированной системой высшего уровня, запись и хранение информации о событиях, формирует выходное напряжения ЧП соответствующей частоты. А также выполняет функции защиты от перегрузок, обрыва фазы и других аварийных и ненормальных режимов работы.

Способы управления преобразователем

По принципу управления различают 2 основных вида частотных преобразователей:

ЧП со скалярным управлением

Частотники этого типа выдают на выходе напряжение определенной частоты и амплитуды для поддержания определенного магнитного потока в обмотках статора. Частотники с таким принципом регулирования отличаются относительно низкой стоимостью, простотой конструкции. Нижний предел регулировки скорости составляет около 10 % от номинальной частоты вращения. Их можно использовать для управления сразу несколькими двигателями. Скалярные ЧП используют для приводов насосных агрегатов, вентиляторов и других устройств и оборудования, где не требуется поддерживать скорость вращения ротора вне зависимости от нагрузки.

ЧП с векторным управлением

Микропроцессорные устройства преобразователей с векторным управлением автоматически вычисляют взаимодействие магнитных полей статора и ротора. ЧП такого типа обеспечивают постоянную частоту вращения ротора вне зависимости от нагрузки. Они используются для оборудования, где необходимо поддерживать необходимый момент силы при низких скоростях, высокое быстродействие и точность регулирования. Применение векторных ЧП позволяет регулировать частоту вращения, задавать требуемый момент на валу.

ЧП с векторным управлением делятся на преобразователи бездатчикового типа и устройства с обратной связью по скорости. Последние используются для приводов с широким диапазоном регулирования скорости до 1:1000, необходимости позиционирования точного положения вала, регулирования момента при низких скоростях, точного поддержания частоты вращения, пуска двигателя с номинальным моментом. Преобразователи без датчика скорости применяют для приводов с более низкими требованиями.

Режимы управления частотными преобразователями

В большинстве моделей современных частотных преобразователей реализована возможность управления в нескольких режимах:

1) Ручное управление.

2) Внешнее управление.

3) Управление по дискретным входам или “сухим контактам”.

4) Управление по событиям.

Преимущества частотных преобразователей.

1) Экономия электроэнергии.

2) Увеличение срока службы промышленного оборудования.

3) Отсутствие необходимости проводить техническое обслуживание.

4) Возможность удаленного управления и контроля параметров оборудования с электроприводом.

5) Широкий диапазон мощности двигателей.

6) Защита электродвигателя от аварий и аномальных режимов работы.

7) Снижение уровня шума работающего двигателя.

Сферы применения

Частотно-регулируемые приводы применяют:

  • Для кранов и грузоподъемных машин . Крановые двигатели работают в режиме частых пусков, остановок, изменяющейся нагрузки. ЧП обеспечивают отсутствие рывков и раскачивания груза при пусках и остановках, остановку крана точно в требуемом месте, снижают нагрев электродвигателей и максимальный пусковой момент.
  • Для привода нагнетательных вентиляторов в котельных и дымососов. Общее управление с плавной регулировкой дутьевых и вытяжных вентиляторов позволяет автоматизировать процесс горения и обеспечить максимальный к.п.д . котельных агрегатов.
  • Для транспортеров, прокатных станов, конвейеров, лифтов. ЧП регулирует скорость перемещения транспортного оборудования без рывков и ударов, что увеличивает срок службы механических узлов. Для насосных агрегатов. ЧП позволяют обойтись без задвижек и вентилей, регулирующих давление и производительность, и существенно увеличить общий к.п.д системы водоподачи.
  • Для электродвигателей станков. Использование преобразователя частоты вместо коробки передач позволяет плавно увеличивать или уменьшать частоту вращения рабочего органа станка, осуществлять реверс. ЧП широко используются для станков с ЧПУ и высокоточного промышленного оборудования.

Внедрение частотно-регулируемых приводов дает значительный экономический эффект. Снижение затрат достигается за счет сокращения потребления электроэнергии, расходов на ремонт и ТО двигателей и оборудования, возможности использования более дешевых асинхронных электродвигателей с короткозамкнутым ротором, а также сокращения других производственных издержек. Средний срок окупаемости частотных преобразователей составляет от 3-х месяцев до трех лет.

Источник