Меню

Формулы электрического тока индукция

Основные формулы по физике — ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Формулы электричества и магнетизма. Изучение основ электродинамики традиционно начинается с электрического поля в вакууме. Для вычисления силы взаимодействия между двумя точными зарядами и вычисления напряженности электрического поля, созданного точечным зарядом, нужно уметь применять закон Кулона. Для вычисления напряженностей полей, созданных протяженными зарядами (заряженной нитью, плоскостью и т.д.), применяется теорема Гаусса. Для системы электрических зарядов необходимо применять принцип

При изучении темы «Постоянный ток» необходимо рассмотреть во всех формах законы Ома и Джоуля-Ленца При изучении «Магнетизма» необходимо иметь в виду, что магнитное поле порождается движущимися зарядами и действует на движущиеся заряды. Здесь следует обратить внимание на закон Био-Савара-Лапласа. Особое внимание следует обратить на силу Лоренца и рассмотреть движение заряженной частицы в магнитном поле.

Электрические и магнитные явления связаны особой формой существования материи — электромагнитным полем. Основой теории электромагнитного поля является теория Максвелла.

Таблица основных формул электричества и магнетизма

Физические законы, формулы, переменные

Формулы электричество и магнетизм

Закон Кулона:
где q1 и q2 — величины точечных зарядов, ԑ 1 — электрическая постоянная; 046
ε — диэлектрическая проницаемость изотропной среды (для вакуума ε = 1),
r — расстояние между зарядами.

001

Напряженность электрического поля:

где Ḟ — сила, действующая на заряд q , находящийся в данной точке поля.

002

Напряженность поля на расстоянии r от источника поля:

1) точечного заряда

2) бесконечно длинной заряженной нити с линейной плотностью заряда τ:

3) равномерно заряженной бесконечной плоскости с поверхностной плотностью заряда σ:

4) между двумя разноименно заряженными плоскостями

003

004

005

006

Потенциал электрического поля:

где W — потенциальная энергия заряда q .

007

Потенциал поля точечного заряда на расстоянии r от заряда:

008

По принципу суперпозиции полей, напряженность:

009

Потенциал:

где Ēi и ϕi — напряженность и потенциал в данной точке поля, создаваемый i-м зарядом.

010

Работа сил электрического поля по перемещению заряда q из точки с потенциалом ϕ 1 в точку с потенциалом ϕ 2 :

011

Связь между напряженностью и потенциалом

1) для неоднородного поля:

2) для однородного поля:

012

013

Электроемкость уединенного проводника:

014

Электроемкость конденсатора:

где U = ϕ 1 — ϕ 2 — напряжение.

015

Электроемкость плоского конденсатора:

где S — площадь пластины (одной) конденсатора,

d — расстояние между пластинами.

016

Энергия заряженного конденсатора:

017

Сила тока:

018

Плотность тока:

где S — площадь поперечного сечения проводника.

019

Сопротивление проводника:

l — длина проводника;

S — площадь поперечного сечения.

020

Закон Ома

1) для однородного участка цепи:

2) в дифференциальной форме:

3) для участка цепи, содержащего ЭДС:

где ε — ЭДС источника тока,

R и r — внешнее и внутреннее сопротивления цепи;

4) для замкнутой цепи:

021

022

023

024

Закон Джоуля-Ленца

1) для однородного участка цепи постоянного тока:
где Q — количество тепла, выделяющееся в проводнике с током,
t — время прохождения тока;

2) для участка цепи с изменяющимся со временем током:

025

026

Мощность тока:

027

Связь магнитной индукции и напряженности магнитного поля:

где B — вектор магнитной индукции,
μ √ магнитная проницаемость изотропной среды, (для вакуума μ = 1),
µ — магнитная постоянная 028,
H — напряженность магнитного поля.

029

Магнитная индукция (индукция магнитного поля):
1) в центре кругового тока
где R — радиус кругового тока,

2) поля бесконечно длинного прямого тока
где r — кратчайшее расстояние до оси проводника;

3) поля, созданного отрезком проводника с током
где ɑ 1 и ɑ2 — углы между отрезком проводника и линией, соединяющей концы отрезка и точкой поля;
4) поля бесконечно длинного соленоида
где n — число витков на единицу длины соленоида.

Источник

Закон электромагнитной индукции.

М. Фарадеем было установлено, что сила индукционного тока пропорциональна скорости из­менения магнитного потока через поверхность, ограниченную контуром:

Закон электромагнитной индукции

Возникновение тока в замкнутом контуре означает наличие сторонних сил, работа которых по перемещению единичного заряда в контуре называется электродвижущей силой (ЭДС). Это означает, что при изменении потока через поверхность, ограниченную замкнутым контуром, в кон­туре возникает ЭДС ɛi которую называют ЭДС индукции. Согласно закону Ома для замкнутой цепи, . Следовательно, ЭДС индукции пропорциональна ΔФ/Δt, поскольку сопротивление R не зависит от изменения магнитного потока.

Закон электромагнитной индукции формулируется так:

ЭДС индукции ɛi в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Закон электромагнитной индукции

.

Применение правила Ленца к замкнутому контуру с положительной нормалью приводит к выражению:

Читайте также:  Источник трехфазного тока является

Закон электромагнитной индукции

.

Формула ( ) выражает основной закон электромагнитной индук­ции .

Закон электромагнитной индукции

На рисунке внешнее магнитное поле индукции В возрастает со вре­менем и направлено вдоль положительной нормали к контуру с током. Индуцированный ток противоположен выбранному направлению обхода в соответствии с индуцированным магнитным полем В’.

Закон электромагнитной индукции

Описанные выше опыты свидетельствуют о том, что электромагнит­ная индукция — это возникновение электрического поля и электрического тока при изменении во времени магнитного поля или при движении проводника в магнитном поле. Эти два типа эффектов электромагнитной индукции отличаются физической природой процессов, отвечающих за их возникновение. Первый тип обусловлен наведением вихревого элект­рического поля переменным магнитным полем, второй — действием сил Лоренца на движущиеся заряды в стационарном магнитном поле. В обоих случаях выполняется основной закон индукции, выраженный формулой ().

Источник

III. Основы электродинамики

Тестирование онлайн

ЭДС индукции в движущемся проводнике

Взаимосвязь электрических и магнитных явлений всегда интересовала физиков. Английский физик Майкл Фарадей был совершенно уверен в единстве электрических и магнитных явлений. Он рассуждал, что электрический ток способен намагнитить кусок железа. Не может ли магнит в свою очередь вызвать появление электрического тока? Эта задача была решена.

Если в постоянном магнитном поле перемещается проводник, то свободные электрические заряды внутри него тоже перемещаются (на них действует сила Лоренца). Положительные заряды концентрируются в одном конце проводника (провода), отрицательные — в другом. Возникает разность потенциалов — ЭДС электромагнитной индукции. Явление возникновения ЭДС индукции в проводнике, движущемся в постоянном магнитном поле, называется явлением электромагнитной индукции.

Правило определения направления индукционного тока (правило правой руки):

В проводнике, движущемся в магнитном поле, возникает ЭДС индукции, энергия тока в этом случае определяется по закону Джоуля-Ленца:

Работа внешней силы по перемещению проводника с током в магнитном поле

ЭДС индукции в контуре

Рассмотрим изменение магнитного потока через проводящий контур (катушку). Явление электромагнитной индукции было открыто опытным путем:

Закон электромагнитной индукции (закон Фарадея): ЭДС электромагнитной индукции, возникающая в контуре, прямо пропорциональна скорости изменения магнитного потока через него.

Знак «минус» является математическим выражением следующего правила. Направление индукционного тока, возникающего в контуре, определяется по правилу Ленца: возникающий в контуре индукционный ток имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

Источник



Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.
Читайте также:  Сила тока потребляемая ростером

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.
Читайте также:  Водный раствор фосфата натрия проводит электрический ток или нет

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник