Меню

Кратность пускового тока асинхронного двигателя величина

Расчет возможности пуска электродвигателя 380 В

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.

Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.

Режим пуска двигателя рассматривается при максимальной нагрузке линии, так как именно при таких условиях создаются наиболее неблагоприятные условия для работы присоединенных к сети приемников.

Чтобы проверить можно ли включать двигатель, нужно рассчитать напряжение на его зажимах во время пуска и напряжение на любом другом работающем двигателе, а также проверить напряжение у ламп.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА. От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м. К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

Однолинейная схема 0,4 кВ

Рис. 1 — Однолинейная схема 0,4 кВ

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

Технические характеристики электродвигателей 4А, 4АМ

  • Ммакс/Мн – кратность максимального момента;
  • Мп/Мн – кратность пускового момента;
  • Мн – номинальный момент двигателя;

1. Определяем длительно допустимый ток двигателя Д1:

 Определяем длительно допустимый ток двигателя Д1

2. Определяем пусковой ток двигателя Д1:

Определяем пусковой ток двигателя Д1

где:
Kпуск = 7,5 – кратность пускового тока, согласно паспорта на двигатель;

3. Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля марки ААБ сечением 3х70 мм2 на напряжение 6 кВ от шин подстанции 2РП-1 до трансформатора типа ТМ 320 кВА, значения сопротивлений берем из таблицы 2.5 [Л2.с 48].

Определяем величину активного и индуктивного сопротивления для алюминиевого кабеля из таблицы 2.5

Получаем значения сопротивлений Rв = 0,447 Ом/км и Хв = 0,08 Ом/км.

Эти сопротивления необходимо привести к стороне низшего напряжения трансформатора, так как двигатель подключен к сети низшего напряжения. Из таблицы 8 [Л1, с 93] для номинального коэффициента трансформации 6/0,4 кВ и ответвления 0% находим значение n=15.

Таблица 8 - Коэффициенты трансформации n

4. Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения по формуле [Л1, с 13]:

Определяем активное и индуктивное сопротивление кабеля по отношению к сети низшего напряжения

  • Rв и Хв – сопротивления сети со стороны высшего напряжения;
  • n = 6/0,4 =15 – коэффициент трансформации понижающего трансформатора.

5. Определяем сопротивление кабеля длиной 850 м от подстанции 2РП-1 до трансформатора 6/0,4 кВ:

Rс = Rн*L = 0,002*0,85 = 0,0017 Ом;

Хс = Хн*L = 0,000355*0,85 = 0,0003 Ом;

6. Определяем сопротивление трансформатора мощностью 320 кВА, 6/0,4 кВ по таблице 7 [Л1, с 92,93].

Таблица 7 - Активное и индуктивное сопротивление обмоток трансформаторов

Rт = 9,7*10 -3 = 0,0097 Ом;

Хт = 25,8*10 -3 = 0,0258 Ом;

7. Определяем сопротивления линии от шин подстанции 2РП-1 до шин низшего напряжения подстанции:

Rш = Rс + Rт = 0,0017 + 0,0097 = 0,0114 Ом;

Хш = Хс + Хт = 0,0003 + 0,0258 = 0,0261 Ом;

8. Определяем сопротивление кабеля длиной 80 м марки ААБ 3х95 мм2 от шин низшего напряжения до зажимов двигателя:

где:
R = 0,329 Ом/км и Х = 0,06 Ом/км -значения активных и реактивных сопротивлений кабеля определяем по таблице 2-5 [Л2.с 48].

9. Определяем суммарное сопротивление линии от подстанции 2РП-1 до зажимов двигателя:

Rд = Rш + R1 = 0,0114 + 0,026 = 0,0374 Ом;

Хд = Хш + Х1 = 0,0261 + 0,0048 = 0,0309 Ом;

Если выполняется отношение Rд/ Хд = 0,0374/0,0309 = 1,21 Определяем коэффициент Ад

где:
cosφ = 0,3 и sinφ = 0,95 средние значения коэффициентов мощности при пуске двигателя, принимаются при отсутствии технических данных, согласно [Л1. с. 16].

11. Определяем напряжение на зажимах двигателя Д1 по формуле [Л1, с 14]:

Определяем напряжение на зажимах двигателя Д1

  • U*ш = Uш/Uн = 380/380 =1 – относительное напряжение на шинах распределительного пункта, во многих случаях его можно принять равным 1;
  • Iп – пусковой ток двигателя;

12. Проверяем сможет ли двигатель Д1 развернуть присоединяемый механизм нанос центробежный 1Д315-71а:

Проверяем сможет ли двигатель Д1 развернуть присоединяемый механизм

  • mп=Мпуск/Мном = 1,2 – кратность пускового момента электродвигателя при номинальном напряжении на его клеммах (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

12.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д315-71а Рн.мех. = 80 кВт, к номинальной мощности двигателя 90 кВт:

Коэффициент загрузки

Как мы видим условие выполняется и двигатель при пуске сможет развернуть присоединенный к нему центробежный насос в нормальных условиях без перегрева своих обмоток выше температуры, допустимой по нормам.

13. Определяем влияние пуска двигателя Д1 на работу присоединенного к шинам 0,4 кВ двигателя Д2 типа 4А250S2 У3, найдем величину колебания напряжения на шинах 0,4 кВ по формуле:

Коэффициент загрузки

13.1 Определяем коэффициент Аш по формуле:

Читайте также:  Источники питания постоянного тока gps 2303

Определяем коэффициент Аш

14. В момент пуска двигателя Д1 на зажимах работающего двигателя Д2 относительное напряжение согласно [Л1, с15] уменьшиться на величину колебания напряжения δU*Ш , откуда получаем:

относительное напряжение на зажимах двигателя Д2

где:
U*Д2 = UД2/Uн = 365/380 = 0,96 – относительное напряжение на зажимах двигателя Д2 до пуска двигателя Д1.

15. Проверяем устойчивость работы двигателя Д2 при пуске двигателя Д1:

Проверяем устойчивость работы двигателя Д2 при пуске двигателя Д1

  • mп= Ммакс/Мн = 2,2 – кратность максимального момента (выбирается по каталогу на двигатель);
  • mп.мех — требуемая кратность пускового момента приводимого механизма, выбирается по таблице 4 [Л1, с 88], для центробежного насоса равно 0,3;

15.1 Коэффициент загрузки определяем как отношение номинальной мощности, необходимой для нормальной работы механизма в данном случае нанос центробежный 1Д200-90а Рн.мех. = 72 кВт, к номинальной мощности двигателя 75 кВт:

15.1 Коэффициент загрузки

Как мы видим, устойчивость работы двигателя Д2 типа 1Д200-90а обеспечивается с большим запасом.

1. Как проверить возможность подключения к электрической сети двигателей с короткозамкнутым ротором. Карпов Ф.Ф. 1964 г.
2. Проектирование кабельных сетей и проводок. Хромченко Г.Е. 1980 г.

Источник

Пусковые токи асинхронных электродвигателей

Пусковым называется ток, необходимый для осуществления запуска электрического двигателя. Пусковые токи асинхронных электродвигателей обычно в несколько раз превышают показатели, достаточные для работы в нормальном режиме.

Пусковые токи асинхронных электродвигателей

Двигатели асинхронного типа в момент подключения к электросети потребляют значительное количество энергии для того, чтобы:

  • привести ротор в движение;
  • поднять скорость вращения с нуля до рабочего уровня.

Этим объясняется необходимость использования большого пускового тока, который существенно отличается от количества электроэнергии, позволяющего поддерживать постоянное число оборотов. Это характерно не только для асинхронных, но и для однофазных двигателей постоянного тока, хотя принцип действия последних совершенно иной.

Проблема высоких пусковых токов: решение

Высокий пусковой ток может спровоцировать резкое, хотя и кратковременное падение напряжения, при котором прочие подключенные к сети устройства испытают недостаток энергии. Это нежелательно, поскольку негативно влияет на безопасность работы и долговечность оборудования.

Для решения задачи предусмотрены специальные дополнительные устройства, установка которых в процессе подключения и наладки двигателей позволяет:

  • максимально уменьшить значение пускового тока;
  • повысить плавность запуска;
  • снизить затраты на запуск агрегата, так как становится возможным применение менее мощных дизельных электростанций, стабилизаторов, проводов с меньшим сечением и пр.

Наибольшей эффективностью отличаются такие современные устройства, как частотные преобразователи и софтстартеры. Они обеспечивают высокую (более минуты) продолжительность поддержания пускового тока.

Как рассчитать пусковой ток электродвигателя

Чтобы объективно оценить сложность условий запуска двигателя, необходимо предварительно узнать величину необходимого для этого пускового тока. Основные этапы расчета следующие:

  • вычисление номинального тока;
  • определение значения пускового тока (в амперах).

Для того чтобы получить значение номинального тока для используемой модели электродвигателя, применяют формулу, которая имеет вид Iн=1000Pн / (Uн*cosφ*√ηн). Pн и Uн – это номинальные показатели мощности и напряжения, cosφ и ηн – номинальные коэффициенты мощности и полезного действия.

Собственно пусковой ток, который обозначается как Iп, определяется при помощи формулы Iп = Iн * Kп, где Kп – это кратность постоянного тока по отношению к его номинальному значению (Iн). Всю необходимую для проведения расчетов информацию (значения Kп, Pн, ηн, cosφ, Uн) можно найти в технической документации, которая прилагается к электродвигателю.

Корректный расчет пускового тока двигателя способствует правильному выбору автоматических выключателей, предназначенных для защиты линии включения, а также приобретению дополнительного оборудования (генераторы и пр.) с подходящими параметрами.

Источник

Пуск асинхронного двигателя

Пусковые свойства двигателей.

При пуске ротор двигателя, преодолевая момент нагрузки и момент инерции, разгоняется от частоты вращения п = 0 до п . Скольжение при этом меняется от sп = 1 до s. При пуске должны выполняться два основных требования: вращающий момент должен бить больше момента сопротивления (Мвр>Мс) и пусковой ток Iп должен быть по возможности небольшим.

В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др. Ниже различные способы пуска рассматриваются более подробно.

Прямой пуск.

Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на рис. 3.22. При включении рубильника в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора

максимальны (см.п.3.19 при s=1). По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.

Значение пускового момента находится из (3.23) при s = 1:

Из рис. 3.18 видно, что пусковой момент близок к номинальному и значительно меньше критического. Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).

Приведенные данные показывают, что при прямом пуске в сети, питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.

С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места. В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).

Пуск двигателей с улучшенными пусковыми свойствами.

Улучшение пусковых свойств асинхронных двигателей достигается использованием эффекта вытеснения тока в роторе за счет специальной конструкции беличьей клетки. Эффект вытеснения тока состоит в следующем: потокосцепление и индуктивное сопротивление X2 проводников в пазу ротора тем выше, чем ближе ко дну паза они расположены (рис.3.23). Также X2 прямо пропорционально частоте тока ротора.

Читайте также:  Как увеличить силу тока с помощью трансформатора

Следовательно, при пуске двигателя, когда s=1 и f2 = f1 = 50 Гц , индуктивное сопротивление X2 = max и под влиянием этого ток вытесняется в наружный слой паза. Плотность тока j по координате h распределяется по кривой, показанной на рис.3.24. В результате ток в основном проходит по наружному сечению проводника, т.е. по значительно меньшему сечению стержня, и, следовательно, активное сопротивление обмотки ротора R2 намного больше, чем при нормальной работе. За счет этого уменьшается пусковой ток и увеличивается пусковой момент МП (см. (3.37), (3.38) ).

По мере разгона двигателя скольжение и частота тока ротора падает и к концу пуска достигает 1 – 4 Гц. При такой частоте индуктивное сопротивление мало и ток распределяется равномерно по всему сечению проводника. При сильно выраженном эффекте вытеснения тока становится возможным прямой пуск при меньших бросках тока и больших пусковых моментах.

К двигателям с улучшенными пусковыми свойствами относятся двигатели, имеющие роторы с глубоким пазом, с двойной беличьей клеткой и некоторые другие.

Двигатели с глубокими пазами.

Как показано на рис.3.25, паз ротора выполнен в виде узкой щели, глубина которой примерно в 10 раз больше, чем ее ширина. В эти пазы-щели укладывается обмотка в виде узких медных полос. Распределение магнитного потока показывает, что индуктивность и индуктивное сопротивление в нижней части проводника значительно больше, чем в верхней части.

Поэтому при пуске ток вытесняется в верхнюю часть стержня и активное сопротивление значительно увеличивается. По мере разгона двигателя скольжение уменьшается, и плотность тока по сечению становится почти одинаковой.

В целях увеличения эффекта вытеснения тока глубокие пазы выполняются не только в виде щели, но и трапецеидальной формы. В этом случае глубина паза несколько меньше, чем при прямоугольной форме.

Двигатели с двойной клеткой.

В таких двигателях обмотки ротора выполняются в виде двух клеток (рис.3.26): во внешних пазах 1 размещается обмотка из латунных проводников, во внутренних 2 – обмотка из медных проводников.

Таким образом, внешняя обмотка имеет большее активное сопротивление, чем внутренняя. При пуске внешняя обмотка сцепляется с очень слабым магнитным потоком, а внутренняя – сравнительно сильным полем. В результате ток вытесняется во внешнюю клетку, а во внутренней тока почти нет.

По мере разгона двигателя ток из внешней клетки переходит во внутреннюю и при s =sНОМ протекает в основном по внутренней клетке. Ток во внешней клетке при этом сравнительно небольшой.

Результирующий пусковой момент, складывающийся из моментов от двух клеток, значительно больше, чем у двигателей нормальной конструкции, и несколько больше, чем у двигателей с глубоким пазом. Однако следует иметь в виду, что стоимость двигателей с двойной клеткой ротора выше.

Пуск переключением обмотки статора.

Если при нормальной работе двигателя фазы статора соединены в треугольник, то, как показано на рис.3.27, при пуске первоначально они соединяются в звезду.

Для этого сначала включается выключатель Q, а затем переключатель S ставится в нижнее положение Пуск. В таком положении концы фаз Х, Y, Z соединены между собой, т.е. фазы соединены звездой. При этом напряжение на фазе в √3 раз меньше линейного.

В результате линейный ток при пуске в 3 раза меньше, чем при соединении треугольником. При разгоне ротора в конце пуска переключатель S переводится в верхнее положение и, как видно из рис. 3.27, фазы статора пересоединяются в треугольник.

Недостатком этого способа является то, что пусковой момент также уменьшается в 3 раза, так как момент пропорционален квадрату фазного напряжения, которое в √3 раз меньше при соединении фаз звездой. Поэтому такой способ применим при небольшом нагрузочном моменте и только для двигателей, нормально работающих при соединении обмоток статора в треугольник.

Пуск при включении добавочных резисторов в цепь статора.(рис. 3.28)

Перед пуском выключатель (пускатель) находится в разомкнутом состоянии и замыкается выключатель Q1.

При этом в цепь статора включены добавочные резисторы RДОБ. В результате обмотка статора питается пониженным напряжением U1n = U1НОМInRДОБ. После разгона двигателя замыкается выключатель Q2 и обмотка статора включается на номинальное напряжение U1НОМ. Подбором RДОБ можно ограничить пусковой ток до допустимого.

Следует иметь в виду, что момент при пуске, пропорциональный U 2 , будет меньше и составляет (U / U1НОМ) 2 номинального. Важно отметить, что при этом способе пуска значительны потери в сопротивлении RДОБ (RДОБI 2 1n). Можно вместо резисторов RДОБ включить катушки с индуктивным сопротивлением ХДОБ, близким к RДОБ.

Применение катушек позволяет уменьшить потери в пусковом сопротивлении.

Автотрансформаторный пуск.

Кроме указанных способов можно применить так называемый автотрансформаторный пуск.

Соответствующая схема показана на рис.3.29.

Перед пуском переключатель S устанавливается в положение 1, а затем включается автотрансформатор и статор питается пониженным напряжением U. Двигатель разгоняется при пониженном напряжении и в конце разгона переключатель S переводится в положение 2 и статор питается номинальным напряжением U1ном.

Если коэффициент трансформации понижающего трансформатора n, тогда ток I на его входе будет в n раз меньше. Кроме того, пусковой ток будет также в n раз меньше, т.е. ток при пуске в сети будет в n 2 раз меньше, чем при непосредственном пуске.

Читайте также:  Правило правой руки для проводника с током для катушки с током

Этот способ, хотя и лучше рассмотренных в п.3.14.7, но значительно дороже.

Пуск двигателя с фазным ротором.

Пуск двигателя с фазным ротором осуществляется путем включения пускового реостата в цепь ротора, как это показано на рис.3.30.

Начала фаз обмоток ротора присоединяются к контактным кольцам и через щетки подключаются к пусковому реостату с сопротивлением Rp.

Приведенное к обмотке статора сопротивление пускового реостата Rp рассчитывается так, чтобы пусковой момент был максимальный, т.е. равен критическому. Так как при пуске скольжение sП = 1, то sП = 1 = sК , равенство МП = М Пmaх = МК будет обеспечено. Тогда

Пуск двигателя происходит по кривой, показанной на рис.3.31. В момент пуска рабочая точка на механической характеристике находится в положении а, а при разгоне двигателя она перемещается по кривой 1, соответствующей полностью включенному реостату.

При моменте, соответствующем точке е , включается первая ступень реостата и момент скачком увеличивается до точки b – рабочая точка двигателя переходит на кривую 2; в момент времени, соответствующей точке d, выключается вторая ступень реостата, рабочая точка скачком переходит в точку с и двигатель выходит на естественную характеристику 3 и затем в точку f. Реостат закорачивается, обмотка ротора замыкается накоротко, а щетки отводятся от колец.

Таким образом, фазный ротор позволяет пускать в ход асинхронные двигатели большой мощности при ограниченном пусковом токе. Однако этот способ пуска связан со значительными потерями в пусковом реостате.

Кроме того, двигатель с фазным ротором дороже двигателя с короткозамкнутым ротором. Поэтому двигатель с фазным ротором применяется лишь при больших мощностях и высоких требованиях к приводу.

Источник



Пусковой ток.

В паспорте электрического двигателя указывается ток при номинальной нагрузке на валу, он меньше пускового тока. Если отмечено 13,8/8 А, то это значит, что при подсоединении двигателя к сети 220 В и номинальной нагрузке ток двигателя будет равен 13,8 А. При подсоединении к сети 380 В — ток 8 А, таким образом верно равенство мощностей: √3 х 380 х 8 = √3 х 220 х 13,8.

Зная номинальную мощность двигателя определяют его номинальный ток. При включении двигателя в трехфазную распредсеть 380 В номинальный ток рассчитывается следующим образом:

Iн = Pн/(√3Uн х сosφ), кА

где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.

пусковой ток пасспорт

Рис. 1. Паспорт электрического двигателя.

Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.

Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.

При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).

пусковой ток

Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).

Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.

Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).

Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.

В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи.

Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.

пусковой ток

Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.

Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.

Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).

Источник