Меню

Электромагнитная характеристика двигателя постоянного тока

Электромеханические и механические характеристики ДПТ НВ

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И СПОСОБЫ РЕГУЛИРОВАНИЯ СКОРОСТИ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА (ДПТ) НЕЗАВИСИМОГО ВОЗБУЖДЕНИЯ (НВ)

Схема подключения ДПТ НВ приведена на рис. 2.9. Напряжение Uя на якорь двигателя М с электромагнитным возбуждением подается от подключенного к сети переменного тока преобразователя (выпрямителя) П1.

(предполагается, что он нерегулируемый). Обмотка возбуждения LM двигателя может быть подключена к другому преобразователю П2 или к точкам а, в первого преобразователя. При наличии сети постоянного тока якорь и обмотка возбуждения так же получают питание от одного источника.

Для подключения машины с возбуждением от постоянных магнитов (см. рис. 2.10) достаточно одного преобразователя. В цепь якоря при питании его от неуправляемого преобразователя обычно включается добавочное сопротивление Rд (его назначение поясняется ниже).

В двигательном режиме электрическая энергия потребляется машиной из сети и преобразуется в механическую энергию.

Направление тока якоря Iя и ЭДС Е рис.2.9, 2.10 показано для двигательного режима.

Напряжение Uя (В), приложенное к якорю, в установившемся режиме уравновешивается ЭДС Е (В), наведенной в якоре (ее называют также противоЭДС), и падением напряжения в якорной цепи

где Rя – сопротивление якорной цепи двигателя, Ом, включающее сопротивления обмотки якоря, щеточного контакта, дополнительных полюсов и компенсационной обмотки; Rд – добавочное сопротивление.

ЭДС машины определяется соотношением

здесь конструктивный коэффициент

р– число пар полюсов;

N – число активных проводников обмотки якоря;

а – число пар параллельных ветвей обмотки якоря;

Ф – магнитный поток, Вб, создаваемый обмоткой возбуждения или постоянными магнитами.

Подставляя выражение (2.13) для Е в уравнение (2.12) и решая его относительно wд, получим:

Это уравнение устанавливает связь между частотой вращения и током якоря wд = f(Iя) и называется электромеханической характеристикой двигателя.

Электромагнитный момент двигателя (Н×м), определяется током якоря и магнитным потоком:

Момент на валу двигателя меньше электромагнитного на значение, определяемое потерями в стали и механическими потерями. Для инженерных расчетов этими потерями можно пренебречь, и принять, что момент на валу равен электромагнитному моменту. Тогда, определив из (2.15) ток якоря и подставив его в соотношение (2.14), получим уравнение механической характеристики двигателя:

Полученные выражения (2.14), (2.16) для характеристик двигателя представляют собой уравнение прямой. Они справедливы, если пренебречь реакцией якоря.

В уравнениях (2.14), (2.16) первое слагаемое представляет собой угловую скорость идеального холостого хода (при этом ток якоря и момент равны 0)

Второй член в этих уравнениях характеризует статическое падение угловой скорости от нагрузки

На рис. 2.11 падение скорости показано для номинального значения момента Mном (тока Iном). При неизменном магнитном потоке момент и ток якоря, как следует из соотношения (2.15) пропорциональны. Поэтому механическая и электромеханическая характеристики двигателя (см. рис. 2.11) отличаются только масштабом по оси ординат. Характеристика, полученная при номинальном значении напряжения на якоре Uном, номинальном магнитном потоке Фном и отсутствие внешних резисторов в якорной цепи, называется естественной. Жесткость естественной характеристики определяется только сопротивлением якорной цепи двигателя:

Снижение скорости wд под нагрузкой объясняется следующим. При увеличении момента сопротивления механизма угловая скорость начинает снижаться. В результате уменьшается ЭДС Е согласно (2.13). Ток якоря при этом, как следует из (2.12) увеличивается. Соответственно возрастает момент двигателя (см. уравнение (2.15)). Этот процесс продолжается до тех пор, пока момент двигателя не сравняется с моментом сопротивления. После достижения равенства М=Мс наступит новый установившийся режим с меньшей угловой скоростью wд.

При инженерных расчетах коэффициенты, входящие в уравнения характеристик двигателя, могут быть определены через номинальные параметры двигателя, приводимые в каталогах. При номинальном магнитном потоке

Здесь коэффициент Кд— коэффициент передачи двигателя, его размерность . С использованием этого понятия уравнения (2.14), (2.16) могут быть переписаны в виде:

В этих уравнениях, как и в (2.14, 2.16), первый член представляет собой угловую скорость идеального холостого хода, а второй – падение скорости от нагрузки:

Пример. Известны номинальные данные двигателя:

Рассчитать естественную характеристику двигателя.

Находим номинальную угловую скорость

Коэффициент передачи двигателя по (2.9)

Угловая скорость на холостом ходу при номинальном напряжении с учетом (2.23)

Полученных результатов ( ) достаточно для построения характеристики (см. рис. 2.11). Для проверки находим по (2.13) падение угловой скорости при номинальном токе

а так же вычислим по очевидному соотношению

Совпадение результатов подтверждает правильность вычислений.

Для построения механической характеристики необходимо дополнительно рассчитать с учетом (2.2) номинальный момент двигателя

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Читайте также:  Как узнать потребляемый ток компьютера

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

Читайте также:  Условия повышающие опасность поражения электрическим током при использовании сварочного оборудования

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Читайте также:  Укажите примерную величину максимального выходного тока микроконтроллера

Видео в дополнение к написанному



Источник

Электродвигатель постоянного тока

Основные параметры электродвигателя постоянного тока

  • Постоянная момента
  • Постоянная ЭДС
  • Постоянная электродвигателя
  • Жесткость механической характеристики

Постоянная момента

  • где M — момент электродвигателя, Нм,
  • – постоянная момента, Н∙м/А,
  • I — сила тока, А

Постоянная ЭДС

Направление ЭДС определяется по правилу правой руки. Направление наводимой ЭДС противоположно направлению протекающего в проводнике тока.

Наведенная ЭДС последовательно изменяется по направлению из-за перемещения проводников в магнитном поле. Суммарная ЭДС, равная сумме ЭДС в каждой катушке, прикладывается к внешним выводам двигателя. Это и есть противо-ЭДС. Направление противо-ЭДС противоположно приложенному к двигателю напряжению. Значение противо-ЭДС пропорционально частоте вращения и определяется из следующего выражения: [1]

  • где E— электродвижущая сила, В,
  • Ke– постоянная ЭДС, В∙с/рад,
  • w— угловая частота, рад/с

Постоянные момента и ЭДС в точности равны между собой KT = KE. Постоянные KT и KE равны друг другу, если они определены в единой системе едениц.

Постоянная электродвигателя

Одним из основных параметров электродвигателя постоянного тока является постоянная электродвигателя Kм. Постоянная электродвигателя определяет способность электродвигателя преобразовывать электрическую энергию в механическую.

  • где — постоянная электродвигателя, Нм/√ Вт ,
  • R — сопротивление обмоток, Ом,
  • – максимальный момент, Нм,
  • — мощность потребляемая при максимальном моменте, Вт

Постоянная электродвигателя не зависит от соединения обмоток, при условии, что используется один и тот же материал проводника. Например, обмотка двигателя с 6 ветками и 2 параллельными проводами вместо 12 одиночных проводов удвоят постоянную ЭДС, при этом постоянная электродвигателя останется не изменой.

Жесткость механической характеристики двигателя

  • где — жесткость механической характеристики электродвигателя постоянного тока

Напряжение электродвигателя

Уравнение баланса напряжений на зажимах двигателя постоянного тока имеет вид (в случае коллекторного двигателя не учитывается падение напряжения в щеточно-коллекторном узле):

  • где U — напряжение, В.

Уравнение напряжения выраженное через момент двигателя будет выглядеть следующим образом:

Соотношение между моментом и частотой вращения при двух различных напряжениях питания двигателя постоянного тока неизменно. При увеличении частоты вращения момент линейно уменьшается. Наклон этой функции KTKE/R постоянный и не зависит от значения напряжения питания и частоты вращения двигателя.

Благодаря таким характеристикам упрощается управление частотой вращения и углом поворота двигателей постоянного тока. Это характерно для коллекторных и вентильных двигателей постоянного тока, что нельзя сказать о двигателях переменного тока и шаговых двигателях [1].

Мощность электродвигателя постоянного тока

Упрощенная модель электродвигателя выглядит следующим образом:

Общая мощность электродвигателя

  • где I – сила тока, А
  • U — напряжение, В,
  • M — момент электродвигателя, Н∙м
  • R — сопротивление токопроводящих элементов, Ом,
  • L — индуктивность, Гн,
  • Pэл — электрическая мощность (подведенная), Вт
  • Pмех — механическая мощность (полезная), Вт
  • Pтеп — тепловые потери, Вт
  • Pинд — мощность затрачиваемая на заряд катушки индуктивности, Вт
  • Pтр — потери на трение, Вт

Механическая постоянная времени

Механическая постоянная времени — это время, отсчитываемое с момента подачи постоянного напряжения на электродвигатель, за которое частота вращения ненагруженного электродвигателя достигает уровня в 63,21% (1-1/e) от своего конечного значения.

  • где — механическая постоянная времени, с

Источник



Электромеханическая характеристика двигателей постоянного тока

Электромеханическая характеристика двигателей постоянного тока – это графическая зависимость частоты вращения и вращающего момента от тока двигателя, при условии, что напряжение подаваемое на двигатель постоянное.

Изменение тока двигателя при снятии таких характеристик осуществляется за счет изменения механической нагрузки на валу якоря.

Характеристики двигателя с параллельным возбуждением (шунтовой).

Так как напряжение – величина постоянная, то ток возбуждения Iв и основной магнитный поток Ф у данного двигателя при снятии характеристики изменяться не будут и поэтому вращающий момент Мвр будет прямо пропорционален зависеть от тока якоря. Частота вращения n при изменении механической нагрузки на валу меняется незначительно, только за счет изменения падения напряжения в обмотке якоря. Такая характеристика называется «жесткой» или мало изменяющейся. При частоте вращения nкр ток якоря равен 0, то есть U = Е. Если частота вращения будет больше nкр, то двигатель автоматически перейдет в генераторный режим.

Характеристики двигателя с последовательным возбуждением (сериесный).

У данного двигателя ток якоря равен току возбуждения, поэтому Мвр данного двигателя зависит от квадрата тока якоря. При увеличении механической нагрузки на валу частота вращения данного двигателя уменьшается значительно по следующим причинам:

ü Из-за увеличения, в основном, магнитного потока полюсов Ф.

ü За счет увеличения падения напряжения в обмотке якоря.

Такая характеристика является «мягкой» и двигатель не может автоматически переходить в генераторный режим, поэтому, при малых механических нагрузках на валу, двигатель идет в разнос – n резко увеличивается. Двигатели с последовательным возбуждением запрещается запускать без механической нагрузке на валу якоря.

Дата добавления: 2015-12-22 ; просмотров: 2369 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник