Меню

Как найти работу тока генератора

Генератор тока.

Генератор тока — это такой тип электрической машины, которая способствует преобразованию механической энергии в электрическую. Основано действие генераторов тока по принципу электромагнитной индукции: электродвижущая сила (ЭДС) наводится в движущемся в магнитном поле проводе.

Генератор тока

Производить генератор тока может не только постоянный, но и переменный ток. На латыни слово генератор (generator) означает — производитель.

На мировом рынке наиболее известными поставщиками генераторов являются компании: General Electric (GE), ABB, Siemens AG, Mecc Alte.

Генераторы постоянного тока.

Единственным типом источника для получения электроэнергии на протяжении долгого времени были электрические генераторы.

Переменный ток индуктируется в обмотке якоря генератора постоянного тока, затем он электромеханическим выпрямителем — коллектором преобразуется в постоянный ток. Особенно при большой частоте вращения якоря генератора, процесс выпрямления тока коллектором связан с очень частым износом щеток и коллектора.

Генератор тока.

Различаются генераторы постоянного тока по характеру их возбуждения, они бывают с самовозбуждением и независимого возбуждения. К независимому источнику питания в генераторах с электромагнитным возбуждением подключается обмотка возбуждения, располагающаяся на главных полюсах.

Постоянными магнитами, из которых производятся полюсы машины, возбуждаются генераторы с магнитоэлектрическим возбуждением. Основное применение генераторы постоянного тока находят в тех отраслях промышленности, где постоянный ток является предпочтительным по условиям производства (предприятия электролизной и металлургической промышленности, суда, транспорт и прочие). В качестве источников постоянного тока и возбудителей синхронных генераторов применяются генераторы постоянного тока на электростанциях.

Может достигать до 10 Мегаватт мощность генератора тока.

Генераторы переменного тока.

При достаточно высоком напряжении получать большие токи позволяют генераторы переменного тока. Несколько типов индукционных генераторов различают в настоящее время.

Они состоят из создающего магнитное поле постоянного магнита или электромагнита и обмотки, индуцируется в которой переменная ЭДС. Так как складываются наводимые в последовательно соединенных витках ЭДС, то в рамке индукции амплитуда ЭДС будет пропорциональна количеству в ней витков. Также она пропорциональна через каждый виток амплитуде переменного магнитного потока. В генераторах тока, чтобы получить большой магнитный поток применяется специальная магнитная система, состоящая из двух сердечников, изготовленных из электротехнической стали. В пазах одного из сердечников размещены создающие магнитное поле обмотки, а в пазах второго располагаются обмотки, в которых индуцируется ЭДС. Один из сердечников называется ротором, так как он вращается вокруг вертикальной или горизонтальной оси, вместе со своей обмоткой.

Генераторы переменного тока

Другой сердечник называется статором — это неподвижный сердечник с его обмоткой. Как можно меньшим делается зазор между сердечниками ротора и статора, наибольшее значение потока магнитной индукции обеспечивается этим. Электромагнит, являющийся ротором вращается в больших промышленных генераторах, а обмотки, уложенные в пазах статора и в которых наводится ЭДС остаются неподвижными.

С помощью скользящих контактов приходится во внешнюю цепь подводить ток к ротору или отводить его из обмотки ротора. Контактными кольцами, которые присоединены к концам его обмотки для этого снабжается ротор. К кольцам прижаты неподвижные пластины-щетки, они осуществляют связь с внешней цепью обмотки ротора. В обмотках создающего магнитное поле электромагнита, сила тока значительно меньше той силы тока, которую отдает генератор тока во внешнюю цепь. Поэтому гораздо удобнее снимать генерируемый ток с неподвижных обмоток, а сравнительно слабый ток подводить через скользящие контакты к вращающемуся электромагниту. Вырабатывается этот ток, расположенным на том же валу отдельным генератором постоянного тока (возбудителем). Вращающимся магнитом создается магнитное поле в маломощных генераторах тока, щетки и кольца в таком случае вообще не требуются.

генератор переменного тока

Бывают двух типов обмотки возбуждения синхронных генераторов: с явнополюсными и неявнополюсными роторами. Выступают из индуктора несущие обмотки возбуждения в генераторах с явнополюсными роторами полюса. На сравнительно низкие частоты вращения рассчитаны генераторы данного типа, они используются для работы с приводом от поршневых паровых машин, гидротурбин, дизельных двигателей. Для привода синхронных генераторов с неявнополюсными роторами применяются газовые и паровые турбины. Стальную поковку с фрезерованными продольными пазами для витков обмотки возбуждения, которые обычно выполнены в виде медных пластин, представляет собой ротор такого генератора. В пазах фиксируются витки, а для снижения потерь мощности и уровня шума, связанных с сопротивлением воздуха шлифуется, а затем полируется поверхность ротора.

По большей части трехфазными делаются обмотки генераторов тока. Подобное сочетание движущихся частей, способных создавать энергию также экономично и непрерывно, встречается в механике редко.

Современный генератор тока является внушительным сооружением, состоящим из медных проводов, стальных конструкций и изоляционных материалов. С точностью до 1 миллиметра изготавливаются важнейшие детали генераторов, которые сами имеют размеры несколько метров.

Читайте также:  Сила тока через катушку увеличивается в 2 раза индуктивность катушки

Источник

Как работает автомобильный генератор, схемы

Как работает автомобильный генератор, схемы

Генератор — один из главных элементов электрооборудования автомобиля, обеспечивающий одновременное питание потребителей и подзаряд аккумуляторной батареи.

Принцип действия устройства построен на превращении механической энергии, которая поступает от мотора, в напряжение.

В комплексе с регулятором напряжения узел называется генераторной установкой.

В современных автомобилях предусмотрен агрегат переменного тока, в полной мере удовлетворяющий всем заявленным требованиям.

Устройство генератора

Элементы источника переменного тока спрятаны в одном корпусе, который также является основой для статорной обмотки.

В процессе изготовления кожуха применяются легкие сплавы (чаще всего алюминия и дюрали), а для охлаждения предусмотрены отверстия, обеспечивающие своевременный отвод тепла от обмотки.

В передней и задней части кожуха предусмотрены подшипники, к которым и крепится ротор — главный элемент источника питания.

В кожухе помещаются почти все элементы устройства. При этом сам корпус состоит из двух крышек, расположенных с левой и с правой стороны — около приводного вала и контрольных колец соответственно.

Две крышки объединяются между собой с помощью специальных болтов, изготовленных из алюминиевого сплава. Этот металл отличается незначительной массой и способностью рассеивать тепло.

Не менее важную роль играет щеточный узел, передающий напряжение на контактные кольца и обеспечивающий работу узла.

Изделие состоит из пары графитных щеток, двух пружин и щеткодержателя.

Также уделим внимание элементам, расположенным внутри кожуха:

  • Ротор — стальной элемент, имеющий одну обмотку и, по сути, представляющий собой электромагнит. Ротор находится на валу, а сверху обмотки установлены втулки клювообразной формы. Ток подается с помощью медных колец, которые расположены на валу и объединены с обмоткой через специальные щетки.
  • Обмотка — устройство, изготовленное из медной проволоки и закрепленное в пазы сердечника. Сам сердечник выполнен в форме окружности и изготавливается с применением специального материала, обладающего улучшенными магнитными качествами. В электротехнике металл носит название «трансформаторное железо». У статора есть три обмотки, связанные между собой и объединенные в звезду или треугольник. В точке объединения установлен диодный мост, обеспечивающий выпрямление напряжения. Обмотка изготовлена из специальной проволоки, имеющей двойную термоустойчивую изоляцию, покрытую специальным лаком.
  • Реле-регулятор — ключевой элемент установки, обеспечивающий стабильное напряжение на выходе устройства. Монтаж регулятора может производиться в кожухе генератора или снаружи. В первом случае он находится возле графитных щеток, а во втором — там, где щетки крепятся к щеткодержателю (но в разных моделях авто монтаж может осуществляться по-разному). Ниже представлены реле-регуляторы с щеточным узлом.
  • Выпрямительный мост — элемент, предназначенный для преобразования переменного тока на выходе статора в постоянное напряжение. Выпрямитель состоит из трех пар диодов, которые установлены на токопроводящем основании и попарно объединяются друг с дружкой. В среде автовладельцев и мастеров СТО диодный мост часто называется «подковой» из-за схожести с этим предметом.

Какие требования предъявляются к автомобильному генератору?

К генераторной установке автомобиля выдвигается ряд требований:

  • Напряжение на выходе устройства и, соответственно, в бортовой сети должно поддерживаться в определенном диапазоне, вне зависимости от нагрузки или частоты вращения коленвала.
  • Выходные параметры должны иметь такие показатели, чтобы в любом из режимов работы машины АКБ получала достаточное напряжение заряда.

При этом каждый автовладелец должен особое внимание уделять уровню и стабильности напряжения на выходе. Это требование вызвано тем, что аккумулятор чувствителен к подобным изменениям.

Например, в случае снижения напряжения ниже нормы АКБ не заряжается до необходимого уровня. В итоге возможны проблемы в процессе пуска мотора.

В обратной ситуации, когда установка выдает повышенное напряжение, аккумулятор перезаряжается и быстрее ломается.

Источник

Как работает электрический генератор

Функция любого электрического генератора — вырабатывать электрический ток. Но на самом деле генератор ничего не производит, а лишь преобразует один вид энергии — в другой (как это и свойственно всем энергетическим процессам в природе). Чаще всего, произнося словосочетание «электрический генератор», имеют ввиду машину, преобразующую механическую энергию — в электрическую.

Механическая энергия может быть получена от расширяющегося под давлением газа или пара, от падающей воды или даже вручную. В любом случае для получения от генератора электрической энергии, ему необходимо сначала передать эту энергию в приемлемой форме, чаще всего в механической.

— А откуда у вас электричество?
— Два гигантских хомяка крутят колёса в секретном бункере.

Остаться в живых (Lost)

Генераторы, работающие посредством механического привода, — доминирующий вид генераторов в современном мире. Такие генераторы работают на атомных и гидроэлектростанциях, в автомобилях, в дизельных и бензиновых генераторах, на ветряках, в ручных динамо-машинах и т. д. Пар, бензин, ветер — служат источниками механической энергии, вращающей ротор генератора.

Читайте также:  Микросхемы регуляторов двигателя постоянного тока

Как работает электрический генератор

Пример работы простого электрогенератора:

На роторе генератора закреплена обмотка намагничивания или постоянные магниты. В последние годы широкое распространение получают генераторы с неодимовыми магнитами на роторе, так как современные неодимовые магниты не уступают по своим характеристикам мощной обмотке намагничивания.

Принцип выработки электрической энергии в генераторе основан на явлении электромагнитной индукции, которое заключается в том, что изменяющийся в пространстве магнитный поток индуцирует вокруг этого пространства электрическое поле.

И если в область где присутствует это индуцированное электрическое поле поместить проводник, то в нем наведется (будет индуцирована) ЭДС — электродвижущая сила, и между концами проводника можно будет наблюдать (измерить, использовать для питания нагрузки) соответствующее напряжение.

Изменяющийся магнитный поток получается в генераторе при помощи движущихся вместе с ротором магнитов или полюсных наконечников, намагничиваемых специальными обмотками — обмотками намагничивания. Обмотки намагничивания обычно получают питание через щетки и контактные кольца.

Применение генератора для электрификации модели железной дороги:

Применение генератора для модели электрификация модели железной дороги

Провода, в которых наводится ЭДС (электрическое напряжение) в генераторе, представляют собой обмотку статора, расположенную, как правило, в магнитопроводе, закрепленном на неподвижной части электрической машины. Эта обмотка у генераторов разного типа может быть выполнена различным образом.

В трехфазных генераторах переменного тока приняты обмотки статора, изготовленные по трехфазной схеме, — три части такой трехфазной обмотки могут быть соединены «звездой» или «треугольником».

Соединение звездой позволяет получить от генератора напряжение большей величины, чем при соединении треугольником. Разница в напряжениях составит корень из 3 раз (около 1,73). Чем больше напряжение — тем меньше максимальный ток, который можно получить от данного генератора на нагрузке.

Работа электрического генератора на электростанции:

Электрический генератор на электростанции

Номинальная мощность генератора зависит от нескольких факторов, которые определяют его номинальные ток и напряжение. Напряжение на выходных клеммах генератора зависит от длины обмотки (провода) статора, от скорости вращения ротора и от индукции магнитного поля на его полюсах. Чем эти параметры больше — тем большее напряжение получается с генератора на холостом ходу и под нагрузкой.

Портативный генератор (мини-электростанция) для автономного электроснабжения:

Портативный генератор

Максимальный ток, который можно получить от генератора, теоретически ограничен его током короткого замыкания. Практически при номинальных оборотах он зависит от толщины провода обмотки статора и от общего магнитного потока ротора.

Если магнитного потока не достаточно, в некоторых случаях прибегают к увеличению оборотов. Но тогда генератор обязательно должен быть оснащен автоматическим регулятором напряжения, как это реализовано в автомобильных генераторах, которые способны выдавать приемлемый для зарядки аккумулятора ток в широком диапазоне оборотов.

Источник



Параллельная работа генераторов постоянного тока

Дата публикации: 25 февраля 2013 .
Категория: Статьи.

Общие положения

В ряде случаев целесообразно питать определенную группу потребителей от двух или нескольких генераторов постоянного тока, которые при этом работают совместно на общую сеть. В этом случае в периоды малых нагрузок можно часть генераторов отключить, чем достигается экономия на эксплуатационных расходах. Если должно быть обеспечено бесперебойное питание потребителей при всех условиях, то нужно иметь резервный генератор. Необходимая мощность резервного генератора при совместной работе нескольких генераторов будет меньше. Возможно также выведение генераторов в плановый или аварийный ремонт без какого-либо или без серьезного нарушения бесперебойного обеспечения потребителей электроэнергией.

Для совместной работы используются генераторы независимого, параллельного или смешанного возбуждения. При этом они подключаются к сети параллельно. Последовательное включение генераторов применяется в редких случаях.

При параллельной работе генераторов необходимо соблюсти следующие условия: 1) при включении генератора на параллельную работу с другими не должно возникать значительных толчков тока, способных вызвать нарушения в работе генераторов и потребителей; 2) генераторы должны нагружаться по возможности равномерно, пропорционально их номинальной мощности.

При нарушении последнего условия полное использование мощности всех генераторов невозможно: когда один генератор нагружается полностью, другие недогружены, а дальнейшее увеличение общей нагрузки невозможно, так как отдельные генераторы будут перегружаться. Кроме того, при неравномерной нагрузке генераторов суммарные потери всех генераторов могут быть больше, а общий коэффициент полезного действия (к. п. д.) – меньше, чем при равномерной нагрузке.

Читайте также:  Ток славянский мир адрес

В параллельной работе генераторов независимого и параллельного возбуждения нет никаких существенных различий. Поэтому ниже сначала рассмотрим параллельную работу генераторов параллельного возбуждения, а затем укажем на особенности параллельной работы генераторов смешанного возбуждения.

Включение на параллельную работу

Схема параллельной работы двух генераторов параллельного возбуждения показана на рисунке 1. Пусть генератор 1 уже работает на сборные шины и необходимо подключить к этим шинам генератор 2.

Тогда надо соблюсти следующие условия: 1) полярность генератора 2 должна быть такой же, как и генератора 1 или шин Ш, т. е. положительный (+) и отрицательный (–) зажимы генератора 2 должны с помощью рубильника или другого выключателя Р2 соединиться с одноименными зажимами сборных шин; 2) электродвижущая сила (э. д. с.) генератора 2 должна равняться напряжению на шинах. При соблюдении этих условий при подключении генератора 2 к шинам с помощью рубильника не возникает никакого толчка тока и этот генератор после его включения будет работать без нагрузки, на холостом ходу.

Рисунок 1. Схема параллельной работы генераторов параллельного возбуждения

Для выполнения и проверки этих условий включения поступают следующим образом. Генератор 2 приводят во вращение с номинальной скоростью и возбуждают до нужного напряжения. Его напряжение измеряют с помощью вольтметра V1 и вольтметрового переключателя П, для чего последний ставят в положение 2 – 2. Напряжение шин измеряют тем же вольтметром в положении переключателя ШШ. Чтобы одновременно проверить соответствие полярностей, вольтметр V1 должен быть магнитоэлектрического типа. Тогда при включении вольтметра по схеме, изображенной на рисунке 1, отклонения его стрелки при правильной полярности генератора 2 и шин будут происходить в одну и ту же сторону. Если полярность генератора 2 неправильна, то необходимо переключить два конца от его якоря. Нужное значение напряжения генератора достигается путем регулирования его тока возбуждения iв2 с помощью реостата.

Возможен также другой способ контроля правильности условий включения – с помощью вольтметра V2, подключенного к зажимам одного полюса рубильника Р2. Если другой полюс (нож) рубильника включить, то при равенстве напряжений и правильной полярности генераторов показание вольтметра V2 будет равно нулю.

При включении генератора 2 с неправильной полярностью в замкнутой цепи, образованной якорями обоих генераторов (рисунок 1) и шинами, э. д. с. обоих генераторов будут складываться. Так как сопротивление этой цепи мало, то возникают условия, эквивалентные короткому замыканию, что приводит к аварии. При правильной полярности, но неравных напряжениях генераторов в указанной цепи возникает уравнительный ток

значение которого также может оказаться большим.

При включении нагрузки уравнительный ток вызывает увеличение тока одного генератора и уменьшение тока другого, в результате чего генераторы нагружаются неодинаково.

Параллельная работа генераторов параллельного возбуждения

При параллельной работе двух или более генераторов их напряжения U всегда равны, так как генераторы включены на общие шины. Поэтому для случая работы двух генераторов их уравнения можно записать в следующем виде:

U = Eа1Iа1 × Rа1 = Eа2Iа2 × Rа2, (1)

После включения генератора 2 (рисунок 1) на шины его можно нагрузить током. Для этого нужно увеличить э. д. с. генератора Eа2, которая станет больше U, в результате чего в якоре генератора 2 возникнет ток Iа2 [смотрите уравнение (1)]. Тогда при неизменном токе нагрузки ток Iа1 уменьшается. Если э. д. с. Eа1 останется постоянной, то разность Eа1Iа1 × Rа1 не будет уже равна прежнему значению напряжения на шинах и U увеличится. Поэтому для поддержания U = const одновременно с увеличением Eа2 нужно уменьшать Eа1. Изменение Eа1 и Eа2 возможно двояким путем: изменением тока возбуждения iв или скорости вращения n. В обоих случаях генератор и его первичный двигатель изменят свою мощность. В эксплуатационных условиях обычно изменяют ток возбуждения. В этом случае первичный двигатель работает на своей естественной характеристике n = f(P). При изменении нагрузки двигателя его скорость также изменится и его регулятор в случае использования теплового или гидравлического двигателя изменит подачу топлива, пара или воды в двигатель.

Таким образом, если желательно, например, генератор 1 разгрузить и передать его нагрузку на генератор 2, то поступают следующим образом: уменьшают iв1 (или n1) и одновременно увеличивают iв2 (или n2) до тех пор, пока не будет I1 = 0. После этого генератор 1 можно отключить от сети. Если бы ток iв1 был уменьшен слишком сильно, то возникло бы положение, при котором Eа1 div > .uk-panel’>» data-uk-grid-margin>

Источник