Меню

Электрические цепи постоянного тока состав

Цепи постоянного и переменного тока

Электрическая цепь представляет собой средства и объекты, образующие, в совокупности, путь для прохождения электрического тока. Электромагнитные процессы, происходящие в них, могут получить свое определение при помощи таких понятий, как сила тока, напряжение, сопротивление и электродвижущая сила.

Цепи постоянного тока

Цепи постоянного и переменного тока

В состав входят отдельные устройства, которые выполняют свои определенные функции. Они называются элементами электрической цепи. Основными элементами считаются источники электроэнергии и устройства, принимающие эту энергию. Во всех источниках, с не электрическими материалами происходит преобразование в электрическую энергию. Наиболее распространенными источниками являются аккумуляторы, гальванические элементы, электромагнитные генераторы, солнечные батареи и другие.

С помощью приемников электроэнергия может преобразовываться в иные виды энергии. К основным видам таких приемников можно отнести нагревательные элементы и приборы, электродвигатели, гальванические ванны, приборы освещения и прочие.

Кроме того, в электрической цепи содержатся элементы вспомогательного назначения. Например, с помощью реостатов, регулируется величина, напряжение регулируется при помощи потенциометров и делителей. От перегрузок цепь защищают предохранители, коммутацию обеспечивают выключатели. Контроль над режимом работы осуществляется контрольно измерительными приборами.

Цепи переменного тока

Переменным называют электрический ток, способный менять направление своего движения периодически, за определенные промежутки времени.

Поскольку у него происходит изменение во времени, здесь невозможно применять расчеты, подходящие для цепей постоянного тока. При наличии высокой частоты, заряды совершают колебательное движение. Они переходят в цепи из одних мест в другие и в обратном направлении. При переменном в отличие от постоянного, последовательно соединенные проводники могут иметь неодинаковые значения. Этот эффект усиливается наличием емкостей в цепи. Здесь же наблюдается эффект самоиндукции, возникающий при использовании катушек с большой индуктивностью даже при низкой частоте.

Рассмотрим свойства цепи, подключаемой к генератору с переменным синусоидальным током. Роль конденсатора при подключении его в цепи постоянного и переменного тока совершенно различная. При постоянном, конденсатор заряжается до тех пор, пока его напряжение не сравняется с ЭДС источника тока. В этом случае зарядка прекращается и он падает до нуля. Если такую же цепь подключить к генератору переменного тока, то электроны будут перемещаться из одной части конденсатора в другую. Эти электроны и есть переменный ток с одинаковой силой с обеих сторон конденсатора.

В случае необходимости, с помощью выпрямителя, происходит преобразование переменного тока в постоянный.

Конденсатор в цепи переменного тока

Схемы выпрямления переменного тока

Выпрямители переменного тока

Конденсатор в цепи переменного и постоянного тока

Какой ток в розетке – переменный или постоянный

Источник

Цепи постоянного тока. Элементы цепи, определение.

Цепи постоянного тока это совокупность объектов и устройств, которые создают путь для движения электрического тока. При этом все происходящие электромагнитные процессы описываются с применение понятий об электродвижущей силе электрическом напряжении и токе.

Все объекты и устройства, которые входят в цепь постоянного тока подразделяются на категории. Первая из них это источники тока. Те источники, в которых идет преобразование не электрической энергии в электрическую называются первичными. К ним относятся гальванические элементы аккумуляторы электрогенераторы фотоэлементы. Если же источник преобразует электрическую энергию, то он называется вторичным. К таким источникам можно отнести выпрямители трансформаторы стабилизаторы и преобразователи.

Кроме источников тока существуют потребители. В них идет обратный процесс преобразования энергии. То есть электрическая переходит в другие виды. В частности в тепловую в нагревательных элементах или в электромагнитную в виде излучения.

И все что осталось относиться к вспомогательным элементам цепи постоянного тока. То есть, то, что не является ни источником, ни потребителем энергии. Сюда можно отнести соединительные провода коммутационные разъёмы переключатели измерительные приборы.

Читайте также:  Сила тока изменяется по закону найти индуктивность

Реальные электрические цепи для упрощения их анализа и расчета изображаются в виде электрических схем. В которых реальные объекты и устройства заменяются на графические условные обозначения. Реальные источники тока в таких электрических схемах представляются в виде источника эдс с внутренним сопротивлением. Нагревательные элементы и им подобные изображаются в виде эквивалентного электрического сопротивления.

В случае проведения расчетов с использованием электрических схем выделяют некоторые понятия. Например, ветвь электрической цепи это такой участок схемы на котором значение тока неизменно. В такую ветвь может входить от одного до нескольких элементов включённых последовательно.

Узлом электрической цепи называется та часть цепи, где происходит соединение минимум трех ветвей. На практике их может быть значительно больше. А соединение двух ветвей это будет также одна ветвь без разветвлений, но разбитая на части. И ток в них будет протекать все равно один и тот же. Если две различные ветви соединяют два разных узла, то они называются параллельными.

Ток в цепи постоянного тока не может протекать, если она не замкнута. И та часть цепи, которая состоит из нескольких ветвей и при этом она замкнута, называется контуром.

Любая цепь электрического постоянного тока, состоящая из выше перечисленных элементов, может быть отнесена к одному из двух видов цепей. Первая это линейная электрическая цепь. В такой цепи присутствуют только такие элементы параметры, которых не изменяются с изменением тока проходящего через них. В роли такого параметра может выступать сопротивление.

В нелинейных электрических цепях также могут присутствовать линейные элементы. Но отличаются такие цепи наличием одно или более нелинейного элемента. То есть в таком элементе изменяется один из параметров при протекании тока через него. Простейшим нелинейным элементом является лампа накаливания. В холодном состоянии спираль имеет более низкое сопротивление, а при прохождении тока через нее сопротивление увеличивается.

Источник

Тема 1.2. Электрические цепи постоянного тока

Электрические цепи и ее элементы

Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.

Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС — E ), токе ( I ) и напряжении ( U ).

Элементы цепи можно разделить на три группы:

1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);

2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);

3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.

Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.

Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.

Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.

Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.

Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.

Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.

Читайте также:  Эквивалентный круговой ток это

Активные и пассивные элементы

Элемент называется пассивным , если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.

Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).

Линейные и нелинейные цепи

Электрическая цепь называется линейной , если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.

Если электрическая цепь содержит хотя бы один нелинейный элемент , то она является нелинейной.

Топологические элементы электрической цепи.

Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.

Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.

Узел – точка соединения трех или более ветвей.

Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.

Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.

Положительные направления тока, напряжения и ЭДС.

Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.

Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.

По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.

За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.

Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.

Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.

Основные законы электрической цепи

Условное обозначение параметров в цепях постоянного и переменного тока.

i – переменный ток; I – постоянный ток;

u – переменное напряжение; U – постоянное напряжение;

e – переменная ЭДС; E – постоянная ЭДС;

Источник



Электрическая цепь постоянного тока и ее характеристики

Человечество давно научилось использовать электрические явления природы в своих практических целях для получения, использования, а также преобразования энергии. Такое действие достигается путем применения определенных устройств. Элементы оборудования в совокупности образуют систему. Такая система известна, как электрическая цепь.

Элементы цепи

Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода.

Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

Источниками энергии в схеме такой цепи выступают аккумуляторы, генераторы тока и гальванические элементы. Их еще называют источниками питания.

В приемниках электрической цепи электроэнергия преобразовывается в другой тип энергии. Таким оборудованием бывают двигатели, нагреватели, лампы и т. д.

Стоит отметить, что система может быть внешней и внутренней. Они отличаются наличием приемника. Открытая цепь имеет его в своем составе, а закрытая — только источник тока.

Читайте также:  Соотношение сварочного тока с толщиной металла

Электрическая цепь постоянного тока

Ток, величина которого не меняется с течением времени, называется постоянным.

Цепь, через которую проходит такой источник электричества, имеет замкнутую систему. Это электрические цепи постоянного тока. Их составляют различные элементы.

Для обеспечения постоянного источника энергии в системе применяются конденсаторы. Они способны накапливать запасы электрических зарядов.

Электрическая цепь

Емкость конденсатора зависит от размера его металлических пластин.

Чем они больше, тем больший заряд может накопить этот элемент электрической цепи постоянного тока. Электрическую емкость изменяют в таких единицах, как фарада (ф). На схеме этот элемент выглядит следующим образом.

Схема электрической цепи

Вместе с источниками и приемниками тока эти элементы образуют электрические цепи постоянного тока.

Последовательное соединение в цепи

Большое количество электрических цепей состоят из нескольких приемников тока. Если эти элементы соединены друг с другом последовательно, то конец одного приемника присоединен к началу другого. Это последовательное соединение системы.

Электрические цепи постоянного тока

Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. Они удлиняют пути прохождения тока, который будет одинаковым на отдельных участках системы.

Схема электрической цепи в классическом варианте содержит последовательно присоединенные проводники и нагляднее всего описывается таким прибором, как электрогирлянда.

Недостатком такой системы является тот факт, что в случае выхода из строя одного проводника, система не будет работать вся целиком.

Параллельное соединение цепи

Схема электрической цепи параллельного типа соединения элементов является системой, в которой начало содержащихся в ней проводников соединяются в одной точке, а концы их — в другой. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Он распределяется обратнопропорционально сопротивлению приемников энергии.

Сопротивление электрической цепи

Если у потребителей величина сопротивления одинаковая, то через них будет проходить одинаковый ток. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока. Сумма отдельно взятых элементов системы будет равна току в точке их соединения.

Присоединяя к такой цепи новые элементы, сопротивление системы будет уменьшаться. Это связано с увеличением общего сечения проводников при соединении нового потребителя электроэнергии. Позитивной характеристикой такого способа соединения цепи является автономность каждого элемента.

При отключении одного потребителя, совокупное сечение проводников уменьшается, а сопротивление электрической цепи становится большим.

Смешанное соединение в цепи

Смешанный вариант соединения довольно распространен в сфере производства электротехники.

Электрическая цепь и электрический ток

Эта цепь содержит в себе одновременно принцип последовательного и параллельного присоединения проводников.

Чтобы определить сопротивление нескольких потребителей такой схемы, находят отдельно сопротивление всех параллельно и последовательно присоединенных проводников. Их приравнивают к единому проводнику, что в итоге упрощает всю схему.

Режимы работы цепи

Опираясь на показатели нагрузки, различают такие режимы функционирования цепи: номинальный, холостой ход, замыкание и согласование.

При номинальной работе система выполняет характеристики, заявленные в техпаспорте оборудования. Холостой ход образуется в случае обрыва цепи. Этот режим работы относится к аварийным. Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. Это также аварийный режим.

Согласование характеризуется перемещением наибольшей мощности от источника энергии к проводнику. В таком режиме нагрузка равняется сопротивлению источника питания.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования. Данное устройство работы системы применяется к любому электрическому бытовому прибору. Применяя полученные знания, можно понять причину поломки оборудования или оценить правильность его работы в соответствии с техническими характеристиками, заявленными производителем.

Источник