Меню

Как измениться сила тока если резистор с сопротивлением r заменить резистором с сопротивлением 2r

Как измениться сила тока если резистор с сопротивлением r заменить резистором с сопротивлением 2r

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 17. Резистор R1 и реостат R2 подключены последовательно к источнику напряжения U (см. рисунок). Как изменятся сила тока в цепи и напряжение на резисторе R1, если ползунок реостата переместить до конца вверх? Считать, что напряжение на выводах источника остаётся при этом прежним.

Для каждой величины определите соответствующий характер изменения:

Силу тока в цепи при последовательном соединении сопротивлений можно найти по закону Ома:

Если ползунок реостата переместить до конца вверх, то его сопротивление увеличится и, как следствие, уменьшится ток в цепи.

При уменьшении тока, протекающего через сопротивление R1, падение напряжения U=I∙R1 на нем также будет меньше.

Ответ: 22.

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • Вариант 1
  • Вариант 1. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 2
  • Вариант 2. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 3
  • Вариант 3. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 4
  • Вариант 4. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 5
  • Вариант 5. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 6
  • Вариант 6. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 7
  • Вариант 7. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 8
  • Вариант 8. Подготовка к ЕГЭ 2020 по физике
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 9 (совпадает с ЕГЭ 2019 вариант 1)
  • Вариант 1. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 10 (совпадает с ЕГЭ 2019 вариант 2)
  • Вариант 2. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 11 (совпадает с ЕГЭ 2019 вариант 3)
  • Вариант 3. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 12 (совпадает с ЕГЭ 2019 вариант 4)
  • Вариант 4. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 13 (совпадает с ЕГЭ 2019 вариант 5)
  • Вариант 5. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 14 (совпадает с ЕГЭ 2019 вариант 6)
  • Вариант 6. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 15 (совпадает с ЕГЭ 2019 вариант 7)
  • Вариант 7. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 16 (совпадает с ЕГЭ 2019 вариант 8)
  • Вариант 8. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 17 (совпадает с ЕГЭ 2019 вариант 9)
  • Вариант 9. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 18 (совпадает с ЕГЭ 2019 вариант 10)
  • Вариант 10. Задания ЕГЭ 2019 Физика. Демидова М. Ю. 30 вариантов
  • Вариант 19 (совпадает с ЕГЭ 2018 вариант 1)
  • Вариант 1. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 20 (совпадает с ЕГЭ 2018 вариант 2)
  • Вариант 2. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 21 (совпадает с ЕГЭ 2018 вариант 3)
  • Вариант 3. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 22 (совпадает с ЕГЭ 2018 вариант 4)
  • Вариант 4. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 23 (совпадает с ЕГЭ 2018 вариант 5)
  • Вариант 5. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 24 (совпадает с ЕГЭ 2018 вариант 6)
  • Вариант 6. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 25 (совпадает с ЕГЭ 2018 вариант 7)
  • Вариант 7. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 26 (совпадает с ЕГЭ 2018 вариант 8)
  • Вариант 8. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 27 (совпадает с ЕГЭ 2018 вариант 9)
  • Вариант 9. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 28 (совпадает с ЕГЭ 2018 вариант 10)
  • Вариант 10. Задания ЕГЭ 2018 Физика. Демидова М. Ю. 30 вариантов
    • Измененное задание 24
  • Вариант 29 (совпадает с ЕГЭ 2017 вариант 11)
  • Вариант 11. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
  • Вариант 30 (совпадает с ЕГЭ 2017 вариант 12)
  • Вариант 12. Задания ЕГЭ 2017 Физика. Демидова М. Ю. 30 вариантов
    • Дополнительное задание 24
Читайте также:  Взаимодействие витка с током с магнитным полем

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

Резистор и сопротивление

Каталог

Показать каталог

  • Arduino и совм. платы
  • Raspberry
  • Наборы Arduino
  • Платы расширения
  • Модули
    • Радиомодули
    • Bluetooth
    • RFID
    • Wi-Fi, Ethernet, GPS, GSM
    • Звук и видео
    • Свет
    • Память и RTC
    • Генераторы сигналов
    • Расширения
    • Термоэлектрические
  • Датчики
    • Газа
    • Климатические
    • Механического воздействия
    • Пространства
    • Света и цвета
    • Тактильные
    • Холла и тока
  • Реле
  • Двигатели
    • Коллекторные
    • Бесколлекторные
    • Сервоприводы
    • Шаговые
    • Драйверы
  • Механика
    • Платформы
    • Колеса
    • Замки
  • Радиоконструкторы
  • Радиокомпоненты
    • Резисторы
      • Постоянные
      • Потенциометры
      • Варисторы
      • Термисторы
      • Фоторезисторы
    • Конденсаторы
    • Диоды
    • Светодиоды
    • Стабилитроны
    • Диодные мосты
    • Транзисторы
      • Биполярные
      • IGBT
      • Полевые | MOSFET
    • Стабилизаторы
    • Предохранители
    • Индуктивность
    • Резонаторы
    • Тиристоры
  • Дисплеи и индикаторы
  • Макетные платы
    • Паечные
    • Беспаечные
  • Провода и шлейфы
  • Кабели и переходники
  • Адаптеры, разъемы и штекеры
  • Микроконтроллеры и микросхемы (IC)
  • Программаторы и преобразователи
  • Управление и ввод
  • Элементы питания
    • Аккумуляторы и батареи
    • Зарядные устройства
    • Отсеки и коннекторы
    • Преобразователи и блоки питания
    • BMS платы
    • Сетевые фильтры
  • Измерительные приборы
    • Мультиметры и щупы
    • Тестеры
    • Вольтметры / Амперметры
    • USB-нагрузка
  • Всё для пайки
    • Паяльники и паяльные наборы
    • Оборудование для пайки
    • Расходные материалы
    • Изоляторы
  • Светодиодная продукция
    • Светодиодные ленты
    • Светодиодные модули
    • Контроллеры
    • Кабели и клипсы
  • Инструменты и материалы
    • Инструменты
    • Корпуса и крепления
    • Магниты
    • Расходные материалы
    • Органайзеры и пакеты
    • Кулеры
  • Карты памяти и ридеры

Резистор и сопротивление

Теория

КОМПОНЕНТЫ
  • Адресуемая светодиодная лента
  • Геркон
  • Диод
  • Зуммер
  • Кнопка
  • Кварцевый резонатор
  • Конденсатор
  • Макетная плата
  • Резистор
  • Реле
  • Светодиод
  • Светодиодные индикаторы
  • Сервопривод
  • Транзистор
ARDUINO
  • Что такое Arduino?
  • Среда разработки Arduino IDE
  • Онлайн-сервис TinkerCAD – эмулятор Arduino
  • Сравнение плат Arduino. Какую выбрать?
  • Как прошить плату Arduino с помощью другой Arduino (ArduinoISP)
RASPBERRY
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Обозначения резисторов

1 кОм = 1000 Ом,
1 МОм = 1000 кОм,
1 ГОм = 1000 МОм

Маркировка резисторов на схемах

Последовательное соединение резисторов

Это справедливо и для большего количества соединённых последовательно резисторов:

Цепь из последовательно соединённых резисторов будет всегда иметь сопротивление большее, чем у любого резистора из этой цепи.

При последовательном соединении резисторов изменение сопротивления любого резистора из этой цепи влечёт за собой как изменение сопротивления всей цепи так и изменение силы тока в этой цепи.

Мощность при последовательном соединении

R = 200 + 100 + 51 + 39 = 390 Ом

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять

I = U/R = 100 В/390 Ом = 0,256 A

Читайте также:  Электрический ток в разных средах видеоурок

На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле:

P = I 2 x R = 0,256 2 x 390 = 25,55 Вт

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

P1 = I 2 x R1 = 0,256 2 x 200 = 13,11 Вт;
P2 = I 2 x R2 = 0,256 2 x 100 = 6,55 Вт;
P3 = I 2 x R3 = 0,256 2 x 51 = 3,34 Вт;
P4 = I 2 x R4 = 0,256 2 x 39 = 2,55 Вт.

Если сложить полученные мощности, то общая Р составит:

Робщ = 13,11 + 6,55 + 3,34 + 2,55 = 25,55 Вт

Параллельное соединение резисторов

Расчет параллельного сопротивления двух параллельно соединённых резисторов R1 и R2 производится по следующей формуле:

Параллельное соединение трёх и более резисторов требует более сложной формулы для вычисления общего сопротивления:

Сопротивление параллельно соединённых резисторов будет всегда меньше, чем у любого из этих резисторов.

Параллельное соединение резисторов часто используют в случаях, когда необходимо сопротивление с большей мощностью. Для этого, как правило, используют резисторы с одинаковой мощностью и одинаковым сопротивлением. Общая мощность, в таком случае, вычисляется умножением мощности одного резистора на количество параллельно соединённых резисторов.

Мощность при параллельном соединении

1/R = 1/200 + 1/100 + 1/51 + 1/39 ≈ 0,06024 Ом
R = 1 / 0,06024 ≈ 16,6 Ом

Используя значение напряжения 100 В, по закону Ома рассчитывается сила тока

I = U/R = 100 В x 0,06024 Ом = 6,024 A

Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом

P = I 2 x R = 6,024 2 x 16,6 = 602,3 Вт

Расчет силы тока для каждого резистора выполняется по формулам:

На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов:

P1 = U 2 /R1 = 100 2 /200 = 50 Вт;
P2 = U 2 /R2 = 100 2 /100 = 100 Вт;
P3 = U 2 2/R3 = 100 2 /51 = 195,9 Вт;
P4 = U 2 2/R4 = 100 2 /39 = 256,4 Вт

Если сложить полученные мощности, то общая Р составит:

Робщ = 50 + 100 + 195,9 + 256,4 = 602,3 Вт

Источник

Упражнение 6

1. Параллельно соединенные конденсатор емкостью С = 4 мкФ и резистор сопротивлением R = 3 Ом подключены к источнику тока с ЭДС = 5 В и внутренним сопротивлением r = 1 Ом. Определите заряд на обкладках конденсатора.

2. При подключении к аккумулятору резистора сопротивлением R1 = 1,8 Ом сила тока в цепи равна I1 = 1 А. Если заменить резистор сопротивлением R1 на резистор сопротивлением R2 = 4,8 Ом, то сила тока I2 = 0,4 А. Определите ЭДС аккумулятора.

3. Вольтметр с внутренним сопротивлением R1 = 200 Ом, подключенный к источнику тока с ЭДС = 12 В, показывает U = 11В. Что покажет амперметр с внутренним сопротивлением R2 = 4 Ом, если его подключить к источнику параллельно вольтметру?

4. Вольтметр с внутренним сопротивлением R = 1800 Ом подключают к источнику тока сначала параллельно резистору сопротивлением R1 = 120 Ом, а затем последовательно с резистором сопротивлением R2 = 200 Ом. Чему равно внутреннее сопротивление г источника тока, если показания вольтметра в обоих случаях одинаковы?

5. При каком соотношении сопротивлений внешнего и внутреннего участков цепи с источником постоянного тока во внешнем участке выделяется максимальная мощность?

6. К источнику тока подключают сначала резистор сопротивлением R = 3 Ом, а затем последовательно с этим резиcтором резистор, сопротивление которого в m = 20 раз больше. При этом коэффициент полезного действия* увеличился в n = 2 раз. Чему равно внутреннее сопротивление г источника тока?

* Коэффициентом полезного действия цепи называется отношение мощности, выделяющейся во внешнем участке цепи, к мощности, выделяющейся во всей цепи.

7. Замкнутая цепь питается от источника с ЭДС и внутренним сопротивлением r. Постройте графики зависимости силы тока в цепи и напряжения на зажимах источника от внешнего сопротивления R.

8. Вольтметр с сопротивлением R1 = 100 Ом, подключенный к клеммам элемента, показывает разность потенциалов U = 2 В. При замыкании этого же элемента на резистор сопротивлением R = 15 Ом включенный в цепь амперметр показывает силу тока I = 0,1 А. Найдите ЭДС элемента , если сопротивление амперметра R2 = 1 Ом.

9. Сила тока на участке цепи, содержащем аккумулятор, равна 1 А. Электродвижущая сила и внутреннее сопротивление аккумулятора равны соответственно = 4 В и r = 1 Ом. Чему равна разность потенциалов на зажимах аккумулятора?

10. Изобразите графически примерный ход потенциала вдоль замкнутых цепей, изображенных на рисунке 2.67, а—г. Определите силу тока в каждой цепи и разность потенциалов между точками В и А. Сопротивлением соединительных проводов пренебречь.

примерный ход потенциала

11. Гальванические элементы с ЭДС 1 = 2В и 2 = 1,5В соединены по схеме, изображенной на рисунке 2.68, а. Вольтметр, нуль которого находится посередине шкалы, показывает напряжение U1 = 1 В, причем его стрелка отклоняется в ту же сторону, что и при разомкнутом ключе S. Что будет показывать вольтметр, если соединить элементы по схеме рисунка 2.68, б? Током, ответвляющимся в вольтметр, можно пренебречь.

Читайте также:  Общие положения электротехники сила тока напряжение сопротивление мощность электрического тока

12. Решите задачу 11 при условии, что при замкнутом ключе S (см. рис. 2.68, а) стрелка вольтметра отклоняется в сторону, противоположную той, в которую она отклонялась при разомкнутом ключе.

13. В каком случае сила тока в цепи, состоящей из двух последовательно соединенных гальванических элементов, замкнутых проводником, меньше силы тока в цепи, которая получится, если один из элементов исключить?

14. При каком значении сопротивления R в цепи (см. рис. 2.64) ток через гальванический элемент с ЭДС 2 не пойдет? При каких значениях R ток через этот элемент будет направлен против сторонних сил, действующих в элементе?

15. Найдите разность потенциалов φA — φВ между точками А и В в цепи, схема которой изображена на рисунке 2.69. ЭДС элементов и их внутренние сопротивления r одинаковы.

16. Найдите разность потенциалов между точками А и С, В и D в цепи, схема которой изображена на рисунке 2.70.

разность потенциалов

17. Зарядка аккумулятора с начальной ЭДС осуществляется зарядной станцией, напряжение в сети которой равно U. Внутреннее сопротивление аккумулятора r. Определите полезную мощность P1 расходуемую на зарядку аккумулятора, и мощность Р2, расходуемую на нагревание аккумулятора.

Определите силу тока

18. Определите силу тока I в резисторе R2 (рис. 2.71), если 1 = 8 В, r1 = 1 Ом, 2 = 10 В, r2 = 2 Ом, R1 = 15 Ом, R2 = 2 Ом.

19. Батарея из n = 40 последовательно соединенных в цепь аккумуляторов заряжается от сети с напряжением 17 = 127 В. Чему равна сила зарядного тока, если ЭДС аккумулятора = 2,5 В, внутреннее сопротивление аккумулятора r = 0,2 Ом и последовательно в цепь включен резистор сопротивлением R = 2 Ом?

20. N одинаковых аккумуляторов соединены последовательно, причем k из них включены навстречу другим. Какая сила тока установится в цепи, если батарею замкнуть на резистор сопротивлением R? ЭДС каждого элемента равна $, внутреннее сопротивление г. 21. Источник с ЭДС 1 и внутренним сопротивлением гх параллельно соединен с источником, ЭДС которого 2, а внутреннее сопротивление равно нулю. Найдите ЭДС и внутреннее сопротивление полученной батареи.

Найдите ЭДС

22. Найдите ЭДС и внутреннее сопротивление источника тока, зашунтирован-ного проводником сопротивлением R (рис. 2.72).

23. При каких условиях сила тока в цепи, подключенной к батарее, составленной из последовательно соединенных одинаковых элементов, равна силе тока, даваемой батареей из тех же элементов, соединенных параллельно?

24. Из N = 16 элементов нужно составить батарею, чтобы при внешнем сопротивлении R = 4 Ом сила тока в нем была наибольшей. Как нужно соединить элементы? Внутреннее сопротивление одного элемента r = 0,25 Ом.

25. Батарея, состоящая из N элементов с ЭДС = 1,84 В и внутренним сопротивлением r = 0,5 Ом каждый, собрана из нескольких групп, соединенных последовательно. В каждой группе содержится по n = 4 элемента, соединенных параллельно. Сопротивление внешней цепи R = 3 Ом. При такой группировке элементов во внешнем участке цепи получается максимальная сила тока. Определите число N элементов в батарее и максимальную силу тока I.

Источник



Как измениться сила тока если резистор с сопротивлением r заменить резистором с сопротивлением 2r

К источнику тока присоединен резистор.

Как изменятся общее сопротивление цепи, сила тока в цепи и напряжение на клеммах источника тока, если параллельно к имеющемуся резистору подсоединить еще один такой же? ЭДС источника и внутреннее сопротивления считайте постоянными.

Для каждой величины определите соответствующий характер изменения:

Напишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

При присоединении параллельно еще одного резистора общее сопротивление цепи уменьшается. Действительно, в исходной схеме сопротивление нагрузки равнялось R, а в конечной —  дробь, числитель — R умножить на R, знаменатель — R плюс R = дробь, числитель — R, знаменатель — 2 .Сопротивление нагрузки уменьшается, тоже самое верное и для общего сопротивления цепи. По закону Ома, для силы тока в цепи имеем выражение I= дробь, числитель — \varepsilon , знаменатель — R_н плюс r ,где R_н— сопротивление нагрузки. Так как сопротивление нагрузки уменьшается, сила тока в цепи увеличивается. Напряжение на источнике тока равно напряжению на нагрузке: