Меню

Формула для плотности тока в электролите

Плотность тока формула

Электрическое поле воздействует на заряды, в результате, они начинают упорядоченно перемещаться. Такое перемещение получило определение электрического тока. Как правило, заряды двигаются в какой-либо среде, называемой проводником, и являются носителями тока. Одной из основных характеристик движения зарядов является плотность тока, формула которого описывает электрический заряд, переносимый за 1 секунду через сечение проводника, которое перпендикулярно направлению этого тока.

Чем определяется плотность тока

Понятие плотности тока определяется количеством электричества, протекающим через сечение проводника в течение одной секунды. Направление электротока является перпендикулярным сечению проводника.

Плотность тока формула

Если взять однородный проводник цилиндрической формы, в котором ток имеет равномерное распределение по всему сечению, то его плотность будет выражаться в виде формулы: J = I / S, где I является силой тока, а S – площадью поперечного сечения. Единицей измерения этой величины служит А/м2 (ампер на метр квадратный). Данная величина является векторной. Ее направление совпадает с направлением напряженности электрического поля.

Использование плотности тока на практике

Очень часто возникает вопрос о возможности использования конкретного провода для тех или иных целей. То есть, способен ли он выдержать определенную нагрузку. В этих случаях, очень важно определить плотность электротока с допустимой величиной.

Данный показатель очень важен, поскольку в каждом проводнике возникает сопротивление току, протекающему через него. Происходят потери тока, из-за чего проводник начинает нагреваться. При слишком больших потерях, наступает критическое нагревание, вызывающее расплавление проводника. Чтобы исключить подобные ситуации, каждому прибору или потребителю устанавливается наиболее оптимальная плотность тока, формула которой позволит рассчитать нужное сечение провода.

Когда возникает необходимость выбрать нужное сечение провода или кабеля, необходимо учитывать допустимое значение плотности электротока. Для практических расчетов во время проектирования используются специальные таблицы и формулы, позволяющие получить желаемый результат.

Для разных металлов существуют различные значения плотности. В настоящее время используются только медные провода, в которых плотность электротока не должна превышать 6-10 А/мм2. Это особенно актуально для долговременной эксплуатации, когда проводке обеспечивается облегченный режим. Допускается эксплуатация и при повышенных нагрузках, только на очень короткое время.

Что такое плотность тока

Формула для закона Ома

Плотность энергии магнитного поля

Формула удельного сопротивления

Правило левой руки: применение правила Буравчика, формулы, примеры задач

Источник

Лекция 2. Электропроводность электролитов

date image2015-05-26
views image4077

facebook icon vkontakte icon twitter icon odnoklasniki icon

Вещества, водные растворы которых проводят электрический ток, называются электролитами.В отличие от металлов (электронная проводимость) или полупроводников (электронно-дырочная проводимость) у электролитов — ионная проводимость.

Иногда электролитами называют и сами проводящие растворы, хотя более правильное выражение — раствор электролита. Электролитами являются соли, кислоты, щелочи и т. п., т. е. вещества, атомы в молекулах которых связаны ионными (иногда гетерополярными ковалентными связями). При растворении таких веществ в воде происходит диссоциация молекул на ионы. Причиной электролитической диссоциацииявляется взаимодействие молекул растворенного вещества с молекулами воды. Молекула воды имеет большой дипольный момент (р = 6,1 • 10 -30 Кл • м, а ε — 81), поэтому на расстоянии около 0,1 нм (среднее межмолекулярное расстояние в жидкости) вокруг молекулы воды существует довольно сильное электрическое поле. Последнее и является непосредственной причиной, ослабляющей силу электростатического взаимодействия ионов в растворенной молекуле. Энергия взаимодействия ионов в молекулах электролитов близка к энергии взаимодействия между этими же ионами и молекулами воды. Поэтому в процессе растворения соли или щелочи за счет тепловых соударений происходит распад молекул на ионы.

Положительные ионы называются катионами,отрицательные — анионами. Процесс диссоциации идет всегда обратимо — наряду с диссоциацией имеет место и рекомбинация ионов.

Если молекулы растворенного вещества в воде не диссоциируют на ионы, то раствор не является проводником. Водные растворы сахаров, глицерина и т. п.изоляторы.

Результатом диссоциации является образование сольватов.когда молекулы воды «обволакивают» ионы, образуя вокруг них сольватную оболочку (рис. 2.1).

Сольватация приводит к двум важным последствиям:

1) сольватная оболочка препятствует рекомбинации ионов, поэтому при малых концентрациях диссоциация полная:

2) наличие сольватной оболочки затрудняет движение ионов — в электрическом поле движется не ион, а сольват; заряд сольвата меньше заряда иона (экранирующий эффект сольватной оболочки), а размеры — больше.

Для возникновения электрического тока в электролите необходимо в ванну с раствором электролита опустить электроды из проводящего материала (металл, уголь и т. п.), к которым подключить источник ЭДС (рис. 2.1). Такое устройство называют гальванической, или электролитической ванной.

Процессы, происходящие вблизи электродов (на расстоянии 1-10 диаметров молекул), будут существенно отличаться от процессов в толще раствора.

Биологические жидкости являются электролитами. В этих средах под воздействием электрического поля возникает упорядоченное (направленное) движение свободных электрических зарядов (электронов, ионов или сольватов) — электрический ток. В толще раствора положительные сольваты будут двигаться к катоду со скоростью , а отрицательные — к аноду со скоростью . Скалярной характеристикой электрического тока является сила тока (I), равная отношению заряда (Dq), переносимого через сечение проводника или некоторую поверхность за интервал времени D t, к этому интервалу:

Читайте также:  По тонкому кольцу течет ток i 100 а определите индукцию магнитного поля

Если электрический ток равномерно распределен по сечению проводника, то отношение силы тока к площади сечения проводника (S) называется плотностью тока (j):

Установим связь плотности тока с некоторыми характеристиками носителей тока, молярной концентрацией и скоростью направленного движения частиц. Запишем эту формулу для плотности потока частиц, заменив молярную концентрацию с концентрацией п:

Если эту формулу умножить на заряд qносителя тока, то произведение qJбудет соответствовать заряду, проходящему через единицу площади сечения за одну секунду, т.е. будет являться плотностью тока:

Как видно, плотность тока прямо пропорциональна заряду носителя тока, концентрации носителей и скорости их направленного движения. Естественно, что выражение (4) справедливо при равенстве зарядов носителей тока и одинаковой их скорости.

Плотность тока для электролитов следует представить в виде суммы выражений для плотности тока для положительных и отрицательных ионов, т.е. суммарная плотность тока равна:

Если предположить, что каждая молекула диссоциирует на два иона, то концентрация положительных и отрицательных ионов одинакова:

где α — коэффициент диссоциации, п— концентрация молекул электролита.

Направленное движение ионов в электрическом поле можно приближенно считать равномерным, при этом сила qE, действующая на ион со стороны электрического поля, уравновешивается силой трения rv

откуда, заменяя q/r = b, получаем

Коэффициент пропорциональности bназываютподвижностью носителей заряда (ионов). Он равен отношению скорости направленного движения ионов, вызванного электрическим полем, к напряженности этого поля. Подвижность носителей заряда bсвязана с подвижностью идиффундирующих частиц соотношением b = uq.

Для ионов разных знаков из (8) соответственно имеем

Подставляя (6) и (9) в (5), находим

Представим электролит в виде прямоугольного параллелепипеда с гранями-электродами площадью S, расположенными на расстоянии l(рис. 2.2.). Считая поле однородным, учитывая, что

Так как I = jS, то (12) соответствует закону Ома для участка цепи без источника тока: , где

— сопротивление электролита. Сравнивая с соотношением , получаем

Отсюда следует, что удельная проводимость электролита g тем больше, чем больше концентрация ионов, их заряд и подвижность.

При повышении температуры электропроводность электролитов растет, так как возрастает степень диссоциации и подвижность ионов, уменьшается вязкость раствора и увеличивается электропроводность.

Вблизи поверхности электрода протекают более сложные процессы, которые являются скорее электрохимическими, чем чисто физическими:

а) на аноде происходит электроокисление анионов, на катоде — электровосстановление катионов, а также происходит еще ряд электрических процессов; в целом эти процессы называют поляризационными явлениями;

б) вблизи поверхности электродов могут идти также вторичные химические реакции.

При достаточно малых потенциалах на электродах не идут окислительно-восстановительные процессы, поэтому для гальванической ванны в целом существуют области потенциалов, где зависимость тока от напряжения не подчиняется закону Ома.

При достаточно больших потенциалах может начаться выделение вещества на электродах в виде осадка (осаждение на электроде) или газа. Количественно эти процессы описываются законами Фарадея.

Первый закон Фарадея: масса выделившегося на электроде вещества пропорциональна электрическому заряду, протекающему через электролит:

где М — масса вещества, q — заряд, I — сила тока и t — время. Коэффициент k, называемый электрохимическим эквивалентом вещества, показывает, какая масса вещества выделится на электроде при прохождении через электролит заряда, равного 1 Кл.

Второй закон Фарадея: электрохимические эквиваленты элементов прямо пропорциональны их химическим эквивалентам:

где А — атомный вес элемента; Z — его валентность: A/Z — химический эквивалент элемента.

Число Фарадея F численно равно электрическому заряду, который должен пройти через электролит, чтобы на электроде выделился один килограмм-эквивалент вещества. F = 9,6487×10 7 Кл/кг-экв.

В результате электровосстановления или электроокисления ионов электролита на электродах образуются электронейтральные атомы, которые вовсе необязательно будут осаждаться на электродах или выделяться в виде пузырьков газа — они могут вступить в химические реакции с раствором вблизи электрода. Такие процессы и будут вторичными реакциями.

Все эти процессы находят применение в различных отраслях техники, многие из них используются также в медицине

Источник

Сила и плотность тока. Линии тока

Сила тока I для тока, протекающего через некоторую площадь сечения проводника S эквивалентна производной заряда q по времени t и количественно характеризует электрический ток.

Таким образом выходит, что сила тока — это поток заряженных частиц через некоторую поверхность S .

Электрический ток является процессом движения как отрицательных, так и положительных зарядов.

Перенос заряда одного знака в определенную сторону равен переносу заряда, обладающего противоположным знаком, в обратном направлении. В ситуации, когда ток образуется зарядами и положительного, и отрицательного знаков ( d q + и d q − ), справедливым будет заключение о том, что сила тока равна следующему выражению:

I = d q + d t + d q — d t .

В качестве положительного определяют направление движения положительных зарядов. Ток может быть постоянным, когда ни сила тока, ни его направление не претерпевают изменений с течением времени, или, наоборот, переменным. При условии постоянства, формула силы тока может выражаться в следующем виде:

Читайте также:  Промежуточный трансформатор тока птт схема

где сила тока определена в качестве заряда, который пересекает некоторую поверхность S в единицу времени. В системе С И роль основной единицы измерения силы тока играет Ампер ( А ) .

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Выделим в проводнике, в котором протекает ток, малый объем d V случайной формы. С помощью следующего обозначения » open=» υ определим среднюю скорость движения носителей зарядов в проводнике. Пускай n 0 представляет собой концентрацию носителей заряда. На поверхности проводника выберем пренебрежительно малую площадку d S , которая расположена ортогонально скорости » open=» υ (рис. 1 ).

Плотность тока. Связь плотности тока с зарядом и силой тока, напряженностью

Проиллюстрируем на поверхности площадки d S очень короткий прямой цилиндр, имеющий высоту » open=» υ d t . Весь массив частиц, которые располагались внутри такого цилиндра за время d t пересекут плоскость d S и перенесут через нее, в направлении скорости » open=» υ , заряд, выражающийся в виде следующего выражения:

d q = n 0 q e » open=» υ d S d t ,

где q e = 1 , 6 · 10 — 19 К л является зарядом электрона, другими словами отдельной частицы или же носителя тока. Разделим приведенную формулу на d S d t и получим:

где j представляет собой модуль плотности электрического тока.

j = n 0 q e » open=» υ ,

где j является модулем плотности электрического тока в проводнике, в котором заряд переносится электронами. В случае, если ток появляется как результат движения нескольких типов зарядов, то формула плотности тока может быть определена в виде следующего выражения:

j = ∑ n i q i » open=» υ i i ,

где i представляет собой носитель заряда. Плотность тока — это векторная величина. Снова обратим внимание на рисунок 1 . Пускай n → представляет собой единичный перпендикуляр к плоскости d S . В случае, если частицы, переносящие заряд, являются положительными, то переносимый ими заряд в направлении нормали больше нуля. В общем случае переносимый в единицу времени элементарный заряд может быть записана в следующем виде:

d q d t = j → n → d S = j n d S .

Формула приведенная выше справедлива также в том случае, когда плоскость площадки d S неортогональная по отношению к вектору плотности тока. По той причине, что составляющая вектора j → , направленная под прямым углом к нормали, через сечение d S электричества не переносит. Исходя из всего вышесказанного, плотность тока в проводнике окончательно запишем, применяя формулу j = n 0 q e » open=» υ в таком виде:

j → = — n 0 q e » open=» υ → .

Таким образом, плотность тока эквивалентна количеству электричества, другими словами заряду, который протекает за одну секунду через единицу сечения проводника. В отношении однородного цилиндрического проводника справедливым будет записать, что:

где S играет роль площади сечения проводника. Плотность постоянного тока равна по всей площади сечения проводника. Для двух разных сечений проводника ( S 1 , S 2 ) с постоянным током справедливо следующее равенство:

j 1 j 2 = S 2 S 1 .

Основываясь на законе Ома для плотности токов можно записать такое выражение:

где λ обозначает коэффициент удельной электропроводности. Определив плотность тока, мы имеем возможность выразить силу тока в следующем виде:

где интегрирование происходит по всей поверхности S любого сечения проводника. Единица плотности тока A м 2 .

Источник



Плотность тока

Пло́тность то́ка — векторная физическая величина, имеющая смысл силы тока, протекающего через единицу площади. Например, при равномерном распределении плотности тока и всюду ортогональности ее плоскости сечения, через которое вычисляется или измеряется ток, величина вектора плотности тока:

j = |\vec j| = \frac<I data-lazy-src=

 \vec j = n q \vec v

 \vec j = \rho \vec v,

где \rho— плотность заряда этих носителей. (Направление вектора  \vec j соответствует направлению вектора скорости  \vec v , с которой движутся заряды, создающие ток, если q положително).

\vec v

В реальности даже носители одного типа движутся вообще говоря и как правило с различными скоростями. Тогда под следует понимать среднюю скорость.

В сложных системах (с различными типами носителей заряда, например, в плазме или электролитах)

\vec j = \sum_i n_i q_i \vec v_i,

то есть вектор плотности тока есть сумма плотностей тока по всем типам подвижных носителей; где n_i\,\!— концентрация частиц каждого типа, q_i\,\!— заряд частицы данного типа, \vec v_i— вектор средней скорости частиц этого типа.

Читайте также:  Реле дифференциального тока шнайдер

Выражение для общего случая может быть записано также через сумму по всем индивидуальным частицам:

\vec j = \sum_i q_i \vec v_i

(сама формула почти совпадает с формулой, приведенной чуть выше, но теперь индекс суммирования i означает не номер типа частицы, а номер каждой индивидуальной частицы, не важно, имеют они одинаковые заряды или разные, при этом концентрации оказываются уже не нужны).

Содержание

Плотность тока и мощность

Работа, совершаемая электрическим полем над носителями тока, характеризуется, очевидно [2] , плотностью мощности [энергия/(время• объем)]:

w = \vec E \cdot \vec j,

Чаще всего эта мощность рассеивается в среду в виде тепла, но вообще говоря она связана с полной работой электрического поля и часть ее может переходить в другие виды энергии, например такие, как энергия того или иного вида излучения, механическая работа (особенно — в электродвигателях) итд.

Закон Ома

В линейной и изотропной проводящей среде плотность тока связана с напряжённостью электрического поля в данной точке по закону Ома:

\vec j = \sigma\vec E

где \sigma\ — удельная проводимость среды, \vec E— напряжённость электрического поля. Или:

\vec j = \frac<1 data-lazy-src=

где — удельное сопротивление.

\sigma

В линейной анизотропной среде имеет место такое же соотношение, однако удельная электропроводность в этом случае вообще говоря должна рассматриваться как тензор, а умножение на нее — как умножение вектора на матрицу.

Формула для работы электрического поля (плотности ее мощности)

w = \vec E \cdot \vec j,

вместе с законом Ома принимает для изотропной электропроводности вид:

w = \sigma E^2 = \frac<j^2 data-lazy-src=

w = \vec E \sigma \vec E = \vec j \rho \vec j,

где подразумевается матричное умножение (справа налево) вектора-столбца на матрицу и на вектор-строку, а тензор \sigmaи тензор \rhoпорождают соответствующие квадратичные формы.

4-вектор плотности тока

В теории относительности вводится четырёхвектор плотности тока (4-ток), составленный из объёмной плотности заряда ρ и 3-вектора плотности тока \vec<j data-lazy-src=