Меню

Электрический ток будет проводить кристаллический хлорид натрия жидкий хлороводород

Электрический ток будет проводить кристаллический хлорид натрия жидкий хлороводород

Вопрос по химии:

Электрический ток будет проводить:
1)кристаллический хлорид натрия 2)раствор хлорида натрия 3)жидкий хлороводород 4)жидкий кислород

Ответы и объяснения 1
Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Химия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Химия — одна из важнейших и обширных областей естествознания, наука о веществах, их составе и строении, их свойствах, зависящих от состава и строения, их превращениях, ведущих к изменению состава — химических реакциях, а также о законах и закономерностях, которым эти превращения подчиняются.

Источник

Электролиз расплавов и растворов (солей, щелочей, кислот)

Содержание:

Сильнейшим окислительно — восстановительным действием обладает электрический ток. С помощью воздействия электрического тока на вещество можно получить чистый металл. Этот метод называется электролизом.

Электролиз – процесс, при котором происходит разложение вещества электрическим током.

Процесс электролиза может протекать только в веществах, проводящих электрический ток, то есть электролитах. К электролитам относят представителей основных классов неорганических соединений – кислоты, соли, щелочи.

Для протекания процесса требуется устройство, называемое электролизером.

Схема электролиза

Данное устройство работает от внешнего источника питания, который подает электрический ток. Представляет собой емкость, в которую опущены два электрода (катод и анод), заполнена емкость электролитом. При подаче электрического тока происходит разложение вещества. Для того чтобы узнать протекает электролиз или нет, в цепь включают лампочку, если лампочка загорается, значит в системе есть ток, если при замыкании цепи, лампочка не горит, то электролиз не протекает – вещество является не электролитом.

Катод (-) – является отрицательно заряженным электродом, катионы ( + ) перемещаются к нему и происходит процесс восстановления.

Анод (+) – положительно заряженный электрод, к нему перемещаются анионы (-) и происходит процесс окисления.

Можно выделить два типа электролиза для расплавов и растворов. Ход этих двух процессов происходит по-разному. Зависит по большей части это от содержания воды в растворе, которая тоже принимает участие в процессе. В расплаве происходит разложение только вещества.

Особенности электролиза расплавов

В расплаве электролит непосредственно подвергается воздействию электрического тока. Металл всегда образуется на катоде, а продукт анода зависит от природы вещества.

Читайте также:  Минимальное значение напряжения постоянного тока защита при косвенном прикосновении

При разложении расплава оснований на катоде образуется металл, а на аноде окисляется кислород. (расплав соли – это чистое вещество без примесей в основном твердые вещества)

Расплав основания

Разложение расплавов солей происходит по-разному у бескислородных и кислородосодержащих. У бескислородной соли на аноде окисляется анион – кислотный остаток, а у кислородосодержащей – окисляется кислород.

Расплав соли

Рассмотрим пример электролиза расплава бескислородной соли – хлорида калия. Под действием постоянного электрического тока соль разлагается на катионы калия и анионы хлора.

Катионы K + перемещаются к катоду и принимают электроны, происходит восстановление металлического калия.

  • Катодный процесс: K + + e — → K 0

Анионы Cl движутся к аноду, отдавая электроны, происходит образование газообразного хлора.

  • Анодный процесс: 2Cl — — 2e — → Cl2 0 ↑

Суммарное уравнение процесса электролиза расплава хлористого калия можно представить следующим образом:

Особенности электролиза растворов

В растворах электролитов, помимо самого вещества, присутствует вода. Под действием электрического тока водный раствор электролита разлагается.

Процессы, происходящие на катоде и аноде, различаются.

1. Процесс на катоде не зависит от материала, из которого он изготовлен. Однако, зависит от положения металлов в электрохимическом ряду напряжений.

Процесс на катоде

2. Процесс на аноде зависит от материала, из которого состоит анод и от его природы.

а) Растворимый анод (Cu, Ag, Ni, Cd) подвергается Me => Me n+ + ne

б) На не растворимом аноде (графит, платина) обычно окисляются анионы S — , J — , Br — , Cl — , OH — и молекулы H2O:

  • 2J — => J2 0 + 2e;
  • 4OH — => O2 + 2H2O + 4e;
  • 2H2O => O2 + 4H + + 4e

Рассмотрим примеры различных вариантов электролиза растворов:

1. Разложение бескислородной соли на нерастворимом электроде

Чтобы ознакомиться с этим вариантом электролиза, возьмем йодистый калий. Под действием тока ионы калия устремляются к катоду, а ионы йода к аноду.

Калий находится в диапазоне активности слева от алюминия, поэтому на катоде восстанавливаются молекулы воды и образуется атомарный водород.

Процесс протекает на нерастворимом аноде и в состав соли входит бескислородный остаток, поэтому на аноде образуется йод.

В результате можно создать общее уравнение электролиза:

2. Разложение бескислородной соли на растворимом электроде (медь)

Рассмотрим на примере хлорида натрия. Данная соль разлагается на ионы натрия и хлора, но следует учитывать материал анода. Медный анод сам подвергается окислению. На аноде выделяется чистая медь, и ионы меди переходят с анода на катод, где также осаждается медь. В итоге процесс можно представить следующими уравнениями реакций.

  • NaCl → Na + + Cl —
  • Катод: Cu 2+ + 2e — → Cu 0
  • Анод: Cu 02e — → Cu 2+

В растворе концентрация хлорида натрия остается неизменной, поэтому составить общее уравнение реакции процесса не представляется возможным.

Читайте также:  Сила тока примеры из жизни

3. Разложение кислородосодержащей соли на нерастворимом (инертном) электроде

Возьмем для примера раствор нитрата калия. В процессе электролиза происходит распад на ионы калия и кислотного остатка.

В ряду активности металлов калий находится левее алюминия, поэтому на катоде восстанавливаются молекулы воды и образуется газообразный водород.

Молекулы воды окисляются на аноде и выделяется кислород.

В результате получаем общее уравнение электролиза:

4. Электролиз раствора щелочи на инертном электроде

В случае разложения щелочи в процесс электролиза включаются молекулы воды и гидроксид-ионы.

Барий находится левее алюминия, поэтому на катоде происходит восстановление воды и выделение водорода.

На аноде откладываются молекулы кислорода.

Получаем суммарное уравнение электролиза:

5. Электролиз раствора кислоты на инертном электроде

При разложении азотной кислоты под действием электрического тока в процесс вступают катионы водорода и молекула воды.

На катоде выделяется водород, на аноде – кислород. Получаем суммарное уравнение процесса:

Применение электролиза

Процессы электролиза нашли свое применение в промышленности в первую очередь для получения чистых металлов электрохимическим путем. Побочными продуктами этого процесса являются кислород и водород, поэтому он является промышленным способом получения этих газов. Очень часто применяют для очистки металлов от примесей и защиты от коррозии.

Источник

Хлорид натрия: способы получения и химические свойства

Хлорид натрия NaCl — соль щелочного металла натрия и хлороводородной кислоты. Белое кристаллические вещество. Плавится и кипит без разложения. Умеренно растворяется в воде (гидролиза нет);

Относительная молекулярная масса Mr = 58,44; относительная плотность для ж. и тв. состояния d = 2,165; tпл = 800,8º C; tкип = 1465º C;

Способ получения

1. Хлорид натрия можно получить путем взаимодействия натрия и разбавленной хлороводородной кислоты, образуются хлорид натрия и газ водород:

2Na + 2HCl = 2NaCl + H2↑.

2. При комнатной температуре, в результате взаимодействия натрия и хлора, образуется хлорид натрия:

2Na + Cl2 = 2NaCl

3. Концентрированный раствор гидроксида натрия реагирует с концентрированным раствором хлорида аммония при кипении. При этом образуются хлорид натрия, газ аммиак и вода:

NaOH + NH4Cl = NaCl + NH3↑ + H2O

4. При взаимодействии с разбавленной и холодной хлороводородной кислотой пер окси д натрия образует хлорид натрия и пероксид водорода:

5. Разбавленная хлороводородная кислота реагирует с гидроксидом натрия . Взаимодействие хлороводородной кислоты с гидроксидом натрия приводит к образованию хлорида натрия и воды:

NaOH + HCl = NaCl + H2O

6. В результате взаимодействия сульфата натрия и хлорида бария образуется сульфат бария и хлорид натрия:

Качественная реакция

Качественная реакция на хлорид натрия — взаимодействие его с нитратом серебра, в результате реакции происходит образование белого творожного осадка:

1. При взаимодействии с нитратом серебра , хлорид натрия образует нитрат натрия и осадок хлорид серебра:

NaCl + AgNO3 = NaNO3 + AgCl↓

Химические свойства

1. Хлорид натрия вступает в реакцию со многими сложными веществами :

Читайте также:  Длительный ток кабеля с алюмин жилами

2.1. Хлорид натрия взаимодействует с кислотами :

2.1.1. Хлорид натрия в твердом состоянии при кипении реагирует с концентрированной серной кислотой с образованием сульфата натрия и газа хлороводорода:

а если температуру опустить до 50º С, то твердый хлорид натрия и концентрированная серная кислота образуют гидросульфат натрия и газ хлороводород:

2.2. Хлорид натрия способен вступать в реакцию обмена со многими солями :

2.2.1. Твердый хлорид натрия реагирует с концентрированной и горячей серной кислотой и твердым перманганатом калия . Взаимодействие хлорида натрия с перманганатом калия и серной кислотой приводит к образованию сульфата марганца, натрия, калия, газа хлора и воды:

2.2.2. Хлорид натрия взаимодействует с гидросульфатом натрия при температуре 450–800º C . При этом образуются сульфат натрия и хлороводородная кислота:

2.2.3. При взаимодействии холодного хлорида натрия с насыщенным нитритом серебра выделяются нитрат натрия и осадок хлорид серебра:

NaCl + AgNO2 = NaNO2 + AgCl↓

Источник



Почему кристаллический хлорид натрия не проводит электрический ток, а его раствор электропроводен?

Обсуждение вопроса:

Аватар

В кристаллическом хлориде натрия ионы расположены в узлах кристаллической решетки, поэтому перемещаться они не могут, соответственно под действием электрического поля не может возникнуть направленного движения заряженных частиц, раствор не пропускает электрический ток.

При растворении в воде хлорида натрия, он распадается на ионы (Na⁺ и Cl⁻), которые могут свободно передвигаться в растворе, соответственно под действием электрического поля возникает направленное движение заряженных частиц, поэтому раствор электропроводен.

Механизм диссоциации соли состоит в том, что если кристалл соли поместить в воду, то вокруг положительных и отрицательных ионов кристаллической решётки электролита диполи воды сориентируются противоположно заряженными концами. Между ионами кристалла соли и молекулами воды возникнет притяжение, связь между ионами ослабевает, и происходит переход ионов из кристалла в раствор. Вокруг, перешедших в раствор ионов соли, образуются оболочки из диполей воды, то есть в растворе содержатся гидратированные ионы соли.

Ионы, содержащиеся в кристаллическом (твердом) веществе, расположенные в узлах кристаллической решетки, соединенные друг с другом и перемещаться не могут, поэтому твердые электролиты электрический ток не проводят. Натрий хлорид при растворении в воде распадается на ионы (положительно и отрицательно заряжены), что способны свободно передвигаться, и являются носителями зарядов. Под воздействием электрического поля движение ионов становится направленным (возникает электрический ток).

Если кристалл соли поместить в воду, то вокруг положительных и отрицательных ионов кристаллической решётки электролита диполи воды сориентируются противоположно заряженными концами. Между ионами кристалла соли и молекулами воды возникнет притяжение, связь между ионами ослабевает, и происходит переход ионов из кристалла в раствор. Перешедшие в раствор ионы остаются связанными с присоединившимися к ним молекулами воды, которые образуют гидратную оболочку иона, то есть в растворе содержатся гидратированные ионы соли.

Источник