Меню

Двигатели постоянного тока документация

Электродвигатели постоянного тока. Устройство и работа. Виды

Электрические двигатели, приводящиеся в движение путем воздействия постоянного тока, применяются значительно реже, по сравнению с двигателями, работающими от переменного тока. В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, с питанием от обычных батареек с постоянным током. На производстве электродвигатели постоянного тока приводят в действие различные агрегаты и оборудование. Питание для них подводится от мощных батарей аккумуляторов.

Устройство и принцип работы

Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

Elektrodvigateli postoiannogo toka ustroistvo

Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

Виды
Электродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждение

При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

Elektrodvigatel p.t. nezavisimoe vozbuzhdenie

Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

Параллельное возбуждение

Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

Elektrodvigatel p.t. parallelnoe vozbuzhdenie

Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

Последовательное возбуждение

В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

Elektrodvigatel p.t. posledovatelnoe vozbuzhdenie
Смешанное возбуждение

Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

Elektrodvigatel p.t. smeshannoe vozbuzhdenie

Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

Особенности эксплуатации

Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

Elektrodvigateli postoiannogo toka skhema

Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

Источник

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Схематическое изображение простейшего ДПТ

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Читайте также:  Фотки токи из аниме токийский гуль

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Схемы подключения обмоток статора

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Ротор с тремя обмоткамиРисунок 3. Ротор с тремя обмотками Якорь со многими обмоткамиРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Схема электромотора с многообмоточным якорем

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Принцип работы ДПТ

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Регулировочная характеристика ДПТ

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному



Источник

Паспорта на двигатели асинхронные постоянного тока, генераторы постоянного тока, электродвигатели тяговые, агрегаты тяговые (djvu)

Ртуть

Информация о файле

Двигатели постоянного тока нереверсивные ряда П2 20, 21 И 24-го габаритов

Двигатели постоянного тока ряда П2ПМ 12-14-ГО габаритов

Двигатели асинхронные обдуваемые серии ВАСО

Двигатели асинхронные типов ВАО2-280, ВАО2-315, ВАО2-355

Читайте также:  Определите силу тока в чайнике включенном в сеть с напряжением 220 в если сопротивление 39

Двигатели асинхронные взрывозащищенные серий ВА02, ВАОУ мощностью 200-2000 кВт

Двигатели асинхронные серии ВА02 мощностью от 200 до 1000 кВт для среды 11С

Двигатели асинхронные взрывозащищенные серий АИМ, АИМР, АИУ, АИУР

Двигатели асинхронные взрывобезопасные ВАОЗ-280, 315, 355

Двигатели асинхронные серии АТД4 мощностью от 500 до 3150 кВт взрывозащищенные

Двигатели асинхронные взрывозащищенные серии ВА02 исполнения УХЛ

Двигатели асинхронные АИМ, АИУ112

Двигатель асинхронный взрывозащищенный типа ВАИУ100L2

Двигатели асинхронные АИМ, АИМР, АИУ, АИУР 250

Двигатели асинхронные АИМ132, АИУ132

Двигатели асинхронные взрывозащищенные серии АИМБ160-225. ЛК 01.20.32-89

Двигатели асинхронные взрывозащищенные серии АИУБ200, АИУБ225. ЛК 01.20.33-89

Двигатели асинхронные взрывозащищенные типа ВАИУ132

Двигатель асинхронный типа ВА02-315-6/18

Двигатели асинхронные типа ВАОВ с короткозамкнутым ротором

Двигатели асинхронные типа ВРК280 с контактными кольцами

Двигатели асинхронные типа 2BP2M280S4 ЛК 01.21;04-89

Двигатель асинхронным взрывозащищенный вертикальный типа ВА0ВК2-450М-4

Двигатели асинхронные взрывозащищенные вертикальные типа ВАОВ2-450, 560, 630

Двигатели асинхронные типов ВАОК 315, 355, 450 с контактными кольцами

Двигатели асинхронные типов АИМА90, АИМРА90, АИМА100, АИМРА100

Двигатель асинхронный АИМКл100L4

Двигатели асинхронные АИМП80, 132

Двигатели асинхронные типов ВАОК 315, 355, 450 с контактными кольцами

Двигатели асинхронные взрывозащищенные с тормозом типов АИМТ112, АИМТ132

Двигатели асинхронные типа ВАОЗС280

Двигатель асинхронный 2ЭКВ5-200-2

Двигатель асинхронный ЭКВЖ5-280-6

Двигатель асинхронный ЗЭДК04-110-2

Двигатели асинхронные типа ЭКВЗ-55

Двигатель асинхронный ЭКВЖВ4-315

Двигатели асинхронные АИРВС100А4Э, АИРВС100В12/4Э

Двигатели трехфазные асинхронные крановые серии 4МТН355

Генераторы постоянного тока типов ГПА-600, ГПА-600А, ГПА-600Б, ГПА-600В, ГПА-800М и ГПА-800В

Электродвигатель тяговый типа ЭДП-196

Генератор постоянного тока типа ГПА-222

Электродвигатель тяговый пульсирующего тока НБ-511М

Генераторы и агрегаты тяговые для тепловозов

Двигатель асинхронный типа АНЭ225L4УХЛ2

Двигатель асинхронный линейный ДАЛ-0-13-11У1

Машины вспомогательные электрические для тепловозов

Электродвигатели постоянного тока рудничные тяговые типа ДТН

Двигатели асинхронные АИР80В6/4УХЛ4

Двигатели асинхронные АИР112ПНУ2

Двигатели асинхронные АИРВС100А4Э, АИРВС100В12/4Э

Двигатель асинхронный крановый 4MTKH225S24

Двигатели асинхронные АИР71-АИР100 многоскоростные

Двигатели асинхронные трехфазные серии АИС с высотой оси вращения 200, 225 мм

Двигатели асинхронные трехфазные АИРВ112А4ПК АИРВ132В4ПН

Двигатели крановые 4МТН225-6РЗ, 4МТНФ225-6РЗ горизонтального исполнения с фланцем

Двигатели асинхронные АИС132Ехе

Двигатели асинхронные АИР71В4Е2ИУЗ, АИР71А6Е2ИУЗ

Двигатели асинхронные АИ71ДП, АИ90ДП ИАКФ.525000

Двигатели асинхронные короткозамкнутые рольганговые серии АРМ

Двигатели асинхронные АИР112РН2, АИР132РН2

Двигатели асинхронные типа АИВ180-2БФ, АИВ225-2БФ, АИВ250-2БФ

Двигатели асинхронные типа АИРС160, АИРС180 с повышенным скольжением

Двигатели однофазные асинхронные типов АИН63В4НО, 12С08 И АИН63В4НО, 18С08

Двигатели асинхронные трехфазные с короткозамкнутым ротором АИР112ЖОМ2 и АИР132ЖОМ2

Двигатели асинхронные АИР71ЭБ — АИР100ЭБ, АИР71ЭБС — АИР100ЭБС

Двигатели асинхронные 4АМ112МРОМ5 и 4АМ132МРОМ5

Двигатели асинхронные конденсаторные АИРЗТ80, АИРЗУТ80, АИРУТ80

Двигатели асинхронные трехфазные с короткозамкнутым ротором типа 4АМ355УЗ

Двигатель асинхронный АИ35558/4/2Б

Двигатель асинхронный АИРР355S4УЗа,ТЗа

Двигатели асинхронные однофазные серий АИР габаритов 50-63 и АИС габаритов 56-71

Двигатели асинхронные типа 4АМР160-250

Двигатели асинхронные многоскоростные 4АМ160-250

Двигатели асинхронные серии АИ 112, 132-го габаритов

Двигатели асинхронные 4АМ71-4АМ100 многоскоростные

Двигатели асинхронные АИРВ112БФ, АИРВ132БФ

Двигатели асинхронные типов АИРВ112БФ, АИРВ132БФ

Двигатели асинхронные трехфазные АИР112УХЛ1, АИР132УХЛ1

Двигатели асинхронные трехфазные встраиваемые серии АИС габаритов 63,71

Двигатели асинхронные 4АМХ80Ж — 4АМХ100Ж

Двигатели асинхронные взрывобезопасные ВАОЗ-355

Двигатели асинхронные взрывозащищенные вертикальные типа ВАОВ2

Двигатели асинхронные АИИ90-112

Двигатели асинхронные АИВ112Э

Двигатели асинхронные 4АМП1120М2 и 4АМП1320М2

Двигатель асинхронный АИРП80А8/4СУ2

Двигатель тяговый НБ-514

Двигатели асинхронные ЭКВ2,5-30

Двигатели асинхронные типов 2ВА100, 2ВА112, 2ВА132

Двигатели асинхронные взрывозащищенные с тормозом типов АИМТ90, АИМТ100

Двигатели асинхронные типа BPM3-280S4

Двигатель асинхронный взрывозащищенный АИМРЦ

Источник



Двигатели постоянного тока

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Лабораторная работа 20 ( Lr 20)

ДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

ПАРАЛЛЕЛЬНОГО ВОЗБУЖДЕНИЯ

Снять и построить механическую и рабочие характеристики элек­тро­дви­гателя постоянного тока (ДПТ). Изучить модель ДПТ параллельного возбуждения и исследовать её работу в переходных режимах.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ

1. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ДПТ

Двигатели постоянного тока до сих пор находят широкое применение, хотя они значительно дороже и менее надёжны, чем асинхронные и синхронные. Преимущество ДПТ  возможность плавного и экономичного регулирования в широком диапазоне частоты вращения вала и создания боль­шого пускового момента при относительно небольшом пусковом токе. Поэтому их широко используют в электротранспорте, для привода прокатных станов, металлорежущих станков и т. д. Двигатели небольшой мощности применяют во многих системах автоматики.

Недостаток ДПТ  наличие щёточно-коллекторного аппарата, который требует тщательного ухода в эксплуатации и снижает надежность машины.

Основными частями двигателя постоянного тока являются статор и якорь, отдалённые друг от друга воздушным зазором (0,3…0,5 мм).

С
татор  э то стальной ци­линдр 1 , внутри которого крепятся главные по­люса 2 с полюсными наконечниками 3 , образуя вместе с корпусом маг­нитопровод машины (рис. 20.1, а ). На главных полюсах расположены после­до­вательно соединённые катушки обмотки возбуждения 4 , предназначенные для создания неподвижного магнитного потока Ф в машины. Концы Ш1 и Ш2 обмотки возбуждения (ОВ) выводят на клем­мный щиток, расположенный на корпусе машины. Помимо основных полюсов внутри статора располагают дополнительные полюса 9 с обмотками 10 , которые служат для уменьшения искрения в скользящих контактах (между щётками и кол­лек­тором).

Якорь (подвижная часть машины)  это цилиндр 5 , набранный из лис­­­­тов электротехнической стали, снаружи которого имеются пазы, в которые уложена якорная обмотка 11 (рис. 20.1). Отводы обмотки якоря припа­ива­ют к пластинам коллектора 6 , расположенного на вращающемся в подшипни­ках валу 7 . Коллектор представляет собой цилиндр, набранный из медных пластин, изолированных друг от друга и от вала и закреплённых (по тех­но­логии «ласточкина хвоста») на стальной втулке. Коллектор играет роль механического выпрямителя переменной ЭДС, индуктируемой в обмотке якоря.

К коллектору с помощью пружин прижимаются неподвижные медно-графитовые щётки 8 , соединённые с клеммами Я1 и Я2 щитка. Образовавшиеся скользящие контакты дают возможность соединить вращающу­юся обмотку якоря (ОЯ) с электрической цепью (снять выпрямленное напряжение с коллектора (генераторный режим) или соединить якорную обмотку с источником постоянного напряжения и распределить токи в стер­жнях ОЯ таким образом, чтобы их направления под разноименными полюсами были бы противоположными (двигательный режим)).

Суммарное сопротивление цепи якоря R я = 0,5…5 Ом.

Часть машины, в которой индуктируется ЭДС, принято называть яко­рем , а часть машины, создающей основное магнитное поле (магнитный поток) – индуктором . В машинах постоянного тока якорем является ротор, а индуктором – статор.

В
зависимости от того, как обмотка возбуждения ОВ включена относительно сети и якоря, различают МПТ независимого возбуждения (ОВ к якорю не подключена) и МПТ с самовозбуждением , которое подразделяется на параллельное, последовательное и смешанное. На рис. 20.2 приведе­­ны электрические схемы возбуждения указанных типов МПТ.

При подаче постоянного напряжения U к зажимам ДПТ в обмотках возбуждения ОВ и якоря протекают токи I я и I в (рис. 20.3). В результате взаимодействия тока якоря с магнитным потоком, созданным магнитодвижущей силой (МДС) обмотки возбуждения, возникает электромагнитный момент двигателя, под действием которого якорь приходит во вращение. Средний электромагнитный момент (в Нм), действующий на якорь ДПТ, по обмотке которого протекает ток I я ,

где F с  среднее значение силы в ньютонах (Н), действующей на якорь, которая согласно закону Ампера возникает при взаимодействии тока якоря с магнитным потоком машины; d  диаметр якоря, м.

После преобразования выражения (20.1) получим

где р  число пар полюсов машины; а и N  число пар параллельных ветвей и число проводников обмотки якоря; Ф в  магнитный поток одного полюса статора, Вб; n  частота вращения якоря, об/мин; С М = pN /2  a  коэффициент момента, зависящий от конструктивных особенностей машины.

Из выражения (20.2) следует, что электромагнитный момент ДПТ пря­мо пропорционален произведению магнитного потока Ф в на ток якоря I я .

П ри вращении якоря проводники якорной обмотки пересекают магнитные силовые линии потока Ф в , вследствие чего в проводниках индуктируется противоэлектродви­жущая сила где n  час­тота вращения яко­ря, об/мин; С Е = pN /60 a – конструктивный коэффициент противоЭДС.

Для ДПТ параллельного возбуждения (рис. 20.2, б ) ток якоря

где U  напряжение, подводимое к элек­­тродвигателю, В; R я  соп­роти­в­ле­ние обмотки якоря, Ом.

В начальный момент пуска ДПТ частота вращения якоря n = 0, поэтому противоэлектродвижущая сила в (20.3) Е я = 0. Чтобы ограничить недопустимо большой пусковой ток I яп = = U / R я в обмотке якоря, последовательно с якорем включают пусковой реостат R п .

В этом случае пусковой ток якоря

Читайте также:  Митсубиси лансер 9 пусковой ток аккумулятора

По мере разгона двигателя ЭДС якоря Е я увеличивается и сопротивление пускового реостата уменьшают до нуля.

2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ДПТ

Электромеханические свойства ДПТ определяются его скоростной харак­терис­тикой n ( I я ), представляющей зависимость частоты вращения n от тока якоря I я при U = const и I в = const .

Уравнение естественной скоростной характеристики получают из выражения (20.3), решив его относительно частоты вращения

С ростом нагрузки падение напряжения R я I я в цепи якоря возрастает, но при этом магнитный поток Ф в уменьшается вследствие реакции якоря, под которой понимают воздействие магнитного потока якоря Ф я на магнитный поток Ф в , создаваемый током возбуждения. Так как падение напряжения в цепи якоря R я I я обычно оказывает более сильное влияние на частоту вращения якоря n , чем реакция якоря, то скоростная характеристика n = ( I я ) имеет вид прямой падающей линии (см. рис. 20.5).

Важнейшей характеристикой ДПТ является механическая n ( M ), представляющая зависимость частоты вращения n якоря от развиваемого ДПТ мо­мен­та вращения М при условии постоянства напряжения и соп­ротив­лений в цепи якоря и в цепи воз­бу­ж­дения. Заменив ток I я в (20.4) значением из выражения вращающего момента М = С M Ф в I я , получим уравне­ние естественной механической характеристики

Е стественная механическая характеристика n = ( M ) двигателя постоянного тока параллельного возбуждения выведена при условии, что момент холостого хода М 0 = 0, а электромагнитный момент примерно равен моменту на валу двигателя, т. е. М эм  М , где n 0  час­тота вращения якоря двигателя на холостом ходу при допущении, что падение нап­ряжения R я I я в якоре отсутствует;  n  уменьшение частоты вращения якоря дви­га­теля при соответствующем увеличении моме­нта вращения М ; С Е , С М  конструктивные коэффици­енты элек­тродвигателя.

Если принять магнитный поток машины постоянным, т. е. Ф в = const при токе возбуждения I вн = const , то естественная механическая харак­теристика представляет собой прямую линию (см. кривую 1 на рис. 20.4), наклон которой по отношению к оси абсцисс определяется отношением

При переходе двигателя от режима холостого хода к номинальной нагрузке частота вра­щения якоря n снижается всего лишь на 2…8%, т. е. двигатель постоянного тока параллельного возбуждения обладает жёсткой механической характеристикой.

При введение пускового реостата в цепь якоря уменьшается жесткость механической характеристики (см. реостатные механические характеристики 2 … 4 на рис. 20.4), что приводит к снижению частоты вращения при определенном моменте сопротивления М с на валу, создаваемом, например, определенным током электромагнитного тормоза ЭМТ (см. рис. 20.3).

Практическое значение имеют рабочие характеристики ДПТ.

Зависимость М = f ( I я ) называется моментной характеристикой двигателя. При установившемся режиме работы двигателя электромагнитный момент вращения М связан с током якоря I я выражением

М эм = С М I я Ф в = М 0 + М .

Момент холостого хода М 0 мало изменяется при нагрузке; он опре­деляется мощ­но­стью Р , потре­бляемой двигателем из сети в режиме холостого хода. Так как отноше­­ние М 0 /М н  3…8%, то, пренебрегая моментом М 0 , можно принять М эм  М = С М I я Ф в . При этом условии построение характеристики М = ( I я ) начинают из начала координат (рис. 20.5). С увеличением тока I я в якорной обмотке магнитный поток Ф в уменьшается за счет размагничивающего действия реакции якоря, а потому моментная характеристика растёт медленнее, чем ток I я , отклоняясь от прямой (пунк­тирной) линии (см. рис. 20.5).

Характеристика коэффициента по­лез­ного действия  = ( I я ) нара­стает очень быстро при росте нагрузки от нуля (режим холостого хода) до 0,5 I ян и достигает наибольшего значения в пределах от 0,5 до 0,8 номинальной нагрузки, а затем медленно падает вследствие роста переменных потерь (см. рис. 20.5).

В некоторых случаях удобнее пользоваться зависимостью частоты вращения n , электромагнитного момента М , тока якоря I я и КПД  двигателя от полезной мощности на валу Р 2 при U = const и I в = const .

3. КРАТКОЕ ОПИСАНИЕ МОДЕЛИ ДПТ

При программировании модели ДПТ параллельного возбуждения использовались каталожные параметры и следующие расчетные формулы:

момент холостого хода М 0 = (0,03…0,08) М н ; индуктивность обмотки яко­ря не учитывалась; сопротивление пускового реостата R n , где электро­маг­­нитный момент дви­гателя М эм = С М I я Ф в = М 0 + М ; установившаяся частота вращения якоря текущая частота п вычислялась (посредством численного мето­да Эйлера) из уравнения динамики ДПТ: М  вращающий момент двигателя; М с  момент сопротивления на валу двигателя, при­нятый независимым от угловой скорости  и от времени t ; J  суммарный момент инерции в кгм 2 , пере­считанный к валу двигателя.

В
соответствии с вариантом задания тип ДПТ параллельного возбуждения выбирается из приведенного в программе списка. Предусмотрен также ввод вручную параметров проектируемого двигателя. На рис. 20.6 представлены общий вид интерфейса, каталожные параметры и дина­мические характеристики двигателя типа 2ПН90М, выбранного из списка двигателей параллельного возбуждения. Пуск двигателя был выполнен при моменте сопротивления на валу М с = 3 Нм и введенном пусковом реостате R п (пусковой ток I п = 2,5 I ян , ток возбуждения I в = I вн = const ).

После вывода пускового реостата частота вращения якоря увеличилась до 3000 об/мин. Затем пусковой реостат был полностью введен в цепь якоря и медленно выведен. Далее, момент сопротивления М с был увеличен до 4 Нм, уменьшен сначала до 3 Нм, а затем до нуля и, наконец, увеличен до 3 Нм.

Анализ графиков частоты вращения n , вращающего момента М и тока якоря I я от времени, а также текущих параметров двигателя показывает, что расчетная модель адекватно отображает как статические, так и динамические электромагнитные процессы в двигателе.

УЧЕБНЫЕ ЗАДАНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ИХ ВЫПОЛНЕНИЮ

Задание 1 . Щёлкнуть мышью на команде Эксперимент меню комплекса LabWorks, а затем на закладке Тип двигателя (см. рис. 20.6, в левом верхнем углу). В открывшемся окне выбрать тип двигателя, порядковый номер которого в списке двигателей совпадает с номером записи фамилии студента в учебном журнале группы.

Ознакомиться с выведенным на экран дисплея интерфейсом модели ис­пытания ДПТ параллельного возбуждения, уточнив назначение окон:

 окна, снабженные стрелками, предназначены для изменения момента сопротивления М с на валу и сопротивления пускового реостата;

 в выделенные справа экрана поля выводятся каталожные параметры двигателя и текущие значения расчетных величин.

Записать в отчёт каталожные данные ДПТ: номинальную механиче­скую мощность Р н = Р 2 н на валу, номинальное напряжение питания U н , но­ми­­­­­­наль­ный ток якоря I ян , сопротивление обмотки возбуждения R ов , номи­наль­ную частоту вращения вала n н , КПД двигателя  н и сопротивление якоря R я .

Задание 2 . Осуществить «пуск в ход» ДПТ (запустить программу моделирования и расчета параметров ДПТ) и » снять » механическую и рабочие характеристики ДПТ параллельного возбуждения.

 щелкнуть мышью на кнопке » Пуск «, т. е. «подключить» обмотку якоря и обмотку возбуждения ДПТ к сети постоянного тока, уменьшая ступенчато сопротивление пускового реостата из положения 5 в положение 0 с выдержкой времени в каждом промежуточном положении не менее 2…3 с;

 наблюдать переходные процессы в ДПТ по графикам n ( t ), I я ( t ) и M ( t ), выводимым на рабочее поле программы. После установ­ления частоты вращения вала n , записать в строку 1 табл. 20.1 значения: напряжения U ; тока I я ; активной мощности Р 1 , «потребляемой» ДПТ из сети; частоты вращения ротора n 0 в режиме холостого хода; момента холостого хода М 0 (полезный момент на валу М = 0), которые выводятся в соответствующие поля на экране дисплея;

 » снять » механическую n = f ( M ) и рабочие ха­рак­те­ристики I 1 = f ( Р 2 ), M = f ( Р 2 ), h = f ( Р 2 ) двигателя при напряжении U = U н = const и токе возбуждения I в = I вн = const .

Для снятия характеристик необходимо:

 ступенчато увеличивая момент сопротивления (нагрузку) М с на валу ДПТ (имитируя увеличение тока в цепи обмотки возбуждения электромагнитного тормоза ЭМТ (см. рис. 20.3)), записывать в табл. 20.1 показания «измерительных приборов» ( U , I я , Р 1 , n и М ) при 8…9 значениях момента М с :­ от режима холостого хода ( М с = 0, Р 2 = 0) до значения М с = (1,2) М н , где М н = 9550 Р 2 н / n н ( Р 2 н в кВт);

 остановить двигатель. В реальных условиях останов двигателя выполняют в следующей последовательности:

 плавно уменьшают нагрузку до нуля (где это возможно);

 переводят ручку пускового реостата из положения 0 в положение 5 и, нажав кнопку Выход , отключают двигатель от сети.

Источник