Меню

Как появляется ток в газах

Как появляется ток в газах

Вы будете перенаправлены на Автор24

Условия существования токов в газах

Газ, в котором нет заряженных частиц, не является проводником электрического тока (он изолятор). Газ будет проводником только в том случае, если возникнут носители электрических зарядов (свободные электроны и ионы), то есть газ будет ионизирован. Положительные ионы могут быть однозарядными и многозарядными, это зависит от количества потерянных электронов. Отрицательные ионы, обычно однозарядны, образованы присоединением одного электрона к атому.

Так, необходимо существование постороннего фактора ионизации, не связанного с наличием электрического поля для того, чтобы газ являлся проводником. Это может быть, например, высокая температура, излучение, столкновения атомов газа с быстро движущимися элементарными частицами. Надо отметить, что и в нормальных условиях газы, например воздух, имеют электрическую проводимость, правда, весьма малую. Эта проводимость вызвана излучением радиоактивных веществ, которые присутствуют на поверхности Земли, и космическими лучами, которые приходят на планету из пространства. В том случае, если напряжённость поля мала, то течение тока через газ останавливается практически сразу, как перестает работать внешний фактор ионизации. Подобный ток называют несамостоятельным.

Готовые работы на аналогичную тему

Ионизацию газа, которая появляется как результат вырывания электронов из молекул и атомов самого газа называют объемной ионизацией. Кроме объемной ионизации выделяют поверхностную ионизацию. При таком типе ионизации, ионы и электроны попадают в газ со стенок сосуда, в котором он находится. Или с поверхности тел, которые в газ помещаются.

После того, как прекращает действовать ионизирующий фактор, положительные и отрицательные ионы газа объединяются и образуют нейтральные молекулы. Этот процесс носит название — рекомбинация. В результате рекомбинации проводимость газа возвращается к первоначальному значению. При этом проводимость газа уменьшается постепенно.

В том случае, когда напряженность поля довольно большая, то само поле может вызывать ионизацию газа, при которой газ становится проводником. В таких условиях ток называют самостоятельным. Универсальной зависимости силы самостоятельного тока от напряжения не выявлено. Все определяют конкретные условия. Сила самостоятельного тока может и увеличиваться и уменьшаться с ростом напряжения.

Процесс прохождения электрического тока через газы называют газовым разрядом. Основными типами газового разряда являются:

Несамостоятельный газовый разряд (несамостоятельный ток)

Допустим, что газ, который находится между электродами, постоянно ионизируется. Пусть $N$ — концентрация зарядов каждого знака (или число пар ионов каждого знака), тогда $<(\frac

)>_$ — скорость изменения (образования) концентрации зарядов внешним источником ионизации. Параллельно с процессом ионизации идет процесс рекомбинации.

Если внешнего поля нет, то через некоторое время устанавливается динамическое равновесие, при котором скорость образования ионов становится равной скорости рекомбинации. При этом $N=N^+=N^-$, где полагаем, что ионы однозарядные. В равновесии можно записать, что:

где $r$ — коэффициент рекомбинации, концентрация ионов одного знака равна:

Когда присутствует внешнее электрическое поле, то часть электронов долетает до электродов и там нейтрализуется. Условием динамического равновесия в этом случае станет выражение:

где $(\frac

)$- число пар ионов исчезающих в результате нейтрализации на электродах в единицу времени.

Плотность тока определяется как:

где $v_d=bE$- скорость дрейфа заряда в электрическом поле, $b^+,\ b^-$ — подвижности положительных и отрицательных зарядов. В таком случае, равенство (2) перепишем в виде:

Формула (3) эквивалентна закону Ома только в том случае, если выражение $q\left(b^++\ b^-\right)N$ не зависит от $E$ и $j$. В газах зависимость $q\left(b^++\ b^-\right)N$ обычно существует, поэтому выражение (4) не эквивалентно закону Ома.

В том случае, если расстояние между электродами принять равным d, то плотность тока насыщения ($j$) можно выразить как:

если считать, что все возникающие ионы попадают на электроды раньше, чем успевают рекомбинировать. С учетом выражения (5) формулу (2) запишем как:

Рассмотрим два предельных случая. Пусть плотность ток очень мала. Этот случай соответствует малым внешним электрическим полям. В этом случае количество ионов, которые нейтрализованы на электродах существенно меньше, чем нейтрализованных за счет рекомбинации, тогда их число не изменяется. Разряд подчиняется закону Ома. На вольт — амперной характеристике (рис.1) это соответствует участку ОА.

Другой предельный случай, когда мы получаем ток насыщения ($j_n$) из уравнения (6) при $rN^2\ll \frac$, тогда:

где плотность тока насыщения ($j_n$) не зависит от внешнего поля, создается всеми ионами, которые образованы в результате работы ионизатора. Этому условию отвечает участок BC рис.1.

При промежуточных значениях напряжения внешнего поля происходит плавный переход от линейной зависимости между током и напряжением к насыщению (участок АВ).

Выражение для плотности тока, имеющее вид:

называют характеристикой несамостоятельного тока.

Самостоятельный ток

В том случае, если при плотности тока, равной току насыщения увеличивать напряженность внешнего поля, то плотность тока снова начнет расти. Это происходит от того, что электроны газа до рекомбинации с ионами успевают приобрести энергию, при которой они ионизируют молекулы газа благодаря высокой напряженности внешнего поля. Как результат, скорость ионизации зависит от напряженности внешнего поля. Появляющийся при этом ток называют самостоятельным. Начальная часть характеристики этого тока показана на рис.1 пунктиром.

К видам самостоятельных газовых разрядов относят:

Задание: Как найти минимальную скорость электрона, которую он должен иметь для того, чтобы ионизировать атом азота, если потенциал ионизации для этого вещества равен $U_i=14,5\ B$.

Решение:

Основание для решения данной задачи служит закон сохранения энергии, который мы запишем в виде:

Из уравнения (1.1) выразим искомую скорость, получим:

Из справочных материалов возьмем $m_e=9,1\cdot 10^<-31>кг$, $q_e=1,6\cdot 10^<-19>Кл$. Можем перейти к вычислениям минимальной скорости ионизации.

Задание: Чем меньше давление газа при постоянной температуре, тем меньшее количество атомов имеется в единице объема этого газа, следовательно, больший путь проходит атом между двумя последовательными соударениями. Как будет изменяться напряжение пробоя газового промежутка при уменьшении давления газа?

Решение:

Данную ситуацию можно отнести к такой форме газового разряда, который называют искровым разрядом. При искровом разряде газ скачком утрачивает свои диэлектрические свойства и становится хорошим проводником. Напряженность поля, при которой происходит искровой разряд, различна для разных газов, зависит от их давления и температуры. Напряжение, при котором наступает искровой пробой, называют напряжением пробоя.

Возникновение пробоя объясняется так. В газе всегда есть некое малое число ионов и электронов. При небольших значениях напряженности приложенного поля, соударения, движущихся ионов с нейтральными молекулами можно уподобить упругим столкновениям шаров. При повышении напряженности внешнего поля кинетическая энергия движущихся ионов может стать достаточной для того, чтобы ионизировать нейтральную молекулу. Как результат, появляется новый электрон и положительный ион. Такой процесс называют ударной ионизацией. Вновь образованные ионы и электроны увеличивают количество заряженных частиц в газе, причем под воздействием поля они ускоряются и могут произвести ударную ионизацию вновь. Так, процесс усиливает сам себя. Образуется ионная лавина. Образование ионной лавины и есть процесс искрового пробоя, минимальное напряжение при котором возникает ионная лавина — напряжение пробоя. При искровом пробое причина ионизации газа — разрушение атомов и молекул при соударениях.

При уменьшении давления газа напряжение пробоя уменьшается. Это происходит из-за того, что при большем свободном пробеге ионы могут получить требуемую для ионизации кинетическую энергию при меньшей напряженности электрического поля.

Читайте также:  Соотношение токов в понижающем трансформаторе

Источник

Электрический ток в газах – кратко о самостоятельном разряде в физике

Электрическим током называют поток, который обусловлен упорядоченным движением электрически заряженных частиц. Движение зарядов принято за направление электрического тока. Электрический ток может быть кратковременным и долговременным.

Электрический ток в газах – кратко о самостоятельном разряде в физике

Понятие электрического тока

При грозовом разряде может возникнуть электрический ток, который называют кратковременным. А для поддержания тока в течение длительного времени необходимо наличие электрического поля и свободных носителей электрического заряда.

