Меню

Эдс источника тока равна 100 в его внутреннее

ЭДС. Закон Ома для полной цепи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд :

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е. против направления тока).

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1 ).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2 ).

Рис. 2. Полная цепь

Наша задача — найти силу тока в цепи и напряжение на резисторе .

За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

Итак, , и мы приравниваем правые части формул (2) и (3) :

После сокращения на получаем:

Вот мы и нашли ток в цепи:

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4) ), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

Это напряжение является разностью потенциалов между точками и (рис. 2 ). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5) , что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

КПД электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

Если сила тока в цепи равна , то

Некоторое количество теплоты выделяется также на источнике тока:

Полное количество теплоты, которое выделяется в цепи, равно:

КПД электрической цепи — это отношение полезного тепла к полному:

КПД цепи равен единице лишь в том случае, если источник тока идеальный .

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Читайте также:  Переменный ток его получение цепи

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Сокращая на , получаем закон Ома для неоднородного участка цепи:

или, что то же самое:

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7) .

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4 . Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

где по-прежнему — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Источник

Электростатика. Конденсаторы (страница 2)

Электрическая цепь, схема которой изображена на рисунке, состоит из конденсатора, резистора, источника тока и ключа. Первоначально ключ был разомкнут. Найти ЭДС источника, если известно, что сила тока через источник сразу после замыкания ключа в \(n = 2\) раза больше установившейся силы тока в цепи, а установившееся напряжение на конденсаторе \(U = 1,75\) В. Ответ дайте в В.

Сразу после замыкания ключа ток через резистор не течет, поэтому ток через источник paset \[I_<1>=\frac<\xi>\] После того, как ток установится, сила тока будет равна \[I_<2>=\frac<\xi>\]

так как по условию ток первоначально в \( n \) раз больше, то

\[\frac<\frac<\xi>><\frac<\xi>>=n \Rightarrow \frac=n \Rightarrow \frac=n-1\] Taк как конденсатор и резистор подключены параллельно, то напряжение на резисторе равно установившемуся напряжению на конденсаторе и равно \[U=I_ <2>R=\frac<\xi R>=\frac<\xi(n-1)>\] Откуда ЭДС источника равно \[\xi=\frac=2 U=3,5 \text< В>\]

Параллельно соединённые резистор с сопротивлением \(R = 50\) Ом и конденсатор ёмкостью \(C = 15\) мкФ соединены последовательно с параллельно соединёнными резисторами с сопротивлениями \(2R\) и \(3R\) (см. рисунок). Цепь подключена к сети с постоянным напряжением. В установившемся режиме заряд конденсатора \(q = 0,75\) мКл.
1) Найдите ток через резистор с сопротивлением \(R\) .
2) Kакая мощность выделяется на резисторе с сопротивлением \(2R\) ?
Ответ дайте в Амперах и Ваттах последовательностью цифр без разделения запятой и пробелов.

1) Ёмкость конденсатора равна \[C=\dfrac\] Отсюда напряжение на конденсаторе \[U_c=\dfrac \quad (1)\] Силу тока на резисторе найдем по закону Ома \[I=\dfrac\quad (2)\] Так как резистор и конденсатор подключены паралеллельно, то напряжение на резисторе равно напряжению на конденсаторе \(U_c=U_R\) . Значит можно подставить (1) в (2) \[I=\dfrac=\dfrac<0,75\cdot 10^<-3>\text< Кл>><15\cdot 10^<-6>\text< Ф>\cdot 50\text< Ом>>=1\text< А>\] 2) Так как ток на конденсаторе равен нулю, то сила тока участка “конденсатор + резистор \(R\) ” будет равна только силе тока на резисторе и она в свою очередь равна слие тока участка “резистор \(2R\) + резистор \(3R\) ” и эта сила тока равна \[I=1\text< А>\] Найдем общее сопротивление участка “резистор \(2R\) + резистор \(3R\) ” \[\dfrac<1>=\dfrac<1><2R>+\dfrac<1> <3R>\Rightarrow R=\dfrac<6R><5>\] Также резисторы \(2R\) и \(3R\) соединены параллельно, это значит, что напряжение на них равно и при этом равно напряжению участка \[U_<2R>=IR=1\text< А>\cdot \dfrac<6\cdot 50\text< Ом>><5>=60\text< В>\] а мощность равна \[P=\dfrac<2R>=\dfrac<3600\text< В>><100\text< Ом>>=36\text< В>\]

Читайте также:  Двигатель постоянного тока мощностью 0 25 квт

Конденсатор емкостью 2 мкФ присоединен к источнику постоянного тока с ЭДС 3,6 В и внутренним сопротивлением 1 Ом. Сопротивления резисторов \(R_1 =\) 4 Ом, \(R_2\) = 7 Ом, \(R_3\) = 3 Ом. Каков заряд на левой обкладке конденсатора? Ответ дайте в мкКл.

При установившемся токе в цепи ток через конденсатор не будет идти, а значит резистор \(R_3\) не будет включен в цепь.

По закону Ома для полной цепи, ток в цепи равен \[I=\frac<\xi>+R_<2>>\] Так как резистор \(R_ <2>\) и конденсатор подключены параллельно, то напряжение на конденсаторе напряжению на резисторе \[U_=U_>=I R_<2>=\frac<\xi R_<2>>+R_<2>>\] Заряд на конденсаторе и напряжение связаны фopмулой: \[q=C U_\] Найдем заряд на левой обкладке, ом будет равен заряду конденсатора, при этом он будет положительным. \[q=2 \cdot 10^ <-6>\Phi \frac <3,6 \text< В>\cdot 7 \text< Ом>><1 \text< Ом>+4 \text< Ом>+7 \text< Ом>>=4,2 \text< мкКл>\]

При замкнутом ключе K (см. рисунок) установившееся напряжение на конденсаторе \(U_1 = 27\) В.
1) Найти ЭДС источника тока.
2) Определить установившееся напряжение \(U_2\) на конденсаторе после размыкания ключа.
Ответ дайте в Вольтах последовательностью цифр без разделения запятой и пробелом.

1) 1. Так как резистор \(3R\) и конденсатор подключены паралеллельно, то напряжение на резисторе равно напряжению на конденсаторе и равно общему напряжению на участке \[U_<3R+C>=U_1 \quad (1)\] 2. Так как ток на конденсаторе равен нулю, то сила тока участка “конденсатор + резистор \(3R\) ” будет равна только силе тока на резисторе и она в свою очередь равна слие тока участка “резистор \(2R\) + резистор \(R\) ” и эта сила тока равна \[I=\dfrac<3R>\] 3. Найдем общее сопротивление участка “резистор \(2R\) + резистор \(R\) ” \[\dfrac<1>=\dfrac<1><2R>+\dfrac<1> \Rightarrow R=\dfrac<2R><3>\] 4. Теперь найдем общее напряжение участка “резистор \(2R\) + резистор \(R\) ” \[U_=IR=\dfrac<3R\cdot 3>=\dfrac<2U_1><9>\quad(2)\] 5. Так как источник тока и участок “резистор \(2R\) + резистор \(R\) ” соединены последовательно, то сила тока на источнике и сила тока на участке равна \(I\) , значит мы можем найти напряжение на внутреннем сопротивлении источника \[U_\text<ист>=IR=\dfrac<3>\quad (3)\] 6. ЭДС источника складывается из напряжени на участках и напряжения на источнике. Сложим (1), (2) и (3). \[U=U_<3R+c>+U_<2R+R>+U_\text<ист>=U_1+\dfrac<2U_1><9>+\dfrac<3>=27\text< В>+6\text< В>+9\text< В>=42\text< В>\] 2) 1. После установления равновесия в цепи тока черезе резистор \(R\) прекращается, а напряжение на конденсаторе равно напряжению на участке “резистор \(2R\) + резистор \(3R\) ”. 2. Так как ток течет только через участок “резистор \(2R\) + резистор \(3R\) ”, то сила тока в цепи по закону ОМа для полной цепи равна \[I’=\dfrac<\xi><5R+R>=\dfrac<\xi><6R>\] 3. Напряжение на участе “резистор \(2R\) + резистор \(3R\) ” равно \[U’=\dfrac<\xi\cdot 5R><6R>=\dfrac<5\xi><6>=\dfrac<5 \cdot 42\text< В>><6>=35\text< В>\]

В электрической схеме до замыкания ключа К показание идеального вольтметра 9 В. После замыкания ключа показание идеального амперметра 1 А. Найдите внутреннее сопротивление батарейки.

“Досрочная волна 2019 вариант 2”

1) Поскольку вначале ключ разомкнут, то вольтметр показывает ЭДС источника тока \(\xi=9\) В.
2) Найдём ток в цепи. Поскольку сопротивления 4 и 2 включены между собой параллельно, то напряжения на них равны друг другу. По закону Ома для участка цепи мы можем расписать каждое из напряжений и можем найти токи через резистор 2. При \[U_2=U_4 \Leftrightarrow I_2R_2=I_4R_4 \Leftrightarrow1\text< А>\cdot 4\text< Ом>=I_2\cdot 2\text< Ом>\Leftrightarrow I_2=2\text< А>\] 3) Общий ток в цепи — это сумма токов на резисторах 4 и 2: \[I=I_4+I_2=2\text< А>+1\text< А>=3\text< А>\] 4) Найдём общее сопротивление цепи. Оно будет равно сумме сопротивлений на участках 1–3–5 и 2–4. А на каждом из этих участков мы найдём сопротивления по закону параллельного сопротивления проводников. \[\dfrac<1>>=\dfrac<1>+\dfrac<1>+\dfrac<1>=\dfrac<1><1>+\dfrac<1><3>+\dfrac<1><5>=\dfrac<23><15>\Leftrightarrow R_<1-3-5>=\dfrac<15><23>\text< Ом>\] Найдем общее сопротивление: \[R_0=R_<1-3-5>+R_<2-4>=\dfrac<15><23>\text< Ом>+\dfrac<4><3>\text< Ом>=\dfrac<137><69>\text< Ом>\] 5) Внутреннее сопротивление можно найти через закон Ома для полной цепи: \[I=\dfrac<\xi> \Rightarrow r =\dfrac<\xi>-R=\dfrac<9\text< В>><3\text< А>>-\dfrac<137><69>\text< Ом>\approx 1,01 \text< Ом>\]

В цепи, изображённой на рисунке, ЭДС батареи \(\xi=200\) В, сопротивления резисторов \(R_1=10\) Ом и \(R_2=6\) Ом, а ёмкости конденсаторов \(C_1=20\) мкФ и \(C_2=60\) мкФ. В начальном состоянии ключ К разомкнут, а конденсаторы не заряжены. Через некоторое время после замыкания ключа в системе установится равновесие. Какую работу совершат сторонние силы к моменту установления равновесия? Ответ дайте в Дж.

Когда пройдет длительное время, конденсатор будет заряжен до напряжения \(U_1=\xi\) , второй конденсатор заряжен не будет (так как он накоротко соединен через резисторы со своими пластинами).
Заряд на первом конденсаторе: \[q_1=C_1U=C_1\xi,\] где \(q_1\) – заряд на первом конденсаторе, тогда работа сторонних сил равна \[A_<\text< ист>>=q_1\xi=C_1\xi\xi=C_1\xi^2=20\cdot10^<-6>\text< Ф>\cdot200^2\text< В$^2$>=0,8 \text< Дж>\]

Четыре конденсатора подключены к источнику тока, как показано на рисунке. ЭДС источника равно \(\xi=10\) В его внутреннее сопротивление \(r\) , ёмкости конденсаторов \(C_1=3C\) , \(C_2=2C\) , \(C_3=4C\) , \(C_4=C=100\) мкФ. Определите энергию на конденсаторе \(C_2\) . Ответ дайте в мДж.

Пусть потенциал между блоком из конденсаторов 1–3 и блоком конденсаторов 2–4 равен \(\phi\) , тогда напряжение на блоке 1–3 равно \(U_<13>=\xi-\phi\) , а напряжение на блоке 2–4 равно \(U_<24>=\phi-0=\phi\) . Найдем емкости блоков конденсаторов \[C_<13>=3C+4C=7C \hspace <10 mm>C_<24>=2C+C=3C\] Так как блок 1–3 и блок 2–4 подключены последовательно, то на них одинаковый заряд \[q_<13>=q_ <24>\Rightarrow 7C(\xi-\phi)=3C \phi \Rightarrow \phi=\dfrac<7\xi><10>\] Так как конденсаторы 2 и 4 подключены параллельно, то напряжение на втором конденсаторе равно напряжению 2–4, а значит энергия второго конденсатора равна \[Q_2=\dfrac<100\cdot 2>=\dfrac<49C\xi^2><200>=\dfrac<49 \cdot 200\cdot 10^<-6>\text< Ф>\cdot 100\text< В$^2$>><200>=4,9\text< мФ>\]

Источник

Источник постоянного напряжения с ЭДС 100 В подключен через резистор к конденсатору

Источник постоянного напряжения с ЭДС 100 В подключен через резистор к конденсатору, расстояние между пластинами которого можно изменять (см. рис.). Пластины медленно раздвинули, совершив при этом работу 90 мкДж против сил притяжения пластин. Насколько изменилась емкость конденсатора, если с момента начала движения пластин до полного затухания возникших при этом переходных процессов, в электрической цепи выделилось количество теплоты 40 мкДж.

Читайте также:  Применение постоянных токов в физиотерапии

Каков электрический заряд конденсатора емкостью 1000 мкФ (см. рис.), если внутреннее сопротивление источника тока 2 Ом, его ЭДС равна 24 В, сопротивление

резистора 10 Ом.

Горизонтально расположенный проводник движется равноускоренно

в вертикальном однородном поле, индукция которого равна 1 Тл, направлена перпендикулярно проводнику и скорости его движения

(см. рисунок). При начальной скорости проводника, равной нулю, и

ускорении 8 м/с 2 , проводник переместился на 1 м. ЭДС индукции

на концах проводника в конце перемещения равна 6 В. Какова длина

В электрической цепи, показанной на рисунке, ЭДС источника тока равна 9 В: емкость конденсатора 10 мФ; индуктивность катушки 20 мГн и сопротивление резистора

3 Ом. В начальный момент времени ключ К замкнут. Какая энергия выделится в лампе после размыкания ключа? Внутренним сопротивлением источника пренебречь. Сопротивлением катушки и проводов пренебречь.

Образец возможного решения задачи (рисунок не обязателен)

Закон сохранения энергии: W 1 + A 1 + A 2 = W 2 + Q, где W 1 = C 1 U 2 |2 начальная энергия конденсатора, W 2 = C 2 U 2 |2 энергия конденсатора после раздвижения пластин, A 1 = U dq = U (C 2 U – C 1 U) = U 2 dC работа электрического поля батареи, А 2 – работа против сил притяжения пластин и Q – количество теплоты, выделившееся в цепи.

Из этих уравнений получаем: U 2 dC|2 + A 2 = Q dC = 2(Q –A 2 )|U 2 = —10 -8 Ф

Ответ: dС = —10 -8 Ф

Образец возможного решения задачи ( рисунок не обязателен)

Значения напряжения на конденсаторе и параллельно подсоединенном резисторе одинаковы и равны U = IR, U = Q|C. Закон Ома для полной цепи: I = E| R + r, следовательно Q = IRC = ERC| R+r = 2 10 -2 Кл.

Ответ: Q = 2 10 -2 Кл.

Образец возможного решения задачи

ЭДС индукции в проводнике, движущемся в однородном магнитном поле: Е = dФ/ dt

Изменение магнитного поля за малое время dt dФ = ВdS, где площадь dS определяется произведением длины проводника l на его перемещение dx за время dt, т.е dФ = Bldx. Следовательно, E = Bldx|dt = Blv, где v- скорость движения проводника v = dx|dt. В конце пути длиной х скорость проводника v 2 = 2ax ( а – ускорение), так что Е = Blv, l = E| Bv = 1,5 м

Образец возможного решения задачи

Пока ключ замкнут, через катушку L течет ток I определяемый сопротивлением R резистора: I = E| R. Конденсатор не заряжен. Энергия магнитного поля в катушке:

W = LI 2 |2 После размыкания ключа вся энергия, запасенная в катушке, выделиться на лампе: W = LI 2 |2 = E 2 L|2R 2 = 0,09 Дж.

Источник



Эдс источника тока равна 100 в его внутреннее

Рекомендуем! Лучшие курсы ЕГЭ и ОГЭ

Задание 15. В схеме, изображенной на рисунке, ЭДС источника тока равна 6 В, его внутреннее сопротивление пренебрежимо мало, а сопротивления резисторов R1 = R2 = 2 Ом. Какое напряжение показывает идеальный вольтметр?

Так как сопротивления соединены последовательно друг с другом, то их общее сопротивление складывается. Известно, что ЭДС связана с силой тока и сопротивлением в цепи выражением:

По закону Ома напряжение на сопротивлении равно , получаем:

Онлайн курсы ЕГЭ и ОГЭ

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 14
  • 15
  • 16
  • 17
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • Вариант 1
  • Вариант 1. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 2
  • Вариант 2. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 14
    • 15
    • 16
    • 17
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 3
  • Вариант 3. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 4
  • Вариант 4. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
  • Вариант 5
  • Вариант 5. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 6
  • Вариант 6. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 7
  • Вариант 7. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 8
  • Вариант 8. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 9
  • Вариант 9. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 14
    • 15
    • 16
    • 17
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
  • Вариант 10
  • Вариант 10. Задания ЕГЭ 2016. Физика. Е.В. Лукашева 10 вариантов
  • Решения заданий по номерам
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник