Меню

Как термисторы ограничивают пусковой ток

Термистор и его принцип действия

Для начинающих радиолюбителей этот тип радиодеталей практически не знаком. Хотя они появились еще 1930-х годах, благодаря ученому Самуэлю Рубену. Так что такое терморезистор? Если коротко, то это этот элемент, по сути, одна из разновидностей резистора. Другие названия: термистор, термосопротивление.

Какая его конструкция, какие задачи он выполняет и как он устроен — об этом в этой статье.

Назначение

Если есть в названии этой радиодетали термин «термо» логично предположить, что его назначение необходимо в тех сферах электроники, которые зависимы от температурных режимов:

  • технологические процессы;
  • установки для передачи информации;
  • в высокоточном оборудовании.

Это основные области применения, где очень нужны такие детали.

Наибольшее применение типовых терморезисторов нашлось для лимитирования пусковых токов, при запуске различного оборудования.

Как один из примеров можно привести процесс при запуске разного рода аппаратов. Когда подается напряжение к блоку питания, конденсатор моментально начинает набирать емкость, что ведет за собой повышению токовых нагрузок. Если этот процесс не контролировать, возрастает риск повреждения диодного моста.

Терморезистор в блоке питания компьютера

Термисторы из-за своей доступности чаще находят свое использование для таких бытовых устройств, как блок питания (БП). Он защищает электрическую цепь в случае резкого нагрева, контролируя температуру до безопасного уровня.

Как блоки питания, так и выпрямители, у которых есть конденсаторные фильтры, обладают существенным недостатком. При включении устройства конденсатору требуется незначительный промежуток времени на его зарядку. Этого времени хватает на кратковременный бросок тока, превышающий рабочие параметры БП в несколько раз.

Блок питания

Естественно, любое превышение токовых нагрузок нежелательно для электронных схем.

Одно из решений этой проблемы — когда в электронную цепь входит среднетемпературный NTC -терморезистор.

Схема защиты блока питания ПК на терморезисторах

Приведенная выше схема актуальна для БП мощностью не выше 800 Вт.

В режиме ожидания (при выключенном питании) терморезисторы с естественной температурой, которая есть в помещении.

Когда БП включается, всплеск тока гасится сопротивлением NTC-термистора. В дальнейшем эта деталь нагреется и выйдет на рабочий режим, который не влияет на работу схемы питания.

Как такие полупроводники работают

Производители таких деталей допускают их максимальную чувствительность к перемене в температурном режиме. При нагреве число активно заряженных частиц возрастает. От количества таких частиц зависит проводимость элемента.

Важно понимать, что аналогичный полупроводниковый элемент работает по типу подчиненности к температурным режимам металла в составе компонента. В них применяются элементы с содержанием:

  • марганца;
  • медных примесей;
  • никеля и его сплавов;
  • силикатов;
  • оксидов и другого.

Но надо учитывать принцип действия терморезистора. От этого будет зависеть, как он будет работать — на повышение или понижение сопротивления, когда меняется рабочая температура элемента.

Терморезисторы разделяются на такие основные разновидности как — NTC или PTC.

Изделия такого типа обладают отрицательными ТКХ. Их отличие в том, что внутреннее сопротивление термистора способно уменьшаться при увеличении t0, и наоборот. Если температурная нагрузка t0 уменьшается, то сопротивление R увеличивается.

Зависимость термистора с NTC

Такие характеристики важны в тех случаях, когда необходимо ограничить пусковой ток при:

  • запуске электродвигателя;
  • защите Li-ионных аккумуляторных батарей.

Также термистор нужен в блоке питания для понижения зарядных токов.

Термисторы в схемах БП

Терморезисторы NTC-типа находят применение и в автомобильной промышленности, как датчик для автоматического управления системой климат-контроль. Или как датчик контроля перегрева двигателя. Если допустимо безопасный режим превышается, уходит управляющая команда на реле управления и двигатель автоматически глушится.

Датчик температуры

Элементы NTC-типа — могут быть применены в системах пожаротушения, как датчик пожара, который обнаруживает быстрый рост температуры и включающий пожарную сигнализацию.

На этих миниустройствах может быть нанесена буквенная маркировка или цветовая в виде полосок или колец. Вид рисунка зависит от того где сделан компонент, его типа и ряда других параметров.

Виды NTC термисторов

Для примера расшифруем маркировку 4D-21.

4D — показывает, что его номинал рассчитан для температур до 24 градусов Цельсия. Цифра 21 — диаметр элемента.

Терморезистор

Чтобы правильно подобрать этот элемент существуют специальные таблицы, с рассчитанными параметрами работы. Например, такая как для термисторов SCN-серии:

Таблица термисторов серии SCN

Аналогичные таблицы помогают выбрать элемент в нужном рабочем диапазоне под свои задачи.

Существуют и PTC — термисторы, у которых ТКС положительный.

О чем это говорит?

При нагреве детали ее внутренне сопротивление растёт. Такие изделия часто можно было встретить в старых цветных телевизионных приемниках с кинескопами.

График NTC и PTC

На сегодняшний день можно выделить два типа деталек РТС — с двумя или тремя выводами.

У изделий с тремя контактами основное отличие в том, что у них два позитрона в виде «таблеток», заключенных в один корпус.

Позисторы

Внешне эти два элемента выглядят практически идентично. Но это обманчивое впечатление.

Они отличаются как размером, так и сопротивлением.

В первом случае рабочий диапазон от 1.4 до 3.7 кОм, а во втором варианте — 17–25 Ом.

Двухвыводные детали чаще всего производятся с добавлением кремния (Si). Выглядят как небольшая таблетка с парой выводов.

Кремниевый позистор

РТС элементы чаще всего употребляются для защиты от перегрузок силового оборудования и его перегрева. И для поддержания корректной температуры в безопасно устойчивых диапазонах.

Сфера применения

Проверка терморезистора

Более дорогой элемент защиты применяется в сложных производственных процессах, как своего рода предохранитель. К примеру, их могут вмонтировать на исполнительное реле, которое при нагреве этой радиодетали отключает всю электрическую цепь.

Также они нужны для:

  1. Защиты электродвигателей. Если заклинит ротор, обмотка будет защищена от перегорания. Датчиком и предохранителем здесь выступает позистор, который подключается к управляющему приборчику, со своим исполняющим реле и со своим пускателем. При опасной ситуации, когда возрастает сопротивление, уходит сигнал на необходимый элемент и уже оттуда проходит исполнительная команда на моментальное отключение мотора.
  2. Для предохранения обмоток трансформаторов от значительных перегрузочных значений и последующего перегрева. Здесь позистору место в электрических цепях первичной обмотки.
  3. Защиты нагревательного узла в клеющих пистолетах.
  4. Как вспомогательный узел для подогрева двигателя перед запуском.

Виды терморезисторов

Классификация по уровням температур:

  • низкотемпературные (менее 175 К);
  • среднетемпературные (175–515 К);
  • высокотемпературные (свыше 515 К);
  • отдельный тип: 900…1300° К.

Разновидности

Перечислим основные виды типовых терморезисторов:

  1. Термистор — принцип работы, которого — растёт проводимость/сопротивление снижается, с увеличением температуры.Термисторное реле защиты
  2. Терморезистор прямого подогрева — как температура, так и сопротивление здесь в прямой зависимости от температуры воздуха — сопротивление с температурой растёт.
  3. Терморезистор косвенного подогрева — где используется для разогрева специальный вмонтированный нагреватель.
  4. Болометр — особо чутко реагируют на тепловые нагрузки, которые содержат в себе активный и компенсационный элемент.Болометр

Основные характеристики

Применяя такие электронные элементы и чтобы знать, что такое терморезистор, надо понимать и учитывать такие характеристики как:

  1. Вольтамперные данные. У терморезисторов и термисторов графики разные, как и их свойства.Вольт-амперная характеристика термистора
  2. Температурные данные. На графиках отображается насколько зависит сопротивление полупроводника от температуры.Параметры термистора
  3. Данные по подогреву. Кривая на графике показывает, насколько характеристики терморезисторов зависят от подаваемой на него мощности.График нагрева термистора

Преимущества

Основные достоинства этих электронных деталей:

  • вибропрочность;
  • малые размеры;
  • обладают незначительной инерционностью;
  • невысокая ценовая категория.
  • могут быть использованы в отрицательных температурах до минус 100 °С.

Как проверить

Перед тем как проверить термистор необходимо подготовиться:

  1. Нужен будет ампервольтметр или обычный цифровой мультиметр.
  2. Для нагрева этой детали подойдет и паяльник.
Читайте также:  Регулятор напряжения с стабилизатором тока

Дальше все просто. Принцип проверки общий. Для всех элементов такого типа. Щупы прибора подсоединяем к нашей детали и измеряем сопротивление, но:

  • перед тем как проверить мультиметром, переключаем его в режим измерения сопротивления;
  • клеммы прибора своими руками прикладываем к выводам из термистора (какая полярность тут роли не играет);
  • проводим замеры на исправность и запоминаем результат. Но тут есть небольшой нюанс. В обычном состоянии этот элемент обладает номинальным сопротивлением. И лишь при нагревании его сопротивление изменяется;
  • теперь подносим к радиодетали разогретый паяльник и смотрим на показания прибора;
  • в зависимости от типа детальки (PTC или NTC) сопротивление должно меняться — или увеличиваться или уменьшаться.

Для наглядности, как происходит процесс проверки на работоспособность, посмотрим на картинку снизу.

Проверка термистора мультиметром

Здесь хорошо видно как при нагревании паяльником сопротивление радиоэлемента уменьшается от значения в 5.1 Ом до величины в 2.7 Ом. Очевидно, что этот элемент работает.

Если все у вас произошло, как написано выше — ваша радиодеталь исправна.

Если вы видите, что сопротивление терморезистора меняется не плавно или вообще ничего не меняется, (чего быть недолжно) этот элемент неисправен.

Важно! Вышеописанный способ довольно грубый. Правильно будет если при испытании замерять и сопротивление элемента, и температуру нагрева.

Схематичное отображение

Схематичное отображение имеет тоже свои особенности.

Отображаться терморезистор на принципиальной схеме может по-разному.

В Европе он отображается как обычное сопротивление, но по диагонали с «полочкой» рядом с которой стоит бука t.

Также могут быть буквенные обозначения:

Обозначение термистора на схеме

Но терморезистор имеет другое обозначение на схеме в США или Японии:

Другие обозначения термистора

SMD-тип

Присутствуют в электронном мире также еще типы таких терморезисторов, как:

SMD — детали. Обладают главной особенностью — своим типом установки (внешним креплением) откуда его сложно выпаять.

SMD-терморезисторы

Формы

Различные формы термисторов

Эти детальки могут быть в разнообразном исполнении, к примеру, как:

  • плоской пластины;
  • дисков разной формы;
  • стержневидные;
  • шайбочки;
  • трубочки;
  • бусиночки;
  • цилиндров.

Самые миниатюрные — в виде бусинок размером менее 1 миллиметра. Не смотря на это, параметры довольно стабильные. Но есть и недостаток — не взаимозаменяемость в электрических схемах.

Видео по теме

Источник

Термистор – характеристика и принцип действия

Главная страница » Термистор – характеристика и принцип действия

Термистор – характеристика и принцип действия

Термистор (терморезистор) – твердотельный электронный элемент, внешне напоминающий постоянный резистор, но обладающий выраженной температурной характеристикой. Этот вид электронных приборов, как правило, используются для изменения аналогового выходного напряжения с учётом изменения окружающей температуры. Другими словами – электрические свойства термистора и принцип действия напрямую связаны с физическим явлением — температурой.

Характеристика электронного элемента

Термистор — термочувствительный полупроводниковый элемент, изготовленный на основе полупроводниковых оксидов металлов. Обычно имеет форму диска или шара с металлизированными или соединительными выводами.

Такие формы позволяют изменять резистивное значение пропорционально малым изменениям температуры. Для стандартных резисторов изменение сопротивления от нагрева видится нежелательным явлением. Но этот же эффект видится удачным при построении многих электронных схем, требующих определения температуры.

Таким образом, будучи нелинейным электронным устройством с переменным сопротивлением, терморезистор успешно подходит для работы в качестве терморезистора-датчика. Такого рода датчики широко применяют для контроля температуры жидкостей и газов.

Выступая твердотельным устройством, изготовленным на основе высокочувствительных оксидов металлов, терморезистор работает на молекулярном уровне. Валентные электроны становятся активными и воспроизводят отрицательный ТКС либо пассивными и тогда воспроизводят положительный ТКС.

В результате электронные приборы – термисторы, демонстрируют очень хорошую воспроизводимую резистивность, сохраняя эксплуатационные характеристики, позволяющие продуктивно работать в диапазоне температур до 200ºC.

Применение терморезисторов на практике

Базовым направлением применения, в данном случае, являются резистивные температурные датчики. Однако эти же электронные элементы, принадлежащие семейству резисторов, можно успешно использовать включенными последовательно с другими компонентами или устройствами.

Схемы включения термисторов

Простые схемы включения терморезисторов, показывающие работу приборов в качестве температурных датчиков — своеобразных преобразователей напряжения за счёт изменения сопротивления

Такая схема включения позволяет контролировать ток, протекающий через компонент. Таким образом, термисторы, по сути, выступают ещё и токоограничителями. Производятся термисторы разного типа, на основе различных материалов и отличаются по размерам в зависимости от времени отклика и рабочей температуры.

Существуют герметичные модификации приборов, защищённые от проникновения влаги. Есть конструкции под высокие рабочие температуры и компактные по размерам. Следует выделить три наиболее распространенных типа терморезисторов:

  • шариковые,
  • дисковые,
  • инкапсулированные.

Работают приборы в зависимости от изменения температуры:

  1. На уменьшение резистивного значения.
  2. На увеличение резистивного значения.

То есть существует два типа приборов:

  1. Обладающие отрицательным ТКС (NTC).
  2. Обладающие положительным ТКС (PTC).

Отрицательный коэффициент ТКС

NTC-термисторы с отрицательным ТКС уменьшают собственное резистивное значение по мере увеличения внешней температуры. Как правило, именно эти приборы чаще выступают датчиками температуры, поскольку идеально подходят практически к любому типу электроники, где требуется контроль температуры.

Относительно большой отрицательный отклик термистора NTC означает, что даже небольшие изменения температуры способны значительно изменить электрическое сопротивление прибора. Этот фактор делает модели NTC идеальными датчиками точного измерения температур.

Схема проверки термистора

Схема калибровки (проверки) терморезистора: 1 — источник питания; 2 — направление тока; 3 — испытуемый электронный элемент термистор; 4 — калибровочный микроамперметр

Терморезисторы NTC, снижающие сопротивление с повышением температуры, по исполнению доступны с различными базовыми сопротивлениями. Как правило, характеристика привязывается к базовым сопротивлениям при комнатной температуре.

Например: 25ºC берётся за контрольную (базовую) температурную точку. Отсюда выстраиваются значения приборов, допустим, следующих номиналов:

  • 2,7 кОм (25ºC),
  • 10 кОм (25ºC)
  • 47 кОм (25ºC)….

Другой важной характеристикой является значение «В». Величина «В» представляет собой постоянную константу, которая определяется керамическим материалом, из которого изготовлен термистор.

Этой же константой определяется градиент кривой резистивного отношения (R/T) в определенном температурном диапазоне между двумя температурными точками. Каждый материал термистора имеет различную материальную константу и, следовательно, индивидуальную кривую отношения сопротивления и температуры.

Так, константа «B» определяет одно резистивное значение при базовой T1 (25ºС), и другое значение при Т2 (например, при 100ºC). Следовательно, значение B определит постоянную константу материала термистора, ограниченную диапазоном T1 и T2:

B * T1 / T2 (B* 25 / 100)

p.s. значения температуры в расчётах берутся в градуировке Кельвина.

Отсюда вытекает, что имея значение «В» (из характеристики производителя) конкретного прибора, электронщику останется только создать таблицу температур и сопротивлений, чтобы построить подходящий график при помощи следующего нормированного уравнения:

где: T1, T2 – температуры в градусах Кельвина; R1, R2 – сопротивления при соответствующих температурах в Омах.

Так, например, термистор NTK, обладающий сопротивлением 10 кОм, имеет значение «В» равным 3455 в рамках температурного диапазона 25 — 100ºC.

Очевидный момент: термисторы экспоненциально меняют сопротивление с изменениями температуры, поэтому характеристическая кривая приборов нелинейная. Чем больше контрольных точек устанавливаются, тем точнее получается кривая.

Электрический воздушный компрессор, 220В/110В 30 мпаЭлектрический воздушный компрессор высокого давленияЭлектрический воздушный насос высокого давления

Применение термистора в роли активного датчика

Поскольку прибор является активным типом датчика, для работы требуется сигнал возбуждения. Любые изменения сопротивления в результате изменения температуры преобразуются в изменение напряжения.

Термисторы разного исполнения

Промышленностью выпускаются термисторы разного исполнения, в том числе высокоточные, надёжно защищённые для применения в системах высокого уровня

Самый простой способ добиться подобного эффекта — использовать термистор как часть схемы делителя потенциала, как показано на рисунке ниже. Постоянное напряжение подаётся в цепь резистора и терморезистора.

К примеру, используется схема, где термистор 10 кОм включен последовательно с резистором 10 кОм. В этом случае выходное напряжение при базовой Т = 25ºC составит половину напряжения питания.

Читайте также:  Срабатывание узо при каком токе

Таким образом, схема делителя потенциалов является примером простого преобразователя сопротивления в напряжение. Здесь сопротивление термистора регулируется температурой с последующим формирования величины выходного напряжения, пропорциональной температуре.

Простыми словами: чем теплее корпус термистора, тем ниже напряжение на выходе.

Между тем, если изменить положение последовательного резистора, RS и термистора RTH, в этом случае уровень выходного напряжения изменится на противоположный вектор. То есть теперь чем больше нагреется термистор, тем выше будет уровень выходного напряжения.

Использовать термисторы допускается и как часть базовой конфигурации с использованием мостовой схемы. Связью между резисторами R1 и R2 устанавливается опорное напряжение до требуемого значения. Например, если R1 и R2 имеют одинаковые значения сопротивления, опорное напряжение равно половине напряжения питания (V/2).

Схема усилителя, построенная с использованием этой мостовой схемы с термозондом, может выступать в качестве высокочувствительного дифференциального усилителя или в качестве простой схемы запуска Шмитта с функцией переключения.

Термистор в мостовой схеме

Включение терморезистора в мостовую схему: R1, R2, R3 -обычные постоянные резисторы; Rт — термистор; А — измерительный прибор микроамперметр

Существует проблема, связанная с прохождением тока через термистор (эффект «самонагрева»). В таких случаях рассеиваемая мощность I 2 R достаточно высока и создаёт больше тепла, чем способен рассеять корпус прибора. Соответственно, это «лишнее» тепло влияет на резистивное значение, что приводит к ложным показаниям.

Одним из способов избавления от эффекта «самонагрева» и получения более точного изменения сопротивления от влияния температуры (R/T), видится питание термистора от постоянного источника тока.

Термистор как регулятор пускового тока

Приборы традиционно используются в качестве резистивных чувствительных к температуре преобразователей. Однако сопротивление термистора изменяется не только под влиянием окружающей среды, но также изменения наблюдаются от протекающего через прибор электротока. Эффект того самого «самонагрева».

Разное электрооборудование на индуктивной составляющей:

  • двигатели,
  • трансформаторы,
  • электролампы,
  • другое,

подвергается чрезмерным пусковым токам при первом включении. Но если в цепь последовательно включить термистор, можно эффективно ограничивать высокий начальный ток. Такое решение способствует увеличению срока службы электрооборудования.

Терморезисторы с низким ТКС (при 25°C) обычно используются для регулирования пускового тока. Так называемые ограничители тока (перенапряжения) меняют сопротивление до очень низкого значения при прохождении тока нагрузки.

В момент первоначального включения оборудования пусковой ток проходит через холодный термистор, резистивное значение которого достаточно велико. Под воздействием тока нагрузки термистор нагревается, сопротивление медленно уменьшается. Так осуществляется плавная регулировка тока в нагрузке.

Термисторы NTC достаточно эффективно обеспечивают защиту от нежелательно высоких пусковых токов. Преимущественной стороной здесь является то, что этот тип приборов способен эффективно обрабатывать более высокие пусковые токи по сравнению с резисторами стандартного образца.

Arduino Fio v3 – описание и характеристики платы конструктора

Arduino Fio v3 – описание и характеристики платы конструктора

Беспроводная зарядка электромобиля: экспериментальная конструкция системы

Беспроводная зарядка электромобиля: экспериментальная конструкция системы

Сканер ОБД 2 (OBD 2): лучшие конструкции приборов диагностики автомобиля

Сканер ОБД 2 (OBD 2): лучшие конструкции приборов диагностики автомобиля

КРАТКИЙ БРИФИНГ

Zetsila — публикации материалов, интересных и полезных для социума. Новости технологий, исследований, экспериментов мирового масштаба. Социальная мультитематическая информация — СМИ .

Источник

Простой и эффективный ограничитель пускового тока предотвращает появление помех

Активная схема и реле заменяют NTC термистор с высокими потерями.

Отключаемые блоки питания с нагрузкой от 200 Вт и более, требуют использования ограничителей пускового тока. Неограничиваемый пусковой ток может достигать величины до нескольких сот Ампер, способных повредить сетевой выпрямитель, сжечь предохранители и индуктивности входного фильтра и повредить PFC (схема коррекции реактивной мощности) фильтрующие конденсаторы.

Простым методом ограничения пускового тока является использование NTC (отрицательный температурный коэффициент) термисторов, включенных последовательно с линией питания. В холодном состоянии термистор имеет высокое сопротивление, которое значительно уменьшается при возрастании температуры, ограничивая пусковой ток за счет своей тепловой инерции и способности быстро уменьшать сопротивление. В то же время, NTC термистор имеет остаточное сопротивление при нормальном рабочем токе источника питания. Для сохранения низкого нормального сопротивления, термистор должен длительное время работать при высокой температуре, что может ухудшить температурный режим источника питания и повысить температуру в его корпусе, где рассеивание энергии и так составляет значительную величину.

Идея конструкции представляет альтернативную схему, которая эффективно ограничивает пусковой ток и не добавляет дополнительные источники тепла в корпус блока питания. Без внесения дополнительных потерь энергии во время нормальной работы, коммутируемый последовательный резистор эффективно ограничивает пусковой ток источника питания до тех пор, пока PFC электролитические конденсаторы не наберут полный заряд. После этого, электромеханическое или твердотельное реле с гальванической изоляцией закорачивает резистор.

В то же время, определение момента полного заряда PFC схемы представляет некоторую трудность. Конструкция универсальных блоков питания подразумевает работу в некотором диапазоне входного переменного напряжения и определение напряжения, означающего полный заряд, может быть ошибочным. Кроме того, ограничитель пускового тока должен задержать начало работы любых дополнительных источников питания и других потребителей энергии для обеспечения заряда PFC конденсаторов в полном объеме.

Простейшим методом решения этих проблем является использование схемы, которая измеряет собственно пусковой ток, а не напряжение на PFC конденсаторах. Она определяет окончание процесса пуска, отслеживая угасание амплитуды пускового тока. По достижению заданного уровня, схема дает команду на запуск вспомогательных источников питания и других потребителей энергии. Отслеживание пускового тока позволяет эффективно контролировать начало работы источника питания и делать порог включения независимым от напряжения сети питания.

На рис.1 показан реальный вариант схемы PFC, в которой используется ограничитель пускового тока с переключаемым резистором. Схема измерения пускового тока содержит проволочный резистор R1 и параллельный MOSFET транзистор в режиме обеднения Q1, который подключен к резистору R2, как источник тока, работающий на резисторы R3 и R4. В широком диапазоне падений напряжения на резисторе R1 от нескольких сотен до нескольких вольт, данная схема вырабатывает стабильный ток, который запрещает работу вспомогательных источников питания и предотвращает их влияние на процесс ограничения входного тока. Когда пусковой ток достаточно снизится, падение напряжения на резисторе R1 становится недостаточным для функционирования Q1 в режиме источника тока.

Ток, протекающий через Q1, снижается, разрешая работу вспомогательных источников питания и включение блока питания, активируя реле S1, чьи контакты закорачивают резистор R1. Номинал R2 определяет ток, необходимый для удержания вспомогательных источников питания в выключенном состоянии, что дает возможность PFC конденсатору C1 полностью зарядиться. 12 В электромеханическое реле, например, G2RL-1 компании Omron, имеет контакты с низким сопротивлением для шунтирования R1.

В качестве альтернативы, для замены S1, можно использовать оптически изолированное твердотельное реле, например, RP1A48D5 компании Carlo Gavazzi с MOSFET транзистором или SCR (управляемый выпрямитель) при условии, что падение напряжения на выходных контактах замены не вносит заметных потерь мощности.

Рис.2 иллюстрирует протекание процесса заряда по падению напряжения на резисторе R1. Экспоненциальная огибающая и ее заполнение характеризуют пусковой процесс; фильтр R3 и C2 отфильтровывает заполнение и формирует экспоненциально снижающееся напряжение на R4, которое удерживает Q2 включенным во время всего процесса пуска. Q2 предотвращает запуск вспомогательных источников питания, удерживая их входы разрешения работы в низком состоянии. При падении напряжения на R1 в несколько вольт, Q1 прекращает вырабатывать постоянное напряжение и закрывает Q2, разрешая работу вспомогательных источников питания. Таким образом, весь источник питания ожидает, когда пусковой ток достигнет безопасной величины, установленной резистором R2. Источник питания включается немедленно, как только реле S1 сработает и закоротит резистор R1. Остальные элементы на рис.1 относятся к стандартной схеме PFC, но могут также быть заменены на часть любой другой конфигурации источника питания.

Читайте также:  Сила тока от электрогитары

Включение 2,4 кВт источника питания

Trace 1 на рис.3 иллюстрирует включение 2,4 кВт источника питания с ограничителем пускового тока и цепью задержки включения, которая разносит по времени процессы подключения к сети и включения блока питания. Величина пускового тока ограничена 5 А, что значительно меньше, чем уровень нагрузки 2,4 кВт. Trace 4 отражает входной ток, измеренный с помощью токового датчика. На рис.4 отражено сссс. Его пусковой ток специально ограничен на уровне 5 А, что значительно ниже рабочего тока, составляющего приблизительно 14 А.

Источник



Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Что такое пусковой ток и как его ограничить

Что такое пусковой ток

Пусковой ток – это максимальный ток, потребляемый электрической цепью во время ее включения. Значение пускового тока намного выше, чем установившийся ток цепи, и этот высокий ток может повредить устройство или привести в действие автоматический выключатель. Пусковой ток обычно появляется во всех устройствах, где присутствует магнитный сердечник, таких как трансформаторы, промышленные двигатели и т. д. Пусковой ток также известен как входной импульсный ток или импульсный ток включения.

Что такое пусковой ток и как его ограничить

Почему появляется пусковой ток

Есть причина появления пускового тока. Подобно некоторым устройствам или системам, которые имеют развязывающий конденсатор или сглаживающий конденсатор, при запуске потребляется большое количество тока для их зарядки. Ниже приведенная диаграмма даст вам представление о разнице между пусковым, пиковым и установившимся током цепи.

Пусковой ток

Пиковый ток: это максимальное значение тока, достигаемое сигналом в положительной или отрицательной области.

Ток установившегося состояния: он определяется как ток в каждом интервале времени, который остается постоянным в цепи. Ток установившегося состояния достигается, когда di/dt = 0, что означает, что ток остается неизменным во времени.

Особенности пускового тока: появляется мгновенно, когда устройство включается; появляется на короткий промежуток времени; выше номинального значения цепи или устройства.

Пусковой ток трансформатора

Пусковой ток трансформатора определяется как максимальный мгновенный ток, потребляемый трансформатором, когда вторичная сторона не нагружена или находится в состоянии разомкнутой цепи. Этот бросок тока вредит магнитным свойствам сердечника и вызывает нежелательное переключение автоматического выключателя трансформатора.

Пусковой ток трансформатора

Величина пускового тока зависит от точки волны переменного тока, в которой запускается трансформатор. Если трансформатор (без нагрузки) включается, когда напряжение переменного тока достигает своего пика, тогда пусковой ток не возникает при запуске, и если трансформатор (без нагрузки) включается, когда напряжение переменного тока проходит через ноль, то значение броска ток будет очень высоким, и он также будет превышать ток насыщения, как вы можете видеть на изображении выше.

Пусковой ток двигателя

Как и трансформатор, асинхронный двигатель не имеет непрерывного магнитного пути. Сопротивление асинхронного двигателя высокое из-за воздушного зазора между ротором и статором. Следовательно, из-за такого характера индуктивного устройства с высоким сопротивлением требуется большой ток намагничивания для создания вращающегося магнитного поля при запуске. График ниже показывает пусковые характеристики двигателя при полном напряжении.

Пусковой ток двигателя

Как вы можете видеть на графике, пусковой ток и пусковой момент очень высоки в начале. Этот высокий пусковой ток может повредить электрическую систему, а начальный высокий крутящий момент может повлиять на механическую систему двигателя. Если уменьшить начальное значение напряжения на 50%, это может привести к снижению крутящего момента двигателя на 75%. Таким образом, для преодоления этих проблем используются схемы питания с плавным пуском.

Как ограничить пусковой ток

Всегда следует помнить о пусковом токе в асинхронных двигателях, трансформаторах и в электронных цепях, которые состоят из катушек индуктивности, конденсаторов или сердечников. Как упоминалось ранее, пусковой ток – это максимальный пиковый ток, наблюдаемый в системе, и он может быть в два-десять раз больше нормального номинального тока. Этот нежелательный всплеск тока может повредить устройство, пусковой ток может вызвать срабатывание выключателя при каждом включении. Регулировка допуска выключателя может помочь нам, но компоненты должны выдерживать пиковое значение.

Находясь в электронной схеме, некоторые компоненты должны выдерживать высокие значения пускового тока в течение короткого промежутка времени. Но некоторые компоненты сильно нагреваются или повреждаются, если значение при быстром запуске очень велико. Поэтому лучше использовать схему защиты от пускового тока при проектировании электронной схемы или печатной платы.

Для защиты от пускового тока вы можете использовать активное или пассивное устройство. Выбор типа защиты зависит от частоты пускового тока, производительности, стоимости и надежности.

Вы можете использовать NTC-термистор (с отрицательным температурным коэффициентом), который является пассивным устройством, работает как электрический резистор, сопротивление которого очень высоко при низкотемпературном значении. Термистор NTC соединяется последовательно с входной линией питания. Обладает высокой устойчивостью при температуре окружающей среды. Поэтому, когда мы включаем устройство, высокое сопротивление ограничивает пусковой ток, который протекает в систему. По мере непрерывного протекания тока температура термистора повышается, что значительно снижает сопротивление. Следовательно, термистор стабилизирует пусковой ток и позволяет постоянному току течь в цепь. Термистор NTC широко используется для ограничения тока из-за его простой конструкции и низкой стоимости. У него также есть некоторые недостатки, например, нельзя полагаться на термистор в экстремальных погодных условиях.

Активные устройства ограничения пускового тока стоят дороже, а также увеличивают размер системы или схемы. Они состоят из чувствительных компонентов, которые переключают высокий входящий ток. Некоторые из активных устройств – устройства плавного пуска, регуляторы напряжения и преобразователи постоянного тока.

Эти средства защиты используются для защиты как электрической, так и механической системы путем ограничения мгновенного пускового тока. На приведенном ниже графике показано значение пускового тока со схемой защиты и без схемы защиты. Мы ясно видим, насколько эффективна защита от пускового тока.

ограничить пусковой ток

Как измерить пусковой ток

Сегодня на рынке представлено большое количество клещей (мультиметров), которые обеспечивают измерение пускового тока. Также вы можете использовать токовые клещи Fluke 376 FC True-RMS для измерения пускового тока. Иногда пусковой ток показывает значение, которое выше номинального значения автоматического выключателя, но, тем не менее, автоматический выключатель не отключается. Причина этого заключается в том, что автоматический выключатель работает по кривой зависимости тока от времени, например, если бы вы использовали автоматический выключатель на 10 А, поэтому пусковой ток, превышающий 10 А, должен протекать через автоматический выключатель больше, чем номинальное время.

Токовые клещи

Выполните следующие шаги для измерения пускового тока:

  • Тестируемое устройство должно быть отключено изначально.
  • Поверните циферблат и установите переключатель на Hz-A.
  • Поместите провод под напряжением в клещи или используйте датчик, соединенный с измерителем.
  • Нажмите кнопку измерения пускового тока, как показано на рисунке выше.
  • Включив испытуемое устройство, вы получите значение пускового тока на дисплее прибора.

Источник