Меню

Какая величина является количественной характеристикой электрического тока

Характеристики тока.

Электрический ток сейчас используют в каждом здании, зная характеристики тока в электросети дома, следует всегда помнить, что он опасен для жизни.

Электрический ток являет собой эффект направленного движения электрических зарядов (в газах — ионы и электроны, в металлах — электроны), под воздействием электрического поля.

Движение положительных зарядов по полю эквивалентно движению отрицательных зарядов против поля.

Обычно за направление электрического берут направление положительного заряда.

Далее мы рассмотрим такие характеристики тока, как:

  • мощность тока;
  • напряжение тока;
  • сила тока;
  • сопротивление тока.

Мощность тока.

Мощностью электрического тока называют отношение произведенной током работы ко времени, в течение которого была выполнена это работа.

Мощность, которую развивает электрический ток на участке цепи, прямо пропорциональна величине тока и напряжению на данном участке. Мощ­ность (элек­три­че­ская и ме­ха­ни­че­ская) из­ме­ря­ет­ся в Ват­тах (Вт).

Мощ­ность тока не за­ви­сит от вре­ме­ни про­те­ка­ния элек­три­че­ско­го тока в цепи, а опре­де­ля­ет­ся как про­из­ве­де­ние на­пря­же­ния на силу тока.

Напряжение тока.

Напряжением электрического тока называется величина, которая показывает, какую работу совершило электрическое поле при перемещении заряда от одной точки до другой. Напряжение при этом в различных участках цепи будет отличаться.

К примеру: напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет намного больше, и величина напряжения будет зависеть от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула: U=A/q, где

  • U — напряжение,
  • A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Сила тока.

Силой тока называют количество заряженных частиц которые протекают через поперечное сечение проводника.

По определению сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

Сила электрического тока измеряется прибором, который называется Амперметром. Величина электрического тока (количество переносимого заряда) измеряется в амперах. Для увеличения диапазона обозначений единицы изменения существуют такие приставки кратности как микро — микроампер (мкА), мили – миллиампер (мА). Другие приставки в повседневном обиходе не используются. К примеру: говорят и пишут «десять тысяч ампер», но никогда не говорят и не пишут 10 килоампер. Такие значения в повседневной жизни не используются. То же самое можно сказать про наноампер. Обычно говорят и пишут 1×10-9 Ампер.

Сопротивление тока.

Электрическим сопротивлением называется физическая величина, которая характеризует свойства проводника, препятствующие прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему.

Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивление тока (часто обозначается буквой R или r) считается сопротивление тока, в определённых пределах, постоянной величиной для данного проводника. Под электрическим сопротивлением понимают отношение напряжения на концах проводника к силе тока, текущего по проводнику.

Условия возникновения электрического тока в проводящей среде:

1) присутствие свободных заряженных частиц;

2) если есть электрическое поле (присутствует разность потенциала между двумя точками проводника).

Виды воздействия электрического тока на проводящий материал.

1) химическое — изменение химического состава проводников (происходит в основном в электролитах);

2) тепловое — нагревается материал, по которому течет ток (в сверхпроводниках этот эффект отсутствует);

3) магнитное — появление магнитного поля (происходит у всех проводников).

Главные характеристики тока.

1. Сила тока обозначатся буквой I — она равна количеству электричества Q, проходящему через проводник за время t.

Сила тока определяется амперметром.

2. Напряжение U — равняется разности потенциалов на участке цепи.

Напряжение определяется вольтметром.

3. Сопротивление R проводящего материала.

а) от сечения проводника S, от его длины l и материала (обозначается удельным сопротивлением проводника ρ);

б) от температуры t°С (или Т): R = R0 (1 + αt),

  • где R0 – сопротивление проводника при 0°С,
  • α – температурный коэффициент сопротивления;

в) для получения различных эффектов, проводники могут соединяться как параллельно, так и последовательно.

Источник

Электрический ток и его характеристики

date image2015-05-26
views image5176

facebook icon vkontakte icon twitter icon odnoklasniki icon

Постоянный электрический ток

Электрическим током называется всякое упорядоченное движение электрических зарядов.

Ø Ток проводимости — электрический ток, возникающий в проводящих средах в результате упорядоченного движения свободных зарядов под действием электрического поля, созданного в этих средах.

ü ток в металлах, полупроводниках, связанный с упорядоченным движением “свободных” электронов

ü ток в электролитах, представляющий упорядоченное перемещение ионов противоположных знаков

Ø Конвекционный ток – механическое движение в пространстве заряженных макроскопических тел.

ток, связанный с движением Земли, которая имеет избыточный отрицательный заряд, по её орбите.

Условия появления и существования электрического тока проводимости в среде:

1) Наличие в среде свободных носителей тока

2) Существование в данной среде внешнего электрического поля, энергия которого должна расходоваться на упорядоченное перемещение электрических зарядов.

За направление тока принимается направление, в котором перемещаются положительные носители.

Количественной характеристикой электрического тока является величина называемая силой тока.

Сила тока I-скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени.

Так как носителями являются как положительные, так и отрицательные заряды, то

Электрический ток может быть распределён по поверхности, через которую он протекает неравномерно. Поэтому, для более детальной характеристики тока вводят вектор плотности тока :

Плотность тока — это векторная физическая величина, определяемая отношением силы тока dJ через элементарную площадку, расположенную в данной точке перпендикулярно направлению движения носителей, к её площади dS^

Направление вектора совпадает с направлением упорядоченного движения положительных зарядов, т.е. вектор ориентирован по направлению тока.

Зная вектор плотности тока в каждой точке, интересующей нас поверхности S, можно найти и силу тока через эту поверхность как поток вектора :

Для поддержания тока длительное время необходимо, чтобы заряды , переносимые током, отводились от конца проводника с меньшим потенциалом и подводились к концу с большим потенциалом, т.е. необходимо организовать циркуляцию заряда по замкнутому контуру.

Читайте также:  Gysmi 165 нет тока

Циркуляция вектора напряженности электростатического поля равна нулю. Поэтому в замкнутой цепи помимо участков, где заряды движутся в сторону убывания потенциала (по полю) должны находиться участки, где заряды движутся в сторону возрастания потенциала (против поля).

На таких участках движения носителей тока происходит под действием неэлектростатических сил, называемых сторонними . Эти силы могут быть обусловлены химическими процессами, диффузией носителей тока в неоднородной среде или через границу двух разнородных веществ и т.д.

Сторонние силы характеризуются работой, которую они совершают над перемещающимися по цепи зарядами.

Работа сторонних сил по перемещению единичного положительного заряда в цепи характеризуется электродвижущей силой ε.

Стороннюю силу, действующую на заряд q, можно представить в виде

-напряжённость поля сторонних сил.

Таким образом, эдс, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряжённости сторонних сил.

Кроме сторонних сил на заряд действуют электростатические силы , тогда результирующая сила, действующая в каждой точке цепи на заряд q

Работа, совершаемая силой

Физическая величина численно равная работе, совершаемой электростатическими и сторонними силами при перемещении единичного положительного заряда, называется напряжением U.

Участок цепи, на котором не действуют сторонние силы, называется однородным.

Участок цепи, на котором на носители тока действуют сторонние силы, называется неоднородным.

Источник

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

1. Направленное движение свободных зарядов в проводнике под действием сил тока называется электрическим током проводимости или электрическим током.
2. За направление тока принимают направление движения положительно заряженных частиц,которое совпадает с направлением электрического поля.
Действия тока:
• Проводник, по которому течёт ток, нагревается.
• Электрический ток может изменять химический состав проводника.

• Ток оказывает силовое воздействие на соседние токи и намагниченные тела, что является основным свойством тока.
Условия существования электрического тока.
• Наличие свободных заряженных частиц
• Наличие электрического поля

Основные характеристики электрического тока
1. Характеристика тока (самая зависимая величина). Величина, измеряемая отношением заряда, проходящего через поперечное сечение проводника за какой-нибудь промежуток времени, к величине этого промежутка, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным.

2. Характеристика источника питания(зависимая только от силы электрического поля). Напряжение — это физическая величина, характеризующая работу электрического поля по перемещению заряда

З. Характеристика проводника. Электрическое сопротивление выражается в Омах.

Закон Ома для участка цепи. Вольт — амперная характеристика тока. Соединение проводников.

Когда по какому-либо участку протекает ток, то между силой тока и напряжением для этого участка существует определённая функциональная зависимость, которую называют вольт-амперной характеристикой.
Сила тока на участке цепи прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

Соединение проводников
• Последовательное соединение
1. При последовательном соединении сила тока во всех участках цепи одинакова

2. При последовательном соединении напряжение на внешней цепи равно сумме напряжений на отдельных участках
U=U+U+U
З. Напряжение на отдельных участках цепи при последовательном соединении прямо пропорциональны сопротивлениям участков

UUU=RRR
4. При последовательном соединении эквивалентное сопротивление всей цепи равно сумме сопротивлений отдельных участков цепи

R=R+R+R
• Параллельное соединение
1. При параллельном соединении напряжения на отдельных ветвях и на всём разветвлении одинаково

U=U=U=U
2. Ток до и после разветвления равен сумме токов в отдельных ветвях

3. Токи в отдельных ветвях разветвления обратно пропорциональны сопротивлениям этих ветвей
I+I+I=1/R+1/R+1/R

4. Проводимость всего разветвления равна сумме проводимостей. отдельных ветвей

Закон Ома для полной цепи. Физический смысл ЭДС. Внутренней и внешнее сопротивление цепи. Соединение одинаковых источников электрической энергии в батарею.

Сила тока в электрической цепи с одним источником ЭДС прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений внешней и внутренней цепей.

Величина, измеряемая отношением работы сторонних сил, совершаемой источником тока при перемещении заряда по замкнутой цепи, к величине заряда, называется электродвижущей силой источника (ЭДС)
ɛ=A/g — ЭДСчисленно равна энергии, полученной единичным электрическим зарядом во внутренней цепи, а напряжение равно той энергии, которую он теряет во внешней цепи.

Внутренней цепью является источник электрической энергии, а внешней вся остальная часть.

Магнитный поток. Закон электромагнитной индукции. Правило правой руки для индукционного тока.

Магнитный Поток — поток вектора магнитной индукции В через какую-либо поверхность. через малую площадку dS, в пределах которой вектор В неизменен. Для замкнутой поверхности магнитный поток равен нулю, что отражает отсутствие в природе магнитных зарядов — источников магнитного поля.

Закон электромагнитной индукции — ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Правило правой руки.Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется правилом правой руки: Если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входила в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

Автоколебательные системы. Ток высокой частоты и его особенности.

Для того чтобы получить незатухающие колебания нужно иметь посторонний источник энергии.,

удовлетворяющий 2 условиям: Поступление энергии за период должно быть точно ее убыли из системы.

Внешняя сила должна действовать в «такт» с собственными колебаниями.

Производство электрической энергии. Генератор.

Индукционные генераторы.

Электрические машины, в которых механическая энергия превращается в электрическую с помощью явления электромагнитной индукции, называется индукционными генераторами.

Закон преломления света.

1. Преломленный луч лежит в той же плоскости, в которой лежат падающий луч и перпендикуляр, восстановленный в точке падения луча к границе разделов двух сред.

2. При всех изменениях углов падения и преломления отношение синуса угла падения к синусу угла преломления для данных двух сред есть величина постоянная, называется показателем преломления второй среды относительно первой. (относительный показатель преломления)Он показывает, насколько среда уменьшает скорость распространения света в себе.

Читайте также:  Расчет химических источников тока

Абсолютный показатель преломления-показатель преломления данного вещества по отношению к вакууму. Указывает во сколько раз скорость света в вакууме больше скорости света в данном веществе. N=

Явление при котором световое излучение полностью отражается от поверхности раздела прозрачных сред, называется полным отражением. Наименьший угол падения, при котором наступает полное отражение, называется предельным углом полного отражения.Используется в оптических приборах: бинокли, перископах.

Цвета тонких пленок.

Белый свет падает на тонкую пленку. Частично свет отражается от верхней поверхности пленки, частично, пройдя пленку, отражается от ее нижней поверхности. Обе отраженные волны отличаются разностью хода. Белый свет монохроматичен он содержит электромагнитные волны разной длин от 400 до 760нм. Из-за того что разность хода зависит от длины волны, максимумы интерференционной картины для разных длин волн получаются в разных точках приемника. Поэтому пленки имеют радужный окрас.

Голография и её применение.

Сущность идеи состояла в фиксации полной информации о предмете.. Изображения получаемые

в фотоаппаратах регистрируют интенсивность волны. Фаза волны теряется. Габорг предложил

использовать явление интерференции чтоб зафиксировать частотные соотношения в волне. Если фотография регистрирует 1 параметр волны –амплитуду то, по методу регистрации полная информации о всех параметрах волны –частоте фазы и амплитуде. Голографический метод состоит из 2 этапов. Сначала получают интерференционную картину, Оба потока которые отражаются от зеркала и от предмета образуют интерференционную картину., представляющую собой чередование темных и светлых пятен. Для восстановления голограммы ее освещают излучениями.

Достоинства: В обычной фотографии каждый участок эмульсии изображает отдельный участок предмета. В голограмме каждый участок содержит информацию о всей картине .Голограмму характеризует большая емкость информации по сравнению с фотоснимком.

Применяется в количественном исследовании воздушных потоков в аэродинамических трубах.

52. Виды излучения. Тепловое и люминесцентное излучение (основные характеристики с примерами).

Свет- Электромагнитные волны излучают при ускоренном движении заряженных частиц. Излучение переходит при переходе из стационарного состояния с большей энергией в стационарное состояние с меньшей .При поглощении света атом переходит из стационарного состояния с меньшей энергией в состояние в большей энергией, Излучая атом теряет полученную энергию и для непрерывного свечения необходим приток энергии .

Тепловое излучение — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии. Примером теплового излучения является свет от лампы накаливания.

Спектром люминесценции называют зависимость интенсивности люминесцентного излучения от длины

волны испускаемого света.

Квантовая оптика. Абсолютно чёрное тело. Закон Стефана — Больцмана. Распределение энергии в спектре. Квантовая гипотеза Планка.

Излучение испускаемое нагретыми телами наз. тепловым. Каждое тело может не только испускать но и поглощать. Опыты показали что чем больше энергии тело излучает тем сильнее оно поглощает излучение. Хар-кой любого тела является поглощательная способность(показывает какая доля энергии поглощается телом)

Тело которое при любой не разрушающей его температуре полностью поглощает всю энергию падающего на него света любой частоты наз абсолютно черным.(отверстие в ящике сферической формы)Абсолютно черное тело является наиболее интенсивным источником теплового излучения. При оной температуре черное тело испускает в единицу времени больше энергии чем любое другое тело.

Закон ст.б-интегральной светимостью тела наз отношение мощность излучения к площади поверхности излучателя. Спектральной светимостью наз отношение светимости в данном диапазоне длин волн к ширине диапазона.

Задача о распределении энергии излучения абсолютно черного тела между волнами разной длинны сыграла огромную роль .ее решение привело к созданию квантовой физики. на рисунке хар-ие распределение энергии в спектре при разных Темп. площадь ограниченная каждой кривой определяет интенсивность полного излучения. Площадь быстро растет с увелич темп. все кривые имеют максимумы. Длинна волны на которую приходится максимум энергии излучения обратно пропорциональная абсолютной температуре.

Планка- абсолютно черное тело испускает и поглощает свет не непрерывно а определенными порциями энергии –квантами

59. Фотоэффект. Законы фотоэффекта. Квантовая теория фотоэффекта. Фотон и его энергетические характеристики.

Явление выравнивания электронов из твердых и жидких тел под действием света наз внешним фотоэлектрическим эффектом. Фотоэффект создается ультрафиолетовыми лучами.

Законы: максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности,

-для каждого вещества сущ красная граница фотоэффекта

-число фотоэлектронов вырываемых из катода за 1 с прямо пропорционально интенсивности света

Ур Эйнштейна –h*v=Aв+m*vв2 /2 Красная граница фотоэффекта зависит только от работы выхода электрона.

Фотон его импульс направлен световому лучу .чем больше частота тем больше энергия фотона и тем отчетливее выражены корпускулярные свойства света.

Фотохимические законы

1. Каждый поглощенный веществом фотон вызывает превращение одной молекулы.

2. Молекула вступает в фотохимическую реакцию под действием фотона лишь в том случае, когда энергия фотона не меньше определеннного значения необходимого для разрыва молекулярных связей.

Световое давление.Прибор Лебедева представляет собой очень чувствительные крутильные весы подвижной частью является легкая рама с укрепленными на ней крылышками — светлыми и черными дисками. Так на черный диск почти вдвое меньше давления, чем на светлый. Плотность энергии Лебедев измерял с помощью специально сконструированного калориметра, направляя на него пучок света на определенное время и регистрируя повышение температуры.

Свет – это распространяющиеся в пространстве фотоны, то фотон обладает импульсом. Импульс фотона существенно отличается от импульса других элементарных частиц. Покоящихся фотонов не существует .Если распространяющуюся волну остановить то свет прекратит свое существование, значит фотоны будут поглощены атомами вещества, а их энергия перейдет в другой вид энергии.

Открытие нейтрона. Открытие протона. Протонно — нейтронная модель ядра. Нуклоны.

Открытие нейтрона. В начале 30-х гг. были обнаружены неизвестные ранее лучи. Они были названы бериллиевым излучением. так как возникали при бомбардировке альфа — частицами бериллия.
В 1932 г английский учёный Джеймс Чедвик (ученик Резерфорда) с помощью опытов, проведённых в камере Вильсона, доказал, что бериллиевое излучение представляет собой поток электрически нейтральных частиц, масса которых приблизительно равна массе протона. Отсутствие у исследуемых частиц электрического заряда следовало, в частности, из того, что они не отклонялись ни в электрическом, ни в магнитном поле. А массу частиц удалось оценить по их взаимодействию с другими частицами.
Эти частицы были названы нейтронами (ни тот, ни другой).

Читайте также:  Рабочий ток в батарейке

Открытие протона.В 1913 г. Э. Резерфорд выдвинул гипотезу о том, что одной из частиц, входящих в состав атомных ядер всех химических элементов, является ядро атома водорода.

Основание: массы атомов химических элементов превышают массу атома водорода в целое число раз (т.е. кратны ей).

В 1919 г. Резерфорд поставил опыт по исследованию взаимодействия альфа — частиц с ядрами атомов азота.

В этом опыте альфа — частица, летящая с огромной скоростью, при попадании в ядро атома азота выбивала из него какую- то частицу. По предположению Резерфорда, этой частицей было ядро атома водорода, которое Резерфорд назвал протоном (первый).

Нуклон.Так как протон и нейтрон по взаимодействию ядерными силами не отличаются друг от друга, их часто рассматривают как одну частицу нуклон в двух различных состояниях (ядро). Нуклон в состоянии без электрического заряда называется нейтроном, нуклон в состоянии с положительным электрическим зарядом называется протоном.

Одно из замечательных свойств ядерных сил — свойство насыщения — заключается в том, что нуклон оказывается способным к ядерному взаимодействию одновременно лишь с небольшим числом нуклонов-соседей. Свойство насыщения ядерных сил делает их в некоторой мере сходными с силами связи атомов в молекулах.

Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.

Электрический ток — это упорядоченное (направленное) движение заряженных частиц.