Электрическое поле создают тела, заряженные разноименно. Силой тока называют отношение заряда, переносимое через поперечное сечение проводника за интервал времени, к этому интервалу времени. Измеряется она в Амперах.

Электрический ток в газах – кратко о самостоятельном разряде в физике

Рис. 1. Формула силы тока

Электрический ток в газах

Молекулы газа в обычных условиях не проводят электрический ток. Они являются изоляторами (диэлектриками). Однако, если изменить условия окружающей среды, то газы могут стать проводниками электричества. В результате ионизации (при нагреве или под действием радиоактивного излучения) возникает электрический ток в газах, который часто заменяют термином «электрический разряд».

Самостоятельные и несамостоятельные газовые разряды

Разряды в газе могут быть самостоятельными и несамостоятельными. Ток начинает существовать, когда появляются свободные заряды. Несамостоятельные разряды существуют пока на него действует сила извне, то есть внешний ионизатор. То есть, если внешний ионизатор перестал действовать, то и ток прекращается.

Самостоятельный разряд электрического тока в газах существует даже после прекращения действия внешнего ионизатора. Самостоятельные разряды в физике подразделяются на тихий, тлеющий, дуговой, искровой, коронный.

  • Тихий– самый слабый из самостоятельных разрядов. Сила тока в нем очень мала (не более 1 мА). Он не сопровождается звуковыми или световыми явлениями.
  • Тлеющий– если увеличить напряжение в тихом разряде, он переходит на следующий уровень – в тлеющий разряд. В этом случае появляется свечение, которое сопровождается рекомбинацией. Рекомбинация– обратный процесс ионизации, встреча электрона и положительного иона. Применяется в бактерицидных и осветительных лампах.

Электрический ток в газах – кратко о самостоятельном разряде в физике

Рис. 2. Тлеющий разряд

  • Дуговой– сила тока колеблется от 10 А до 100 А. Ионизация при этом равна почти 100%. Этот тип разряда возникает, например, при работе сварочного аппарата.

Электрический ток в газах – кратко о самостоятельном разряде в физике

Рис. 3. Дуговой разряд

  • Искровой– можно считать одним из видов дугового разряда. Во время такого разряда за очень короткое время протекает определенное количество электричества.
  • Коронный разряд – ионизация молекул происходит вблизи электродов с малыми радиусами кривизны. Этот вид заряда происходит тогда, когда напряженность электрического поля резко изменяется.

Что мы узнали?

Сами по себе атомы и молекулы газа нейтральны. Они заряжаются при воздействии извне. Если говорить кратко об электрическом токе в газах, то он представляет собой направленное движение частиц (положительных ионов к катоду и отрицательных ионов к аноду). Также важным является, что при ионизации газа, его проводящие свойства улучшаются.

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

SA. Ток в газах

В обычных условиях газы являются диэлектриками, т.к. состоят из нейтральных атомов и молекул, и в них нет достаточного количества свободных зарядов.

Содержание

  • 1 Ионизация и рекомбинация
  • 2 Газовый разряд
    • 2.1 Несамостоятельный разряд
    • 2.2 Самостоятельный разряд
    • 2.3 Виды самостоятельного разряда
  • 3 Понятие о плазме
  • 4 Литература

Ионизация и рекомбинация

Газы становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Процесс ионизации газов заключается в том, что под действием каких-либо причин от атома отрывается один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон.

  • Распад молекул на ионы и электроны называется ионизацией газа.

Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появляются отрицательно заряженные ионы.

Таким образом, в ионизованном газе имеются носители зарядов трех сортов: электроны, положительные ионы и отрицательные.

Отрыв электрона от атома требует затрат определенной энергии — энергии ионизации Wi. Энергия ионизации зависит от химической природы газа и энергетического состояния электрона в атоме. Так, для отрыва первого электрона от атома азота затрачивается энергия 14,5 эВ, а для отрыва второго электрона — 29,5 эВ, для отрыва третьего — 47,4 эВ.

Факторы, вызывающие ионизацию газа называются ионизаторами.

Различают три вида ионизации: термоионизацию, фотоионизацию и ударную ионизацию.

  • Термоионизация происходит в результате столкновения атомов или молекул газа при высокой температуре, если кинетическая энергия относительного движения сталкивающихся частиц превышает энергию связи электрона в атоме.
  • Фотоионизация происходит под действием электромагнитного излучения (ультрафиолетового, рентгеновского или γ-излучения), когда энергия, необходимая для отрыва электрона от атома, передается ему квантом излучения.
  • Ионизация электронным ударом (или ударная ионизация) — это образование положительно заряженных ионов в результате столкновений атомов или молекул с быстрыми, обладающими большой кинетической энергией, электронами.

Процесс ионизации газа всегда сопровождается противоположным процессом восстановления нейтральных молекул из разноименно заряженных ионов вследствие их электрического притяжения. Это явление называется рекомбинацией. При рекомбинации выделяется энергия, равная энергии, затраченной на ионизацию. Это может вызвать, например, свечение газа.

Если действие ионизатора неизменно, то в ионизованном газе устанавливается динамическое равновесие, при котором в единицу времени восстанавливается столько же молекул, сколько их распадается на ионы. При этом концентрация заряженных частиц в ионизованном газе остается неизменной. Если же прекратить действие ионизатора, то рекомбинация начнет преобладать над ионизацией и число ионов быстро уменьшится почти до нуля. Следовательно, наличие заряженных частиц в газе — явление временное (пока действует ионизатор).

При отсутствии внешнего поля заряженные частицы движутся хаотически.

Газовый разряд

При помещении ионизированного газа в электрическое поле на свободные заряды начинают действовать электрические силы, и они дрейфуют параллельно линиям напряженности: электроны и отрицательные ионы — к аноду, положительные ионы — к катоду (рис. 1). На электродах ионы превращаются в нейтральные атомы, отдавая или принимая электроны, тем самым замыкая цепь. В газе возникает электрический ток.

  • Электрический ток в газах — это направленное движение ионов и электронов.

Электрический ток в газах называется газовым разрядом.

Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к катоду, и потока, направленного к аноду.

В газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов или расплавов электролитов.

Таким образом, проводимость газов имеет ионно-электронный характер.

Несамостоятельный разряд

Рассмотренный выше механизм прохождения электрического тока через газы при постоянном воздействии на газ внешнего ионизатора представляет собой несамостоятельный разряд, так как при прекращении действия ионизатора прекращается и ток в газе.

  • Несамостоятельный разряд — это разряд, который зависит от наличия ионизатора.

Исследуем зависимость силы тока от напряжения при несамостоятельном разряде в газе. Для этой цели удобно использовать стеклянную трубку с двумя впаянными в стекло металлическими электродами. Соберем цепь по схеме, изображенной на рисунке 2.

Пусть с помощью какого-нибудь ионизатора, например за счет воздействия рентгеновских лучей, в газе образуется ежесекундно определенное число пар заряженных частиц: электронов и положительных ионов.

При отсутствии напряжения на электродах (U = 0) гальванометр, включенный в цепь (см. рис. 2), покажет нуль (I = 0). При небольшой разности потенциалов между электродами трубки положительно заряженные ионы начнут перемещаться к отрицательному электроду (катоду), а электроны и отрицательно заряженные ионы — к аноду, т. е. возникнет газовый разряд.

Читайте также:  Сила тока при электрофорезе для детей

Однако вследствие рекомбинации не все образующиеся под действием ионизатора ионы доходят до электродов. Часть их, рекомбинируя, образует нейтральные молекулы. По мере увеличения разности потенциалов между электродами трубки доля заряженных частиц, достигающих электродов, увеличивается, т. е. сила тока в цепи возрастает (рис. 3). Объясняется это тем, что при большем напряжении между электродами ионы движутся с большей скоростью, поэтому им остается все меньше времени для воссоединения в нейтральные молекулы.

Наконец, при некотором определенном напряжении наступает такой момент, при котором все заряженные частицы, образующиеся в газе ионизатором за секунду, достигают за это же время электродов. Дальнейшее увеличение напряжения уже не может привести к увеличению числа переносимых ионов. Ток, как говорят, достигает насыщения (см. рис. 3, горизонтальный участок графика).

Таким образом, вольт-амперная характеристика при несамостоятельном разряде в газах является нелинейной, т. е. закон Ома для газов выполняется только при малых напряжениях.

Самостоятельный разряд

Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать (рис. 4). Это означает, что в газе появляются дополнительные ионы сверх тех, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор можно теперь убрать. Поскольку разряд не нуждается для своего поддержания во внешнем ионизаторе, его называют самостоятельным разрядом.

Напряжение U = Uпр, при котором несамостоятельный электрический разряд переходит в самостоятельный, называют напряжением пробоя газа, а сам процесс такого перехода — электрическим пробоем газа.

Электрон, ускоряясь электрическим полем, на своем пути к аноду сталкивается с ионами и нейтральными молекулами. В промежутках между двумя последовательными столкновениями энергия электрона увеличивается за счет работы сил электрического поля. Чем больше разность потенциалов между электродами, тем больше напряженность электрического поля.

Если кинетическая энергия электрона превосходит работу Wi, которую нужно совершить, чтобы ионизовать нейтральный атом (или молекулу), то при столкновении электрона с атомом (или молекулой) происходит его (ее) ионизация, называемая ионизацией электронным ударом.

В результате столкновения электрона с атомом образуется еще один электрон и положительный ион. Таким образом, вместо одной заряженной частицы появляются три — ион и два электрона. Эти электроны, в свою очередь, получают энергию в поле и ионизуют новые атомы и т. д. Вследствие этого число заряженных частиц очень быстро возрастает. Описанный процесс имеет сходство с образованием снежной лавины в горах и поэтому получил название электронной (или ионной) лавины.

Лавинообразное нарастание числа заряженных частиц в газе может начаться под действием сильного электрического поля, если в газе окажется хотя бы один электрон. Ионизатор в этом случае не нужен. Так, например, в окружающем нас воздухе всегда имеется некоторое число ионов и электронов, возникающих под действием радиоактивных излучений земной коры, ультрафиолетового и рентгеновского излучений Солнца, а также других излучений, проникающих в земную атмосферу из космического пространства.

Обратим внимание на то, что роль электронов и ионов в образовании лавинного разряда в газах неодинакова. Основную роль в ударной ионизации играют свободные электроны.

Но ионизация только электронным ударом не может обеспечить длительный самостоятельный разряд. Действительно, ведь все возникающие таким образом электроны движутся по направлению к аноду и по достижении анода «выбывают из игры». Для поддержания разряда необходима эмиссия электронов с катода («эмиссия» означает «испускание»). Эмиссия электронов может быть обусловлена несколькими причинами.

Положительные ионы, образовавшиеся при столкновении электронов с нейтральными атомами, при своем движении к катоду приобретают под действием поля большую кинетическую энергию. При ударах таких быстрых ионов о катод с поверхности катода выбиваются электроны.

Катод может испускать электроны при нагревании до высокой температуры. Этот процесс называется термоэлектронной эмиссией. Его можно рассматривать как испарение электронов из металла. Во многих твердых веществах термоэлектронная эмиссия происходит при температурах, при которых испарение самого вещества еще мало. Такие вещества и используют для изготовления катодов.

При самостоятельном разряде нагрев катода может происходить за счет бомбардировки его положительными ионами. Если энергия ионов не слишком велика, то выбивания электронов с катода не происходит и электроны испускаются вследствие термоэлектронной эмиссии.

В газах при больших напряженностях электрических полей электроны достигают таких больших энергий, что начинается ионизация электронным ударом. Разряд становится самостоятельным и продолжается без внешнего ионизатора.

Виды самостоятельного разряда

В зависимости от давления газа, напряжения, приложенного к электродам, формы и характера расположения электродов различают следующие типы самостоятельного разряда: тлеющий, коронный, дуговой и искровой.

  • Тлеющий разряд наблюдается при пониженных давлениях газа (порядка 0,1 мм рт. ст.). Для возбуждения такого разряда достаточно напряжения между электродами в несколько сотен (а иногда и значительно меньше) вольт. Тлеющий разряд используют в газоразрядных трубках для освещения и рекламы. Красное свечение возникает при наполнении трубки неоном. Положительный столб в аргоне имеет синевато-зеленоватый цвет. В лампах дневного света используют разряд в парах ртути.
  • Искровой разряд можно получить, если постепенно увеличивать напряжение между двумя электродами. При некотором напряжении возникает электрическая искра. Примером гигантского искрового разряда является молния. Она возникает либо между двумя заряженными облаками, либо между заряженным облаком и Землей. Сила тока в молнии достигает 500000 ампер, а разность потенциалов между облаком и Землей — 1 млрд. вольт. Длина светящегося канала может достигать 10 км, а его диаметр — 4 м.
  • Если после зажигания искрового разряда постепенно уменьшать сопротивление цепи, то сила тока в искре будет увеличиваться, и возникнет новая форма газового разряда, называемого дуговым. В настоящее время электрическую дугу, горящую при атмосферном давлении, чаще всего получают между специальными угольными электродами. Ее температура при атмосферном давлении около 4000 °С. Электрическая дуга является мощным источником света и широко применяется в проекционных, прожекторных и других осветительных установках. Вследствие высокой температуры дуга широко применяется для сварки и резки металлов. Высокую температуру дуги используют также при устройстве дуговых электрических печей, играющих важную роль в современной электрометаллургии.
  • Коронный разряд наблюдается при сравнительно высоких давлениях газа (например, при атмосферном давлении) в резко неоднородном электрическом поле. Так, например, коронный разряд можно получить около тонкой проволоки. При этом возле нее наблюдается свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда. Коронный разряд используется в технике для устройства электрофильтров, предназначенных для очистки промышленных газов от твердых и жидких примесей. В природе коронный разряд возникает иногда под действием атмосферного электрического поля на ветках деревьев, верхушках мачт (так называемые огни святого Эльма). Коронный разряд может возникнуть на тонких проводах, находящихся под напряжением.

Понятие о плазме

  • Плазма — это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Поэтому в целом плазма является электрически нейтральной системой.
Читайте также:  Цепи трехфазного тока способы их соединения

Степень ионизации плазмы α определяется отношением числа ионизированных атомов к их общему числу\[

\alpha = \frac\]. В зависимости от степени ионизации плазма подразделяется на слабо ионизированную (α — доли процента), частично ионизированную (α — несколько процентов) и полностью ионизированную (α = 100%). Слабо ионизированной плазмой является ионосфера — верхний слой земной атмосферы. В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 10 6 — 10 7 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах.

Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.

Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма — самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму.

Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую — плазменные источники электроэнергии, магнитогидродинамические генераторы. Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.

Источник



Электрический ток в газах — причины появления и применение

Процесс ионизации

При стандартных условиях газообразные вещества являются диэлектриками. Это объясняется отсутствием в их структуре большого числа свободных частиц с разными зарядами. Стать электропроводным газ может лишь при условии его ионизации. Это явление представляет собой расщепление молекул на положительно и отрицательно заряженные частицы.

Ионизация возможна только под воздействием внешних факторов. Причины, влияющие на этот процесс, называются ионизаторами. Электроны, лишенные атомных связей, могут захватываться частицами с нейтральным зарядом, благодаря чему образуются положительные ионы. В электрическом газе, подвергшемся ионизации, в качестве носителей заряда присутствуют электроны, положительные и отрицательные ионы. Существует 3 типа ионизации:

  1. Термо. Наблюдается при столкновении частиц газообразных веществ при высоких температурах. Их кинетическая энергия движения должна превосходить показатель молекулярной связи электронов в атомах.
  2. Фото. Этот процесс протекает под воздействием электромагнитного излучения. Требуемая для отделения электронов энергия передается молекулам квантами излучения.
  3. Ударная. Заряженные частицы появляются благодаря столкновению нейтральных частиц с быстро движущимися электронами. При этом они должны обладать большим показателем кинетической энергии.

Также необходимо рассмотреть еще одно явление, протекающее в ионизированных газах, — рекомбинацию. Ее суть сводится к восстановлению нейтральных ионов из разнозаряженных частиц. Процесс сопровождается выделением определенного количества энергии, показатель которой соответствует значению, израсходованному на ионизацию.

В результате могут проявляться различные явления, например, свечение. Это говорит о том, что возникновение электрического тока в газах обусловлено упорядоченным движением частиц с определенными зарядами. Это явление наблюдается лишь под воздействием внешнего поля. Можно сказать, что газ и электричество при определенных условиях являются вполне сочетаемыми понятиями.

Газовые разряды

Если поместить ионизированный газ в электрополе, то на свободные заряды начнут воздействовать электрические силы. Они всегда направлены параллельно линиям напряженности. В результате движение заряженных частиц из хаотичного становится упорядоченным — отрицательные движутся в направлении анода, а положительные — к катоду. После контакта с электродами частицы становятся нейтральными, так как отдали либо приняли электроны. В результате цепь замыкается, и появляется электроток.

Процесс прохождения электронного тока через газообразное вещество называют разрядом. В газообразных веществах сочетаются два вида проводимости — электронная и ионная.

Несамостоятельный и самостоятельный ток

Описанный кратко механизм возникновения тока в газах под воздействием внешнего поля представляет собой несамостоятельный разряд. После снятия внешнего воздействия электроток в газообразном веществе исчезает. Чтобы исследовать зависимости силы тока от напряжения, предстоит использовать стеклянную трубку, в которую впаяны электроды.

Если начать воздействовать на это устройство с помощью ионизатора, например, рентгеновского излучения, то в газе каждую секунду будет появляться некоторое количество пар свободных частиц с определенным зарядом. При отсутствии на клеммах электродов напряжения сила тока окажется равной нулю. Создав небольшую разницу потенциалов, можно заставить заряженные частицы упорядочено перемещаться, что приведет к появлению газового разряда.

Но из-за рекомбинации не все образованные в результате процесса ионизации ионы смогут дойти до электродов. Часть этих частиц приобретет нейтральный заряд. При увеличении разности потенциалов число заряженных ионов и электронов будет возрастать. При достижении определенного напряжения все заряженные частицы доберутся до электродов. Это позволяет говорить о том, что электроток достиг насыщения.

В результате вольт-амперная характеристика при появлении несамостоятельного тока становится нелинейной. Говоря проще, закон Ома в газах работает лишь при небольшой разнице потенциалов.

Если после достижения насыщения тока продолжить увеличивать напряжение на электродах, то при большой разнице потенциалов его сила начнет стремительно возрастать. Это связано с тем, что в газообразном веществе образуются дополнительные заряженные частицы сверх тех, что появляются под воздействием ионизатора. В определенный момент необходимость использования внешнего поля для поддержания разряда отпадет.

Такой электрический ток называется самостоятельным. Величина, при которой несамостоятельный ток становится самостоятельным, называется напряжением пробоя. Электроны, получая ускорение от электрополя, сталкиваются на траектории своего движения с нейтральными частицами.

В ситуации, когда кинетическая энергия электронов превышает показатель энергии Wi, наблюдается ионизация молекул. При этом основную работу в образовании самостоятельного разряда выполняют электроны. В физике принято выделять 4 вида самостоятельного тока:

  1. Тлеющий. Создается в газообразных веществах при низком давлении (около 1,33 Па). Тлеющий разряд может быть получен при сравнительно небольшом напряжении. Используется он в газовых лампах, например, в неоновых. Применение различных инертных газов позволяет добиться свечения определенного цвета.
  2. Искровой. Появляется при постепенном повышении напряжения. В природе искровой разряд наблюдается в виде молнии.
  3. Дуговой. Если после возникновения искрового разряда продолжить снижать сопротивление электроцепи, то сила тока в искре начнет быстро увеличиваться. В результате возникнет дуговой разряд.
  4. Коронный. Наблюдается при высоком давлении под воздействием неоднородного электрополя.

Понятие плазмы

Плазма представляет собой полностью либо частично ионизированный газ, в котором плотность противоположно заряженных частиц примерно одинакова. Для определения степени ионизации (α) используется следующая формула: α = Ni / N. Здесь Ni представляет собой число ионизированных атомов, а N — общее количество частиц.

Примером слабо ионизированной плазмы является ионосфера Земли. Звезды, включая Солнце, плотно ионизированы. Плазма обладает рядом уникальных свойств, что делает необходимым рассматривать ее в качестве особого состояния веществ, таких как, например, жидкость.

Сегодня сложно представить человеческую цивилизацию без электричества. С его помощью люди освещают и обогревают дома, отправляют сообщения и т. д. Применение электрического тока в газах многообразно. Например, газовый электроток используется для освещения помещений, при сварке, в металлургии и т. д. Если управлять движением плазмы, то ее можно использовать в качестве рабочего тела. Так, несколько лет назад большой популярностью пользовались плазменные телевизоры.

Источник