Меню

Как сделать ток с помощью магнитов

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Как магниты используются для производства электроэнергии

Когда проводник помещается в изменяющееся магнитное поле, электроны в проводнике движутся, генерируя электрический ток. Магниты создают такие магнитные поля и могут использоваться в различных конфигурациях для выработки электроэнергии. В зависимости от типа используемого магнита, вращающийся электрический генератор может иметь магниты, размещенные в разных местах, и может генерировать электричество различными способами. Большая часть используемой электроэнергии поступает от генераторов, которые используют магнитные поля для производства этой электроэнергии.

Как магниты используются для производства электроэнергии

В то время как солнечные батареи вырабатывают все больше электричества, все же большая часть электричества поступает сегодня от генераторов, использующих магнитные поля для выработки электричества. Эти генераторы состоят из катушек проволоки, которые либо вращаются через магнитные поля, либо неподвижны вокруг вала с вращающимися магнитами. В любом случае катушки провода подвергаются воздействию изменяющихся магнитных полей, создаваемых магнитами.

Магниты могут быть постоянными или электромагнитами. Постоянные магниты в основном используются в небольших генераторах, и они имеют то преимущество, что им не требуется источник питания. Электромагниты намотаны железной или стальной проволокой. Когда электричество проходит через провод, металл становится магнитным и создает магнитное поле.

Катушки провода генераторов являются проводниками, и когда электроны в проводах подвергаются воздействию изменяющихся магнитных полей, они движутся, создавая электрический ток в проводах. Провода соединены вместе, и электричество в конечном итоге покидает электростанцию и переходит в дома и фабрики.

Когда в генераторе используются постоянные магниты, вам просто нужно повернуть вал генератора для выработки электроэнергии. После того, как эти генераторы были впервые разработаны, люди думали, что они смогут заставить генератор приводить в действие двигатель, который затем включит генератор. Они думали, что если бы двигатель и генератор были точно согласованы, они могли бы создать магнитный источник энергии, который работал бы вечно, как вечный двигатель.

К сожалению, это не сработало. Хотя такие генераторы и двигатели очень эффективны, они все же имеют электрические потери в сопротивлении проводов и трение в подшипниках вала. Даже когда люди, проводившие эксперименты, некоторое время заставляли генератор-мотор работать, в конечном итоге он останавливался из-за потерь и трения.

Большие электростанции имеют большие генераторы размером с комнату, которые вырабатывают электричество с помощью магнитных полей из электромагнитов. Обычно электрические магниты установлены на валу и подключены к источнику электропитания. Когда электричество включено, электрические магниты создают мощные магнитные поля. Катушки провода установлены вокруг вала. Когда вал с магнитами вращается, катушки провода подвергаются воздействию изменяющихся магнитных полей, и в проводах генерируется электрический ток.

Множество различных методов можно использовать для вращения валов генераторов и выработки электроэнергии. В ветряных турбинах пропеллер вращает вал. На угольных и атомных электростанциях тепло от сжигания угля или от ядерной реакции создает пар для запуска турбины, которая приводит в движение генератор. На заводах, работающих на природном газе, газовая турбина выполняет ту же работу. Электростанции нуждаются в источнике энергии, который может вращать вал генератора, а затем магниты могут генерировать магнитные поля, которые генерируют электричество.

Источник

Как сделать электромагнит в домашних условиях

Электромагнит – искусственный магнит, у которого магнитное поле возникает и концентрируется в ферромагнитном сердечнике в результате прохождения электрического тока по охватывающей его обмотке, т.е. при пропускании тока через катушку помещенный внутри нее сердечник приобретает свойства естественного магнита.

Область применения электромагнитов очень обширна. Их используют в электрических машинах и аппаратах, в устройствах автоматики, в медицине, в различного рода научных исследованиях. Наиболее часто электромагниты и соленоиды используются для перемещения каких-то механизмов, а на производствах для подъёма груза.

Так, например, грузоподъемный электромагнит является очень удобным, производительным и экономичным механизмом: для закрепления и освобождения транспортируемого груза не требуется обслуживающий персонал. Достаточно положить электромагнит на перемещаемый груз и включить электрический ток в катушку электромагнита и груз притянется к электромагниту, а для освобождения от груза необходимо лишь отключить ток.

Грузоподъемный электромагнит

Конструкция электромагнита легка для повторения и в сущности не представляет собой ничего кроме сердечника и катушки из проводника. В этой статье мы ответим на вопрос как сделать электромагнит своими руками?

Как работает электромагнит (теория)

Если по проводнику протекает электрический ток, то вокруг этого проводника образуется магнитное поле. Так как ток может течь только тогда, когда цепь замкнута, то проводник должен представлять собой замкнутый контур, как, например, круг, который является простейшим замкнутым контуром.

Раньше проводником, свернутым в круг, часто пользовались для наблюдения действия тока на магнитную стрелку, помещенную в его центре. В этом случае стрелка находится на равном расстоянии от всех частей проводника, благодаря чему легче можно наблюдать действие тока на магнит.

Чтобы усилить действие электрического тока на магнит, можно прежде всего увеличить ток. Однако, если обогнуть проводник, по которому протекает какой-то ток, два раза вокруг охватываемого им контура, то действие тока на магнит удвоится.

Таким образом можно во много раз увеличить это действие, огибая проводник соответствующее число раз вокруг данного контура. Получающееся при этом проводящее тело, состоящее из отдельных витков, число которых может быть произвольным, называется катушкой.

Читайте также:  Задачи для нахождения работы электрического тока

Принцип действия электромагнита

Вспомним курс школьной физики, а именно о том, что при протекании электрического тока через проводник возникает магнитное поле. Если проводник свернуть в катушку линии магнитной индукции всех витков сложатся, и результирующее магнитное поле будет сильнее чем для одиночного проводника.

Магнитное поле, порожденное электрическим током в принципе не имеет существенных отличий по сравнению с магнитным если вернуться к электромагнитам, то формула его тяговой силы выглядит так:

где F – сила тяги, кГ (сила измеряется также в ньютонах, 1 кГ =9,81 Н, или 1 Н =0,102 кГ); B – индукция, Тл; S – площадь сечения электромагнита, м2.

То есть сила тяги электромагнита зависит от магнитной индукции, рассмотрим её формулу:

Сила тяги электромагнита

Здесь U0 – магнитная постоянная (12.5*107 Гн/м), U – магнитная проницаемость среды, N/L – число витков на единицу длины соленоида, I – сила тока.

Отсюда следует, что сила с которой магнит притягивает что-либо зависит от силы тока, количества витков и магнитной проницаемости среды. Если в катушке нет сердечника – средой является воздух.

Ниже приведена таблица относительных магнитных проницаемостей для разных сред. Мы видим, что у воздуха она равна 1, а у других материалов в десятки и даже сотни раз больше.

Относительная магнитная проницаемость материала

В электротехнике используют специальный металл для сердечников, его часто называют электротехнической или трансформаторной сталью. В третьей строке таблицы вы видите «Железо с кремнием» у которого относительная магнитная проницаемость равна 7*103 или 7000 Гн/м.

Это и есть усредненное значение для трансформаторной стали. Она отличается от обычной как раз-таки содержанием кремниями. На практике её относительная магнитная проницаемость зависит от приложенного поля, но не будем углубляться в подробности. Что даёт сердечник в катушке? Сердечник из электротехнической стали усилит магнитное поле катушки примерно в 7000-7500 раз!

Всё что нужно запомнить для начала – это то, что от материала сердечника внутри катушки зависит магнитная индукция, а от неё зависит сила с которой будет тянуть электромагнит.

Практика

Одним из наиболее популярных опытов, которые проводят для демонстрации возникновения магнитного поля вокруг проводника является опыт с металлической стружкой. Проводник накрывают листом бумаги и на него насыпают магнитную стружку, потом через проводник пропускают электрический ток, и стружка изменяет своё располагаясь каким-то образом на листе. Это уже почти электромагнит.

Но для электромагнита просто притягивать металлические стружки недостаточно. Поэтому нужно его усилить, исходя из вышесказанного – нужно сделать катушку, намотанную на металлический сердечник. Простейшим примером – будет изолированный медный провод, намотанный на гвоздь или болт.

Самодельный электромагнит

Такой электромагнит способен притягивать разные булавки, скрепи и тому подобное.

Самый простой электромагнит

В качестве провода можно использовать либо любой провод в ПВХ или другой изоляции, либо медный провод в лаковой изоляции типа ПЭЛ или ПЭВ, которые используются для обмоток трансформаторов, динамиков, двигателей и прочее. Найти его можно либо новый в катушках, либо смотать с тех же трансформаторов.

Медный провод в лаковой изоляции

10 Нюансов изготовления электромагнитов простыми словами:

1. Изоляция по всей длине проводника должна быть однородной и целой, чтобы не было межвитковых замыканий.

2. Намотка должна идти в одну сторону как на катушке с нитками, то есть нельзя изогнуть провод на 180 градусов и пойти в обратном направлении. Это связано с тем что результирующее магнитное поле будет равно алгебраической сумме полей каждого витка, если не вдаваться в подробности, то витки, намотанные в обратную сторону, будут порождать электромагнитное поле противоположное по знаку, в результате поля будут вычитаться и в результате сила электромагнита будет меньше, а если витков в одном и другом направлении будет одинаковое количество – магнит совсем ничего не будет притягивать, так как поля подавят друг друга.

3. Сила электромагнита также будет зависеть от силы тока, а он от напряжения приложенного к катушке и её сопротивления. Сопротивление катушки зависит от длины провода (чем длиннее, тем оно больше) и площади его поперечного сечения (чем больше сечение, тем меньше сопротивление) приблизительный расчёт можно провести по формуле – R=p*L/S

4. Если ток будет слишком большим – катушка сгорит

5. При постоянном токе – ток будет больше, чем при переменном из-за влияния реактивного сопротивления индуктивности.

6. При работе на переменном токе – электромагнит будет гудеть и дребезжать, его поле будет постоянно менять направление, а его тяговая сила будет меньше (в два раза) чем при работе на постоянном. При этом сердечник для катушек переменного тока выполняется из тонколистового металла, собираясь в единое целое, при этом пластины друг от друга изолируются лаком или тонким слоем окалины (оксида), т.н. шихты – для уменьшения потерь и токов Фуко.

7. При одинаковой тяговой силе электрический магнит переменного тока будет весить в два раза больше, соответственно возрастают и габариты.

8. Но стоит учесть, что электромагниты переменного тока обладают большим быстродействием чем магниты постоянного тока.

9. Сердечники электромагнитов постоянного тока

10. Оба типа электромагнитов могут работать как на постоянном, так и на переменном токе, вопрос только какой силой он будет обладать, какие потери и нагрев будут происходить.

Читайте также:  Почему магнитное действие катушки с током усиливается когда в нее вводят железный сердечник

3 идеи для электромагнита из подручных средств на практике

Как уже было сказано самый простой способ сделать электромагнит – использовать металлический стержень и медный провод подобрав и один и другой под нужную мощность. Напряжение питания этого устройства подбирается опытным путем исходя из силы тока и нагрева конструкции. Для удобства можно использовать пластиковую катушку от ниток или подобного, а под её внутренее отверстие подобрать сердечник – болт или гвоздь.

Использование пластиковой катушки для ниток

Второй вариант – использовать почти готовый электромагнит. Вспомните об электромагнитных коммутационных приборах – реле, магнитных пускателях и контакторах. Для использования на постоянном токе и напряжении 12В удобно использовать катушку от автомобильных реле. Всё что нужно сделать – снять корпус выломать подвижные контакты и подключить питание.

Для работы от 220 или 380 вольт удобно использовать катушки магнитных пускателей и контакторов, они намотаны на оправке и легко вынимаются. Сердечник подберите исходя из площади поперечного сечения отверстия в катушке.

Так вы можете включать магнит от розетки, а регулировать его силу удобно если использовать реостат или ограничивать ток с помощью мощного сопротивления, например, нихромовой спирали.

Источник

Как собрать из двух магнитов, вечный фонарик с бесплатным электричеством? Электричество из магнита и проволоки своими руками

Начинаем собирать фонарик

Как сделать вечный фонарик из магнита и проволоки? Подробная инструкция:

Как сделать вечный фонарик из магнита и проволоки? Подробная инструкция:

виток за витком, получаем вот такую форму:

Как сделать вечный фонарик из магнита и проволоки? Подробная инструкция:

Основные виды магнитных двигателей

За весь период исследований было разработано большое количество устройств, позволяющих получить электричество из магнита. Каждый из них имеет собственную технологию, однако все модели объединяет магнитное поле. Среди них не существует идеальных вечных двигателей, поскольку магниты через определенное время полностью утрачивают свои качества.

Наиболее простое устройство у антигравитационного магнитного двигателя Лоренца. В его конструкцию входят два диска с разноименными зарядами, подключенные к питанию. Половина этих дисков размещается в полусферическом магнитном экране, после чего начинается их постепенное вращение.

Самым реальным функционирующим устройством считается простейшая конструкция роторного кольцара Лазарева. Он состоит из емкости, которую разделяет пополам специальная пористая перегородка или керамический диск. Внутри диска устанавливается трубка, а сама емкость заполняется жидкостью. Вначале жидкость попадает в низ емкости, а затем под действием давления начинает пот трубке перемещаться вверх. Здесь жидкость начинает капать из загнутого конца трубки и вновь попадает в нижнюю часть емкости. Для того, чтобы это сооружение приняло форму двигателя, под каплями жидкости располагается колесико с лопастями.

Непосредственно на лопастях устанавливаются магниты, образующее магнитное поле. Вращение колесика ускоряется, вода перекачивается быстрее и, в конце концов, устанавливается определенная предельная скорость работы всего устройства.

Основой линейного двигателя Шкондина является система расположения одного колеса в другом колесе.Вся конструкция состоит из двойной пары катушек с разноименными магнитными полями. За счет этого обеспечивается их движение в разные стороны.

В альтернативном двигателе Перендева используется только магнитная энергия. Конструкция состоит из двух кругов – динамичного и статичного. На каждом из них с одинаковой последовательностью и интервалами расположены магниты. Свободная сила самоотталкивания приводит в бесконечное движение внутренний круг.

Приклеиваем стержень с катушкой к магниту

Как сделать вечный фонарик из магнита и проволоки? Подробная инструкция:

предварительно зачистив концы провода

Как сделать вечный фонарик из магнита и проволоки? Подробная инструкция:

Как сделать вечный фонарик из магнита и проволоки? Подробная инструкция:

придерживаем пока не застынет клей

Как сделать вечный фонарик из магнита и проволоки? Подробная инструкция:

Устройство статора

В качестве основы использован листовой текстолит толщиной 12 м. В листе проделаны отверстия для катушек и втулки ротора. Внешний диаметр железных катушек, которые устанавливаются в эти отверстия – 25 мм. Внутренний диаметр равен диаметру магнитов (15 мм). Катушки выполняют 2 задачи: функцию магнитопроводящего сердечника и задачу снижения залипания при переходе от одной катушки к другой.

Катушки делаются из изолированного провода толщиной 0,5 мм. Наматываются 130 витков на каждую катушку. Направление намотки у всех одинаковое.

При создании мощного генератора из нужно знать, что чем выше обороты, которые можно обеспечить, тем выше будет выходное напряжение и ток устройства для бесплатной энергии.

Частенько в интернете выкладывают «работающие» конструкции на магнитах. Один вариант — «если взять 2 магнита одноимёнными полюсами друг к другу, то они будут отталкиваться». Логично. Теперь «финт ушами» — «надо эти магниты расположить на диске под углом, чтобы они вечно отталкивались друг от друга».

Я не поленился собрать конструкцию наподобие той, которую запатентовал Лазарев Микола Васильович в роли «НЛО» (патент и перевод на русский язык). В патенте указаны большие магниты, а потому они не монолитны, кусками. Чтобы исключить дёрганность, кусков на одной стороне больше на 1 или 2, чем на другой стороне. У меня была возможность по одной стороне применить сплошной магнит, потому плавность там была бы 100%. В итоге я лишний раз убедился в том, что такая конструкция сдвинется в устойчивое положение и вращаться не намерена:

Вот ещё одно опровержение подобных «магнитных двигателей»:

Магниты могут только одноразово притянуться или оттолкнуться. Ближайший аналог — пружина. Если изменить её состояние, она будет стремиться вернуться в исходное состояние. Растянули — будет стремиться сжаться. Аналог — 2 магнита с разноимёнными полюсами друг к другу. Сжали пружину — аналогично, как если 2 магнита приблизить друг к другу одноимёнными полюсами. Любую магнитную конструкцию замените пружинами — моделирование будет довольно точным. Пружины вернутся в исходное положение, и система будет статичной.

Если вы видите конструкцию, где «бесконечное» движение магнитов только за счёт постоянных магнитных полей — перед вами наглая ложь. Применяют различные хитрости в виде «проводов в рукавах», феном за спиной (смешно было наблюдать, как к обычному вентилятору прикладывают магнит, и тот начинает крутиться без электричества — а покажите тот же вентилятор, но без лопастей!), тайной проводкой под столом с герконом, электромагнитными наводками от генераторов переменных ЭМ-полей, да и просто двигателями в неприметной коробочке рядом (вариант — скрытный двигатель отсоединяют после разгона, после чего камера меняет ракурс, чтобы показать, что на другом конце вала ничего нету). Очень показательно, когда такие «вечные двигатели» МГНОВЕННО зажигают лампочки (фейкеры — возьмите на вооружение!). Умиляет, как «серьёзно» «изобретатели» подходят к показному обслуживанию своего «агрегата», сколько труда вкладывают в вычурность самой конструкции.

Читайте также:  Назначение трансформатора тока физика

Есть ещё одна область, где якобы можно получать «свободную энергию» от магнитных конструкций. Там уже более «научный» подход. Рассуждения такие. Если на магнит повесить катушку, а магнит «размыкать» некой пластинкой (пластинка маленькая, для её перемещения много энергии не требуется), которая будет «экранировать магнитный поток», то тогда в катушке будет наводиться ЭДС за счёт изменения силы магнитного поля. На выходе будет энергии многократно больше, чем потребуется на простое перемещение лёгкой пластинки. Логично. И тоже не поленился собрать. Столкнулся с тем, что этот экран не только экранирует магнитые потоки, но и сам с ними прекрасно взаимодействует. И приходится значительные усилия прикладывать к этой пластинке, чтобы замыкать или размыкать магнитный поток. В итоге получается банальный электрогенератор с низким КПД. Схему приводить не буду, в сети их полно. Эксперимент проводился давно, видеоматериалов нету.

Потому, если вы видите в магнитной конструкции некие «размыкатели магнитного поля», знайте, перед вами обычный генератор с необычным приводом. Даже если в конструкции будет заложена симметричность, где 2 пластинки в 2 разных контурах работают в противофазе и друг друга компенсируют, то и в этом случае прорыва не будет — та пластинка, которая активно экранирует магнитный поток, гораздо сильней другой пластинки, которая вынута из другого магнитного потока. Даже если умудритесь компенсировать чем-либо действие магнитного поля на магнитный экран, то этим только чуть улучшите КПД этого электрогенератора. Но как только приложите электронагрузку на этот генератор, так резко усилится действие магнитного поля на магнитный экран в сторону противодействия. Всё будет ровно также, как и с обычным электрогенератором, который без нагрузки тоже будет легко вращаться. Чудес не ждите.

Существует большое количество устройств, относящихся к так называемым « ». Среди них имеются многочисленные конструкции генераторов тока, позволяющие получать электричество из магнита. В этих устройствах применяются свойства постоянных магнитов, способных к совершению внешней полезной работы.

В настоящее время ведутся работы по созданию , способного приводить в движение устройство вырабатывающее ток. Исследования в этой области еще до конца не закончены, однако, на основе полученных результатов можно вполне представить себе его устройство и принцип действия.

Источник



Бесплатное электричество! Это может сделать каждый!

Автор Ольга Питель · 03:34 01.05.2019

Здравствуйте, уважаемые читатели сайта Uspei.com. Сегодняшнюю статью посвящаем изготовлению простейшего прибора для получения бесплатного электричества. И сразу вам хочется сказать, что это все не фейк и я это вам докажу.

Следующий вопрос, почему это электричество не применяется везде? Многие скажут- «Ну кому это выгодно и зачем бесплатно». Нужно же с нас деньги за что-то брать, поэтому о таком приборе молчат и скрывает всю информацию по изготовлению.

Ну а мы с вами, попробуем изготовить миниатюрные источники бесплатного электричества из подручных материалов. Для этого, нам всего лишь понадобится круглый магнит и проволока.

 понадобится круглый магнит и проволока.

Магнит, как оказалось, в настоящее время не так просто раздобыть. Берем проволоку и наматываем ее на магнит по кругу, снять изоляцию с обоих концов. Благодаря круговой намотке и замкнутому контуру, магнитные поля, создаваемые магнитом, приводят в движение свободные электроны в проволоке.

 Проволоку и наматываем ее на магнит по кругу

И поэтому, вокруг так называемой катушки, создается электромагнитное поле, которое и является источником бесплатного электричества. Все, магнитная катушка готова. Ну а теперь, приступим к испытаниям. Испытания проведем на люминесцентной лампочке,которую подносим к катушке.

 Магнитная катушка готова

Как видим, лампочка реагирует на электромагнитное поле и загорается. В зависимости от того, как поднести лампочку к полю, так и степень загорания и яркость меняется. Полностью лампочка загорается только в определенном положении, если бы магнит был побольше, то и результат был бы получше.

 Лампочка реагирует на электромагнитное поле и загорается

А сейчас попробуем поднести диодную лампочку, посмотрим, как она реагирует на поле. Как видим, она тоже загорается и также меняется яркость в зависимости от того, как близко лампочка находится от катушки.

 Диодная лампочка тоже загорается и также меняется яркость

А теперь поднесем обычную лампочку накаливания на 60 ватт к магнитной катушке, как не подноси, ни крути, никакой реакции нет. Возможно не хватает мощности магнита.

Возможно не хватает мощности магнита

Еще проверим, как будет реагировать кусок светодиодной ленты. Результат совсем слабенький, но реакция есть. Как видим, магнитная катушка работает, возможно не та мощность, которую хотелось бы видеть, но здесь маленький магнит и изготовлено все в домашних условиях, без каких-либо расчетов, а самый главный результат достигнут!

Источник