Меню

Направление движения тока в проводнике под действием магнитного поля

Величина и направление ЭДС индукции

Дата публикации: 26 февраля 2015 .
Категория: Статьи.

Индуктированная электродвижущая сила (ЭДС) возникает в следующих случаях:

  1. Когда движущийся проводник пересекает неподвижное магнитное поле или, наоборот, перемещающееся магнитное поле пересекает неподвижный проводник; или когда проводник и магнитное поле, двигаясь в пространстве, перемещаются один относительно другого;
  2. Когда переменное магнитное поле одного проводника, действуя на другой проводник, индуктирует в нем ЭДС (взаимоиндукция);
  3. Когда изменяющееся магнитное поле индуктирует в енм самом ЭДС (самоиндукция).

Таким образом, всякое изменение во времени величины магнитного потока, пронизывающего замкнутый контур (виток, рамку), сопровождается появлением в проводнике индуктированной ЭДС.

Как было отмечено в статье «Явление электромагнитной индукции», направление ЭДС магнитной индукции зависит от направления движения проводника и от направления магнитного поля.

Для определения направления индуктированной ЭДС в проводнике служит «правило правой руки». Оно заключается в следующем: если мысленно расположить правую руку в магнитном поле вдоль проводника так, чтобы магнитные линии, выходящие из северного полюса, входили в ладонь, а большой отогнутый палец совпадал с направлением движения проводника, то четыре вытянутых пальца будут указывать направление индуктированной ЭДС в проводнике (рисунок 1).

Рисунок 1. Определение направления ЭДС индукции в проводнике по «правилу правой руки»

В случаях, когда проводник остается неподвижным, а магнитное поле движется, для определения направления индуктированной ЭДС нужно предположить, что поле остается неподвижным, а проводник движется в сторону, обратную движению поля, и применить «правило правой руки».

Рисунок 2. Электромагнитная индукция в проводнике

Явление индуктированной ЭДС можно также объяснить при помощи электронной теории.

Поместим проводник в магнитное поле. Свободные электроны проводника будут находиться в беспорядочном тепловом движении. Положительные и отрицательные заряды равномерно расположены по всему объему проводника и взаимно нейтрализуют друг друга. Будем перемещать проводник с определенной скоростью в однородном магнитном поле в направлении n (рисунок 2) перпендикулярно вектору магнитной индукции. Магнитные линии, показанные точками, направлены из-за плоскости чертежа к читателю.

На электрические заряды проводника в этом случае будет действовать сила, под действием которой свободные электроны получат добавочную составляющую скорости и будут двигаться вдоль проводника.

В то время как положительные заряды, связанные с кристаллической решеткой проводника, относительно проводника не смещаются, движущиеся вместе с проводником свободные электроны могут перемещаться относительно него.

Рисунок 3. Разложение скорости движения проводника в магнитном поле

В нашем примере электроны движутся от нижнего края проводника к его верхнему краю, что соответствует направлению тока сверху вниз. Направление индуктированной ЭДС и тока в проводнике, как легко убедиться, согласуется с правилом правой руки.

Величина ЭДС индукции магнитного поля в проводнике зависит:

  1. от величины индукции B магнитного поля, так как чем гуще расположены магнитные индукционные линии, тем больше число их пересечет проводник за единицу времени (секунду);
  2. от скорости движения проводника v в магнитном поле, так как при большой скорости движения проводник может больше пересечь индукционных линий в секунду;
  3. от рабочей (находящейся в магнитном поле) длины проводника l, так как длинный проводник может больше пересечь индукционных линий в секунду;
  4. от величины синуса угла α между направлением движения проводника и направлением магнитного поля (рисунок 3).

Раскладываем вектор скорости движения проводника в магнитном поле на две составляющие: vn – составляющую нормальную к направлению поля (vn = v × sin α) и vt – тангенциальную составляющую (vt = v × cos α), которая не принимает участия в создании ЭДС, так как при движени под воздействием тангенциальной составляющей проводник двигался бы параллельно вектору B и не пересекал бы линии магнитной индукции.

Формула ЭДС индукции дает возможность определить ее величину:

Познакомившись с явлением электромагнитной индукции, рассмотрим еще раз процесс преобразования электрической энергии в механическую.

Преобразование электрической энергии в механическую

Рисунок 4. Преобразование электрической энергии в механическую

Пусть прямолинейный проводник АВ (рисунок 4), по которому проходит ток от источника напряжения, помещен во внешнее магнитное поле. Если проводник неподвижен, то энергия источника напряжения расходуется исключительно на нагрев проводника:

Затрачиваемая мощность будет равна:

откуда определяем ток в цепи:

Однако нам известно, что проводник с током, помещенный в магнитное поле, будет испытывать силу со стороны поля, стремящуюся перемещать проводник в магнитном поле в направлении, определяемом правилом левой руки. При своем движении проводник будет пересекать магнитные силовые линии поля и в нем по закону электромагнитной индукции возникнет индуктированная ЭДС. Направление этой ЭДС, определенное по правилу правой руки, будет обратным току I. Назовем ее обратной ЭДС Eобр. Величина Eобр согласно закону электромагнитной индукции будет равна:

По второму закону Кирхгофа для замкнутой цепи имеем:

откуда ток в цепи

Ток в цепи (3)

Сравнивая выражения (1) и (3), видим, что в проводнике, движущемся в магнитном поле, при одних и тех же значениях U и r ток будет меньше, чем при неподвижном проводнике.

Умножая полученное выражение (2) на I, получим:

Последнее выражение показывает, что при движении проводника с током в магнитном поле мощность источника напряжения преобразуется в тепловую и механическую мощности.

Правило правой руки

Источник: Кузнецов М. И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Источник

Действие магнитного поля на ток. Правило левой руки.

Поместим между полюсами магнита проводник, по кото­рому протекает постоянный электрический ток. Мы тотчас же заметим, что проводник будет выталкиваться полем магнита из междуполюсного пространства.

Объяснить это можно следующим образом. Вокруг провод­ника с током (Рисунок 1.) образуется собственное магнитное поле, силовые линии которого по одну сторону проводника направ­лены так же, как и силовые линии магнита, а по другую сто­рону проводника — в противопо­ложную сторону. Вследствие это­го с одной стороны проводника (на рисунке 1 сверху) маг­нитное поле оказывается сгущен­ным, а с другой его стороны (на рисунке 1 снизу) — разрежен­ным. Поэтому проводник испыты­вает силу, давящую на него вниз. И если проводник не закреплен, то он будет перемещаться.

Действие магнитного поля на ток

Рисунок 1. Действие магнитного поля на ток.

Правило левой руки

Для быстрого определения направления движения провод­ника с током в, магнитном поле существует так называемое правило левой руки (рисунок 2.).

Правило левой руки

Рисунок 2. Правило левой руки.

Правило левой руки состоит в следую­щем: если поместить левую руку между полюсами маг­нита так, чтобы магнитные силовые линии входили в ладонь, а четыре пальца ру­ки совпадали с направлением тока в проводнике, то боль­шой палец покажет направ­ление движения проводника.

Итак, на проводник, по которому протекает электри­ческий ток, действует сила, стремящаяся перемещать его перпендикулярно магнитным силовым линиям. Опытным путем можно определить величину этой силы. Оказы­вается, что сила, с которой магнитное поле действует на проводник с током, прямо пропорциональна силе тока в проводнике и длине той части проводника, которая нахо­дится в магнитном поле (рисунок 3 слева).

Это правило справедливо, если проводник расположен под прямым углом к магнитным силовым линиям.

Действие магнитного поля на ток

Рисунок 3. Сила взаимодействия магнитного поля и тока.

Если же проводник расположен не под прямым углом к магнитным силовым линиям, а, например, так, как изобра­жено на рисунке 3 справо, то сила, действующая на проводник, будет пропорциональна силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плос­кость, перпендикулярную магнитным силовым ли­ниям. Отсюда следует, что если проводник паралле­лен магнитным силовым линиям, то сила, дейст­вующая на него, равна нулю. Если же проводник перпендикулярен направ­лению магнитных силовых линий, то сила, действую­щая на него, достигает наибольшей величины.

Сила, действующая на проводник с током, зави­сит еще и от магнитной индукции. Чем гуще рас­положены магнитные си­ловые линии, тем больше сила, действующая на проводник с током.

Подводя итог всему изложенному выше, мы можем действие магнитного поля на проводник с током выразить следующим правилом:

Сила, действующая на проводник с током, прямо пропорциональна магнитной индукции, силе тока в проводнике и длине проекции части проводника, находящейся в магнитном поле, на плоскость, перпендикулярную маг­нитному потоку.

Необходимо отметить, что действие магнитного поля на ток не зависит ни от вещества проводника, ни от его сечения. Дей­ствие магнитного поля на ток можно наблюдать даже при от­сутствии проводника, пропуская, например, между полюсами магнита поток быстро несущихся электронов.

Читайте также:  Ток подмагничивания в трансформаторе

Действие магнитного поля на ток широко используется в науке и технике. На использовании этого действия основано устройство электродвигателей, превращающих электрическую энергию в механическую, устройство магнитоэлектрических приборов для измерения напряжения и силы тока, электроди­намических громкоговорителей, превращающих электрические колебания в звук, специальных радиоламп — магнетронов, катодно-лучевых трубок и т. д. Действием магнитного поля на ток пользуются для измерения массы и заряда электрона и даже для изучения строения вещества.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Направление движения тока в проводнике под действием магнитного поля

Если металлический проводник с током поместить в магнитное поле, то на этот проводник со стороны магнитного поля будет действовать сила, которая называется силой Ампера.

Сила Ампера зависит от длины проводника с током, силы тока в проводнике, модуля магнитной индукции и расположения проводника относительно линий магнитной индукции: FA = BIlsinа .

Для определения направления силы Ампера применяют правило левой руки. Если левую руку расположить в магнитном поле так, чтобы силовые линии входили в ладонь, а четыре пальца были направлены по току, то отогнутый большой палец укажет направление силы, действующей на проводник.

Действие магнитного поля

Магнитное взаимодействие можно наблюдать между двумя параллельными токами (опыт Ампера): два параллельных проводника с током отталкиваются, если направления токов в них противоположны, и притягиваются, если направления токов совпадают.

Экспериментальное исследование показывает, что сила Ампера прямо пропорциональна длине проводника l и силе тока I в проводнике. Коэффициентом пропорциональности в этом равенстве является модуль вектора магнитной индукции В. Соответственно, F = BIl . В таком виде зависимость силы, действующей на проводник с током в магнитном поле, записывается в том случае, если линии магнитной индукции перпендикулярны проводнику с током. Из приведённой формулы понятно, что магнитная индукция является силовой характеристикой магнитного поля.

Единица магнитной индукции [В] = 1Н / 1А • 1м = 1 Тл . За единицу магнитной индукции принимают магнитную индукцию такого поля, в котором на проводник длиной 1 м действует сила 1Н при силе тока в проводнике 1 А.

Магнитное поле действует также на движущиеся заряженные частицы. При этом сила (сила Лоренца) зависит от модуля магнитной индукции, заряда частицы, а также от модуля и направления её скорости.

Электрический двигатель

Движение проводника с током в магнитном поле лежит в основе работы электрического двигателя. Если поместить прямоугольную рамку в магнитное поле и пропустить по ней электрический ток, то рамка повернётся, потому, что на стороны рамки действует сила Ампера. При этом сила, действующая на сторону рамки ab, противоположна силе, действующей на сторону cd.

Для того чтобы рамка не остановилась в тот момент, когда её плоскость перпендикулярна линиям магнитной индукции, и продолжала вращаться, изменяют направление тока в проводнике. Для этого к концам рамки припаяны полукольца, по которым скользят контакты, соединённые с источником тока. При повороте рамки на 180° меняются контактные пластины, которых касаются полукольца и, соответственно, направление тока в рамке.

В электрическом двигателе энергия электрического и магнитного полей превращается в механическую энергию.

Действие магнитного поля на проводник с током

Действие магнитного поля на проводник с током

Конспект урока по физике в 8 классе «Действие магнитного поля на проводник с током».

Источник



Проводник с током в магнитном поле

Проводник с током, помещенный в магнитное поле, испытывает действие механической силы «F» со стороны поля, которая стремится двигать проводник под прямым углом к магнитным силовым линиям.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Действие силы возникает в результате взаимодействия основного магнитного поля с магнитным полем проводника с током. Эта сила зависит от магнитной индукции «B«, тока в проводнике «I«и длины той части проводника , которая находится в магнитном поле:

F=B·I·ℓ, H

Сила «F» будет наибольшей, когда проводник расположен перпендикулярно к магнитным силовым линиям. Если проводник расположен вдоль силовых линий, то поле не оказывает на него механического воздействия.

Читайте также:  Как найти плотность тока через напряженность

Направление действия силы определяется по правилу левой руки: если расположить левую руку так, чтобы силовые линии входили в ладонь, четыре пальца указывали направление тока в проводнике, то отогнутый большой палец укажет направление действия силы на проводник.

Рис. 4.9. Правило левой руки

Возникновение механической силы, действующей на проводник с током, находящийся в магнитном поле, поясняет следующий рисунок:

Рис. 4.10. Возникновение механической силы, действующей на проводник с током

Справа от проводника с током основное магнитное поле и поле тока совпадают по направлению и общее магнитное поле усиливается. Слева от проводника основное магнитное поле действует навстречу полю тока и общее магнитное поле ослабляется.

Учитывая боковой распор магнитных силовых линий и их стремление сократить свою длину, появляется механическая сила, выталкивающая проводник влево.

Электромагнитная индукция

В проводнике, который двигаясь в магнитном поле, пересекает магнитные линии, возникает Э.Д.С. Это явление называется магнитной индукцией.

Рис. 4.11. Возникновение ЭДС в движущемся проводнике с током

При движении проводника со скоростью «v» с той же скоростью перемещаются элементарные заряженные частицы.

Т.к. движение провода происходит в магнитном поле, то на каждую заряженную частицу действует электромагнитная сила «F«.

Под действием этих сил свободные электроны перемещаются на один край провода, создавая избыточный отрицательный заряд.

На другом крае провода возникает избыточный положительный заряд. По мере накопления зарядов усиливается напряженность электрического поля этих зарядов и на каждую заряженную частицу кроме силы «F« , будет действовать сила «F» электрического поля, направленная противоположно силе «F«.

По достижении равновесия этих сил движение зарядов прекратится. Разность потенциалов по краям проводника и есть индуктированная в проводе Э.Д.С.

Если соединить концы этого проводника через нагрузку, то по цепи потечет ток.

Величина индуктированной Э.Д.С., возникающей в проводе, пропорциональна магнитной индукции «B», длине провода «ℓ» и скорости его движения «v».

E=B·ℓ·v, B

Индуктированная Э.Д.С. возникает только в том случае, если проводник пересекает магнитное поле. Если проводник двигается вдоль силовых линий, то E=0.

Направление индуктированной Э.Д.С. определяется правилом правой руки: ладонь правой руки располагают так, чтобы магнитные линии входили в ладонь, отставленный большой палец указывал направление движения проводника, то вытянутые четыре пальца укажут направление индуктированной Э.Д.С.

Явление самоиндукции

Если в проводнике протекает изменяющийся по значению ток, то магнитное поле вокруг него также изменяется

и в проводнике индуктируется Э.Д.С.

Индуктированная Э.Д.С. возникает в том самом проводнике, в котором происходит изменение тока. Это явление называется самоиндукцией.

Эта Э.Д.С. возникает при всяком изменении тока, при замыкании и размыкании цепей, при изменении нагрузки двигателей.

Согласно закону Ленца, Э.Д.С. самоиндукции всегда имеет такое направление, при котором она препятствует изменению вызвавшего ее тока и стремится поддержать его величину на одном и том же уровне.

При замыкании цепи появляется ток и возникает магнитное поле, которое индуктирует в проводе Э.Д.С. самоиндукции, направленную навстречу току и препятствующую его возрастанию.

Рис. 4.12. Возникновение ЭДС самоиндукции

При размыкании цепи, исчезновении магнитного поля, его силовые линии пересекают проводник и возникает Э.Д.С. самоиндукции, которая совпадает по направлению с током, препятствуя его убыванию.

Благодаря тормозному действию Э.Д.С. самоиндукции, ток в электрических цепях при включении нарастает не мгновенно, а достигает своего установившегося значения в течение определенного времени.

При отключении цепи ток не уменьшается мгновенно, а спадает постепенно.

Явление самоиндукции в проводниках характеризуется индуктивностью «L«. Индуктивность характеризует именно Э.Д.С. самоиндукции в зависимости от изменения тока.

Единица измерения — Генри.

1 Генри — это индуктивность проводника, в котором возникает Э.Д.С. самоиндукции в 1 В при изменении тока в 1 А в 1 сек.

1 Гн = 1 В · с / А

Особенно проявляет себя Э.Д.С. самоиндукции при размыкании цепей, содержащих катушки с большим числом витков и со стальными сердечниками. При этом может возникнуть Э.Д.С. самоиндукции больше Э.Д.С. источника тока. Поэтому для гашения электрической дуги при размыкании цепей, применяют контакторы с дугогасительным устройством.

Источник