1. Направленное движение свободных зарядов в проводнике под действием сил тока называется электрическим током проводимости или электрическим током.
2. За направление тока принимают направление движения положительно заряженных частиц,которое совпадает с направлением электрического поля.
Действия тока:
• Проводник, по которому течёт ток, нагревается.
• Электрический ток может изменять химический состав проводника.

• Ток оказывает силовое воздействие на соседние токи и намагниченные тела, что является основным свойством тока.
Условия существования электрического тока.
• Наличие свободных заряженных частиц
• Наличие электрического поля

Основные характеристики электрического тока
1. Характеристика тока (самая зависимая величина). Величина, измеряемая отношением заряда, проходящего через поперечное сечение проводника за какой-нибудь промежуток времени, к величине этого промежутка, называется силой тока. Если сила тока со временем не меняется, то ток называют постоянным.

2. Характеристика источника питания(зависимая только от силы электрического поля). Напряжение — это физическая величина, характеризующая работу электрического поля по перемещению заряда

З. Характеристика проводника. Электрическое сопротивление выражается в Омах.

Источник



Количественная характеристика эл. тока

ЗАКОНЫ ПОСТОЯННОГО ТОКА

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

Конденсатор — это система заряженных тел и обладает энергией.
Энергия любого конденсатора:

где С — емкость конденсатора
q — заряд конденсатора
U — напряжение на обкладках конденсатора
Энергия конденсатора равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную,
или равна работе по разделению положительных и отрицательных зарядов , необходимой при зарядке конденсатора.

Электрический ток— упорядоченное движение заряженных частиц ( свободных электронов или ионов).
При этом через поперечное сечение проводника перносится эл. заряд ( при тепловом движении заряженных частиц суммарный перенесенный эл. зпряд = 0, т.к. положительные и отрицательные заряды компенсируются).

Направление эл. тока— условно принято считать направление движения положительно заряженных частиц ( от + к — ).

Действия эл. тока ( в проводнике):

тепловое действие тока— нагревание проводника ( кроме сверхпроводников);
химическое действие тока — проявляется только у электролитов, На электродах выделяются вещества, входящие в состав электролита;
магнитное действие тока( основное ) — наблюдается у всех проводников (отклонение магнитной стрелки вблизи проводника с током и силовое действие тока на соседние проводники посредством магнитного поля).

Сила тока — это отношение заряда q, перенесенного через поперечное сечение проводника за интервал времени t к этому интервалу.

Постоянный ток— эл. ток, у которого сила тока со временем не меняется.

Сила тока зависит от заряда частицы, концентрации частиц, скорости направленного движения частиц и площади поперечного сечения проводника.

где S — площадь поперечного сечения проводника, qo — эл. заряд частицы,
n — концентрация частиц, v — скорость упорядоченного движения электронов.

Единица измерения силы тока:

Условия, необходимые для существования электрического тока:

— наличие свободных электрически заряженных частиц;
— наличие внутри проводника эл.поля действующего с силой на заряженные частицы для их упорядоченного движения ( свободные электроны по инерции , без действия силы, перемещаться не могут из-за тормозящего воздействия на них кристаллической решетки).
Если в проводнике существует эл. поле, то между концами проводника есть разность потенциалов.
Если разность потенциалов постоянна во времени , в проводнике течет постоянный ток.

ЗАКОН ОМА ДЛЯ УЧАСТКА ЦЕПИ

где U — напряжение на концах участка цепи, R — сопротивление участка цепи. (сам проводник тоже можно считать участком цепи).

Для каждого проводника существует своя определенная вольт-амперная характеристика.

СОПРОТИВЛЕНИЕ

— основная электрическая характеристика проводника.
— по закону Ома эта величина постоянна для данного проводника.

1 Ом — это сопротивление проводника с разностью потенциалов на его концах
в 1 В и силой тока в нем 1 А.

Сопротивление зависит только от свойств проводника:

где S — площадь поперечного сечения проводника, l — длина проводника,
ро — удельное сопротивление, характеризующее свойства вещества проводника.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник