Меню

Классическая теория металлов электрически ток

Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т.е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде и разработанной впоследствии нидерландским физиком Х. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Cu, Al, Cu) одинакового радиуса. Несмотря на то, что общий заряд, прошедший через эти цилиндры, достигал огромного значения ( Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытие в 1897 г. английским физиком Д. Томсоном электроны.

Для доказательства этого предположения необходимо было определить знак и величину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Эти опыты в 1916 г. были проведены американским физиком Р. Толменом и шотландским физиком Б. Стюартом. Ими экспериментально доказано, что носители тока в металлах заряжены отрицательно, а их удельный заряд приблизительно одинаков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока в металлах и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде-Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа.

Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т.е. возникает электрический ток.

Даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов, обуславливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость можно заменять скоростью теплового движения .

1. Закон Ома.Пусть в металлическом проводнике существует электрическое поле напряженностью Е=const. Со стороны поля заряд e испытывает действие силы F=eE и приобретает ускорение . Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

где — среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона

Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время свободного пробега определяется средней длиной свободного пробега и средней скоростью движения электронов относительно кристаллической решетки проводника, равной + ( — средняя скорость теплового движения электронов). Так как в формулу (9.5.1.), получим

Плотность тока в металлическом проводнике

откуда видно, что плотность тока пропорциональна напряженности поля, т.е. получили закон Ома в дифференциальной форме. Коэффициент пропорциональности между j и Е есть не что иное, как удельная проводимость материала

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

Закон Джоуля — Ленца.

К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т.е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем столкновений:

Если n — концентрация электронов, то в единицу времени происходит n столкновений и решетке передается энергия

которая идет на нагревание проводника. Подставив (9.5.3.) и (9.5.4.) в (9.5.5.), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

Величина w называется удельной тепловой мощностью тока. Коэффициент пропорциональности между w и по (9.5.2.) есть удельная проводимость ; следовательно, выражение (9.5.6.) — закон Джоуля — Ленца в дифференциальной форме.

Классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления.Из формулы удельной проводимости (9.5.2.) следует, что сопротивление металлов, т.е. величина, обратно пропорциональная , должна возрастать пропорционально (в (9.5.2.) n и от температуры не зависят, а

). Этот вывод электронной теории противоречит опытным данным, согласно которым R

Оценка средней длины свободного пробега электронов в металлах.Чтобы по формуле (9.5.2.) получить , совпадающие с опытными значениями, надо принимать значительно больше истинных, иными словами, предполагать, что электрон проходит без соударений с ионами решетки сотни междоузельных расстояний, что не согласуется с теорией Друде-Лоренца.

Теплоемкость металлов.Теплоемкость металла складывается из теплоемкости его кристаллической решетки и теплоемкости электронного газа. Поэтому атомная (т.е. рассчитанная на 1 моль) теплоемкость металла должна быть значительно большей, чем атомная теплоемкость диэлектриков, у которых нет свободных электронов. Согласно закону Дюлонга и Пти, теплоемкость одноатомного кристалла равна 3R. Учтем, что теплоемкость одноатомного электронного газа равна . Тогда атомная теплоемкость металлов должна быть близка к 4,5R. Однако опыт доказывает, что она равна 3R, т.е. для металлов, так же как и для диэлектриков, хорошо выполняется закон Дюлонга и Пти. Следовательно, наличие электронов проводимости практически не сказывается на значении теплоемкости, что не объясняется классической электронной теорией.

Читайте также:  Найдите действующее значение силы переменного тока если максимальное значение силы тока равно 10а

Указанные расхождения теории с опытом можно объяснить тем, что движение электронов в металлах подчиняется не законам классической механики, а законам квантовой механики и, следовательно, поведение электронов проводимости надо описывать не статистикой Максвелла — Больцмана, а квантовой статистикой. Поэтому объяснить затруднения элементарной теории электропроводности металлов можно лишь квантовой теорией, которая будет рассмотрена в дальнейшем. Надо, однако, отметить, что классическая электронная теория не утратила своего значения и до настоящего времени, так как во многих случаях (например, при малой концентрации электронов проводимости и высокой температуре) она дает правильные качественные результаты и является по сравнению с квантовой теорией простой и наглядной.

Источник

Классическая электронная теория проводимости Друде-Лоренца

Классическая теория электропроводности металлов

Теория Друде была разработана в 1900 году, через три года после открытия электрона. Затем теория была доработана Лоренцом, и сейчас она является классической и актуальной теорией проводимости металлов.

Электронная теория Друде-Лоренца

Согласно теории, носителями тока в металлах являются свободные электроны.

Друде предположил, что электроны в металле подчиняются и могут быть описаны уравнениями молекулярно-кинетической теории. Другими словами, свободные электроны в металле подчиняются законам МКТ и образуют «электронный газ».

Двигаясь в металле, электроны соударяются между собой и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника). Между соударениями электроны, по аналогии с длиной свободного пробега молекул идеального газа, успевают преодолеть средний путь λ .

Без действия электрического поля, ускоряющего электроны, кристаллическая решетка и электронный газ стремятся к состоянию теплового равновесия.

Приведем основные положения теории Друде:

  1. Взаимодействие электрона с другими электронами и ионами не учитывается между столкновениями.
  2. Столкновения являются мгновенными событиями, внезапно меняющими скорость электрона.
  3. Вероятность для электрона испытать столкновение за единицу времени равна 1 τ .
  4. Состояние термодинамического равновесия достигается благодаря столкновениям.

Важно.

Несмотря на множество допущений, теория Друде-Лорецна хорошо объясняет эффект Холла, явление удельной проводимости и теплопроводность металлов. Именно поэтому она актуальна по сей день, хотя ответы на многие вопросы (например, почему в металле существуют свободные ионы и электроны) смогла дать только квантовая теория твердого тела.

В рамках теории Друде объясняется сопротивление металлов. Оно обусловлено соударениями электронов с узлами кристаллической решетки.

Выделение тепла, согласно закону Джоуля-Ленца, также происходит по причине соударения электронов с ионами решетки.

Теплопередача в металлах также осуществляется электронами, а не кристаллической решеткой.

Терия Друде не объясняет многих явлений, как например сверхпроводимость, и не применима в сильных магнитных полях, в слабых магнитных полях может терять применимость из-за квантовых явлений.

Среднюю скорость электронов можно вычислить по формуле для идеального газа:

» open=» v = 8 k T π m

Здесь k — постоянная Больцмана, T — температура металла, m — масса электрона.

При включении внешнего электрического поля, на хаотичное движение частиц «электронного газа» накладывается упорядоченное движение электронов под действием сил поля, когда электроны начинают упорядоченно двигаться со средней скоростью » open=» u . Величину этой скорости можно оценить из соотношения:

где j — плотность тока, n — концентрация свободных электронов, q — заряд электрона.

При больших плотностях тока рассчеты дают следующий результат: средняя скорость хаотичного движения электронов во много раз ( ≈ 10 8 ) больше скорости упорядоченного движения под действием поля. При вычислении суммарной скорости полагают, что

Формула Друде

Формула Друде выводится из кинетического уравнения Больцмана и имеет вид:

Здесь m * — эффективная масса электрона, τ — время релаксации, то есть время, за которое электрон «забывает» о том, в какую сторону двигался после соударения.

Друде вывел закон Ома для токов в металле:

Опыт Толмена и Стюарта

В 1916 году опыт Толмена и Стюарта дал прямое доказательство тому, что носителями тока в металлах являются электроны.

Суть опыта была в следующем.

Опыт Толмена и Стюарта

Проводящая катушка с проводом длиной L вращалась вокруг своей оси с большой скоростью, а ее концы были замкнуты на гальванометр. Когда катушку резко тормозили, свободные электроны в металле продолжали двигаться по инерции, и гальванометр регистрировал импульс тока.

Считая, что свободные электроны подчиняются законам механики Ньютона, можно записать, что при остановке проводника электрон приобретает ускорение v ‘ (в катушке направлено вдоль проводов). При этом на электрон действует сила, направленная противоположно ускорению.

Под воздействием этой силы электрон ведет себя так, как если бы на него действовало поле E = — m v ‘ q . Эдс, возникающую в катушке при торможении можно записать, как:

ε = ∫ L E d l = — m v ‘ q ∫ L d l = — m v ‘ q L

Считая, что ускорение одинаково в каждом витке, можно записать закон Ома для катушки, а затем вычислить заряд, проходящий в ней за время d t :

d q = I d t = — m L d v q R d t d t = — m L d v q R

Заряд, прошедший от момента начала торможения до остановки:

q = — m L q R ∫ v 0 0 d v = — m L v 0 q R

Опыт Толмена и Стюарта получил хорошее согласование с теорией, полученное экспериментально отношение q m соответствовало отношению заряда электрона к его массе.

При T = 300 К вычислите среднюю скорость теплового движения свободных электронов.

Вычислим среднюю скорость, применяя формулу для идеального газа:

» open=» v = 8 k T π m

k = 1 , 38 · 10 — 23 Д ж К

m = 9 , 31 · 10 — 31 к г

Подставляем значения и вычисляем:

» open=» v = 8 · 1 , 38 · 10 — 23 · 3 · 10 2 3 , 14 · 9 , 31 · 10 — 31 ≈ 10 5 м с

Источник

Элементарная классическая теория электропроводности металлов

Глава 13

Электрические токи в металлах, вакууме и газах

Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристалличе­ской решетки металла. Это представление о природе носителей тока в металлах осно­вывается на электронной теории проводи­мости металлов, созданной немецким фи­зиком П. Друде (1863—1906) и разрабо­танной впоследствии нидерландским фи­зиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке(1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндров (Сu, Аl, Сu) одинакового ради­уса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5•10 6 Кл), ни­каких, даже микроскопических, следов пе­реноса вещества не обнаружилось. Это явилось экспериментальным доказательст­вом того, что ионы в металлах не участву­ют в переносе электричества, а перенос заряда в металлах осуществляется части­цами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны. Для доказательства этого предполо­жения необходимо было определить знак и величину удельного заряда но­сителей (отношение заряда носителя к его массе). Идея подобных опытов за­ключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы дол­жны по инерции смещаться вперед, как

Читайте также:  Виды возбуждение генератора переменного тока

смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно опреде­лить знак носителей тока, а зная размеры и сопротивление проводника, можно вы­числить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат советским физи­кам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опыты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881 —1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах заряжены отрицательно, а их удельный заряд приблизительно оди­наков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удель­ного заряда и массы носителей тока и электронов, движущихся в вакууме, со­впадали. Таким образом, было оконча­тельно доказано, что носителями электри­ческого тока в металлах являются свобод­ные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристалличе­ской решетки металла (в результате сбли­жения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от ато­мов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решет­ки, в результате чего устанавливается тер-

модинамическое равновесие между элек­тронным газом и решеткой. По теории Друде — Лоренца, электроны обладают такой же энергией теплового движения, как и мо­лекулы одноатомного газа. Поэтому, при­меняя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1,1•10 5 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возник­новению тока.

При наложении внешнего электриче­ского поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Сред­нюю скорость упорядоченного движе­ния электронов можно оценить согласно формуле (96.1) для плотности тока: j=ne . Выбрав допустимую плотность тока, например для медных проводов 10 7 А/м 2 , получим, что при концентрации носителей тока n=8•10 28 м -3 средняя скорость (v) упорядоченного движения электронов равна 7,8•10 -4 м/с. Следова­тельно, +) можно заменять скоростью теплового дви­жения .

Казалось бы, полученный результат противоречит факту практически мгновен­ной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (с=3•10 8 м/с). Через время t=l/c (l — длина цепи) вдоль цепи установится стационарное электри­ческое поле и в ней начнется упорядо­ченное движение электронов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыка­нием.

Источник



Электрический ток в металлах

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л.И. Мандельштаму и Н.Д. Папалекси В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Схема опыта Толмена и Стюарта

При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила , равная

где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный

Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ – начальная линейная скорость проволоки.

Отсюда удельный заряд e / m свободных носителей тока в металлах равен:

Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

По современным данным модуль заряда электрона (элементарный заряд) равен

а его удельный заряд есть

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 10 5 м/с.

Читайте также:  Инструкция по эксплуатации по щита постоянного тока

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость дрейфа можно оценить из следующих соображений. За интервал времени Δt через поперечное сечение S проводника пройдут все электроны, находившиеся в объеме

Число таких электронов равно , где n – средняя концентрация свободных электронов, примерно равная числу атомов в единице объема металлического проводника. Через сечение проводника за время Δt пройдет заряд Отсюда следует:

или

Концентрация n атомов в металлах составляет 10 28 –10 29 м –3 .

Оценка по этой формуле для металлического проводника сечением 1 мм 2 , по которому течет ток 10 А, дает для средней скорости упорядоченного движения электронов значение в пределах 0,6–6 мм/c. Таким образом,

средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения

Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.

Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа сильно преувеличены

Малая скорость дрейфа на противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с. Через время порядка l / c (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.

Закон Ома. В промежутке между соударениями на электрон действует сила, равная по модулю eE, в результате чего он приобретает ускорение . Поэтому к концу свободного пробега дрейфовая скорость электрона равна

где τ – время свободного пробега, которое для упрощения расчетов предполагается одинаковым для всех электронов. Среднее значение скорости дрейфа равно половине максимального значения:

Рассмотрим проводник длины l и сечением S с концентрацией электронов n. Ток в проводнике может быть записан в виде:

где U = El – напряжение на концах проводника. Полученная формула выражает закон Ома для металлического проводника. Электрическое сопротивление проводника равно:

а удельное сопротивление ρ и удельная проводимость ν выражаются соотношениями:

Закон Джоуля-Ленца.

К концу свободного пробега электроны под действием поля приобретают кинетическую энергию

Согласно сделанным предположениям вся эта энергия при соударениях передается решетке и переходит в тепло.

За время Δt каждый электрон испытывает Δt / τ соударений. В проводнике сечением S и длины l имеется nSl электронов. Отсюда следует, что выделяемое в проводнике за время Δt тепло равно:

Это соотношение выражает закон Джоуля-Ленца.

Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R, где R – универсальная газовая постоянная (закон Дюлонга и Пти, см. ч. I, § 3.10). Наличие свободных электронов на сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение , в то время как из эксперимента получается зависимость ρ

T. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х.Каммерлинг-Онесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении был сделан в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu–O с критической температурой 125 К.

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Источник